
  

 

Abstract— This article presents the electrochemical aspect of 

a multiphysics model for a 1 kW proton exchange membrane 

(PEM) water electrolyzer. The electrochemical sub-model is 

based on established equations, incorporating corrections to the 

standard electrochemical formula to enhance generalization 

across different temperatures. The model parameters affecting 

electrochemical performance are identified to better represent 

real physical processes. Validation is conducted using 

experimental data obtained under various inlet temperature 

conditions. The optimized model accurately predicts 

electrochemical behavior in the temperature range of 40°C to 

70°C. These results demonstrate the model's capability to reflect 

temperature-dependent electrochemical processes. 

I. INTRODUCTION 

In the context of achieving carbon neutrality, the 
development of efficient and sustainable technologies to 
reduce the environmental impact of industries has gained 
significant attention. Hydrogen is widely seen as a key 
approach to addressing global warming and is already used in 
many industrial applications [1, 2, 3]. Due to its broad range 
of uses, transitioning to a hydrogen-based economy needs 
substantial advancements in the efficiency and sustainability 
of hydrogen production methods. To achieve carbon neutrality 
by 2050, France has committed to investing in hydrogen 
energy development, including the installation of at least 6.5 
GW of electrolyzer capacity [4]. Similarly, the European 
Union aims to reach climate neutrality by 2050 through a 
series of actions, such as the Green Deal project [5].  

One promising approach to large-scale hydrogen 
production is the direct coupling of water electrolyzers with 
intermittent renewable energy sources, such as wind and solar 
power. This integration enables the production of "green 
hydrogen," but it also presents challenges. High variability in 
the electrical current supplied by renewable sources can lead 
to premature aging of electrolyzers and increased overall 
system costs [6]. Among the various electrolyzer technologies, 
Proton Exchange Membrane (PEM) water electrolyzers are 
particularly suited for use with renewable energy sources due 
to their superior dynamic performance, wide operating range, 
compact design, and ability to produce high-purity hydrogen 
without the need for potassium hydroxide as an electrolyte [7, 
8]. Other technologies, such as Alkaline, Solid-Oxide (SO), 
and Anion Exchange Membrane (AEM) electrolyzers, offer 
specific advantages but are presently less adaptable to 
fluctuating power inputs.  

Physics-based models play a critical role in understanding 
and predicting the performance of electrolyzers under various 
operating conditions. For PEM electrolyzers, it is important to 
model power consumption as a function of time compared to 
hydrogen production to evaluate performance. Stack-level 

modeling, which considers the collective behavior of multiple 
cells, is preferred for its proximity to real-world operation. It 
enables researchers to numerically approximate system 
performance while isolating it from plant-level complexities.   

Over the past decade, most PEM electrolyzer models have 
been empirical, semi-empirical, or analytical, with limited 
validation using experimental data [9, 10, 11]. Although 
several models, such as those developed by Agbli et al. [12], 
have provided valuable insights, advancements in PEM 
electrolyzer modeling have been relatively scarce since the last 
comprehensive review on the subject [10]. Existing models 
primarily focus on the cell level and attempt to couple different 
physical phenomena. When transitioning from cell-level to 
stack-level modeling, challenges such as parameter 
inhomogeneity and scaling effects further complicate the 
process [13].   

The model proposed in this study builds upon the work of 
Agbli et al. [12] and incorporates corrections to 
electrochemical equations for modeling activation, ohmic, and 
diffusion losses. Unlike previous models, which assume 
symmetrical reactions with a charge transfer coefficient of 0.5 
for both the anode and cathode, this study introduces a novel 
approach for identifying electrochemical parameters, 
including anode and cathode charge coefficients, using 
physics-based equations.  

This article presents the electrochemical part of a 
multiphysics model applied to a dry cathode PEM electrolyzer 
stack with experimental validation performed on a 10-cell 
stack. The use of a short stack provides a balance between 
experimental feasibility and the complexity of scaling effects. 
The proposed modeling approach integrates cell-level physics 
with stack-level calibration using real experimental data. The 
model accurately predicts system behavior under various 
operating conditions, including dynamic load changes, and 
highlights key physical phenomena that influence 
performance. Furthermore, the study discusses the model's 
limitations, such as challenges in scaling from cell-level to 
stack-level modeling. These analyses aim to identify areas for 
improvement and provide a comprehensive understanding of 
the model's strengths and weaknesses. By bridging the gap 
between cell-level and stack-level modeling, this study 
contributes to the development of more robust and accurate 
models for PEM electrolyzers. Such advancements are 
essential for improving hydrogen production systems and 
supporting the transition to a sustainable hydrogen-based 
economy. 

To accurately model PEM water electrolyzers, it is 
essential to account for the electrochemical processes that 
govern their operation. These processes include activation, 
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ohmic, and diffusion losses, which collectively impact the 
system's efficiency and performance. A precise understanding 
of these phenomena is necessary to develop models capable of 
predicting system behavior under varying operating 
conditions. By incorporating corrections to electrochemical 
equations and finding key parameters such as charge transfer 
coefficients at the anode and cathode, this study finally aims 
to enhance the reliability and applicability of PEM electrolyzer 
models. This refined electrochemical model serves as the 
foundation for the Multiphysics modeling approach. 

The paper is organized as follows: Section II presents the 
electrochemical modelling of the PEM water electrolyzer, 
detailing the key hypotheses in Part A, the formulation of 
activation, ohmic, and diffusion losses in Part B, and the detail 
model of electrochemical parameter to take temperature 
dependence into account in Part C. Section III describes the 
identification and validation of these parameters via a genetic-
algorithm–based estimation routine, and Section IV draws the 
conclusions and outlines perspectives for further 
improvement. 

II. MODELING OF PEM WATER ELECTROLYZER 

A. Modelling hypothesis 

 
Developing a physics-based model involves carefully 

considering the physical limits that affect the system. Various 
hypotheses have been proposed to accurately model the 
operation of the stack by considering different physical 
phenomena:   

• Cells are assumed to be identical, independent, and 

isolated.  

• Mechanical motion and electromagnetic forces are 

neglected.  

• Current density is considered uniform across the 

entire active area of the electrodes.  

• Auxiliary components, such as cooling and gas 

handling systems, are not modeled, and their impact 

on system behavior is assumed to be negligible.   

• The cathode is modeled as a dry system, with no 

liquid water present at the cathode side.   

• The anode operates at atmospheric pressure, 

simplifying pressure-dependent phenomena.   

• Temperature is considered uniform throughout the 

system.   
This model achieves high accuracy in simulating the 

responses of the electrolyzer within a temperature range of 30 
°C to 70 °C. These hypotheses provide a balance between 
simplifying assumptions and physical fidelity. 

B. Electrochemical modeling  

Electrochemical physics describes chemical phenomena 
coupled with electrical energy. This enables the quantification 
of voltage losses and the assessment of system performance. 
The Gibbs free energy, a key thermodynamic quantity, is 
calculated using the following equation: 

Δ𝐺 = Δ𝐻 − 𝑇Δ𝑆 (1) 

where Δ𝐺 is the free Gibbs energy [𝐽 ∙ 𝑚𝑜𝑙−1], Δ𝐻 is the 
standard enthalpy [𝐽 ∙ 𝑚𝑜𝑙−1], T is the temperature [K] and Δ𝑆 
is the entropy difference [𝐽 ∙ 𝑚𝑜𝑙−1 ∙ 𝐾−1] 

The reversible voltage corresponds to the minimum 
voltage required for the electrolysis reaction to occur under 
ideal conditions and is defined as 

 𝑉𝑟𝑒𝑣 = |
𝛥𝐺

𝑛 ∙ 𝐹
| (2) 

with 𝑛 the number of electrons exchanged, 𝐹 the Faraday 
constant [C ∙ 𝑚𝑜𝑙−1], 𝑉𝑟𝑒𝑣 is the reversible voltage [V]. 

At standard conditions at 25°C and 1 atm, the Gibbs free 
energy is 237 𝑘𝐽 ∙ 𝑚𝑜𝑙−1 and the minimum dissociation 
voltage of water is 1.23 V. A temperature-dependent 
expression for the reversible voltage was proposed by Harrison 
et al. [13], based on thermodynamic values:  

𝑉𝑟𝑒𝑣 = 1.229 − 0.9 ∙ 10−3 ∙ (𝑇 − 298) (3) 

with T is stack temperature [K]. 
As the system is not ideal, the reversible voltage is 

corrected using the Nernst equation [14], which accounts for 
pressure differences to calculate the true open-circuit voltage 
(OCV): 

𝑉0 =
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∙ 𝑁𝑐𝑒𝑙𝑙 (4) 

with R is ideal gas constant [𝐽 ∙ 𝐾−1 ∙ 𝑚𝑜𝑙−1], 𝑃𝑐𝑎𝑡,0 reference 

fluid pressure at the cathode [Bar], 𝑃𝑎𝑛,0 reference fluid 

pressure at the anode [Bar], 𝑝𝐻2
 partial pressure of hydrogen 

at the cathode [Bar], 𝑝𝑂2
 partial pressure of oxygen at the 

anode [Bar], 𝑎𝐻2𝑂is activity of water [1]. 

Voltage losses beyond the reversible voltage, called 
overpotentials, must be overcome for the electrolysis reaction 
to proceed. The main overpotentials include activation, ohmic, 
and diffusion losses. 

The activation overpotential accounts for the energy 
barrier associated with the electrochemical reactions. 
Assuming uniform current density across the electrodes, the 
activation losses at the anode and cathode are given by: 

𝜂𝑎𝑐𝑡,𝑎𝑛 =
𝑅 ∙ 𝑇

𝑛 ∙ 𝛼𝑎 ∙ 𝐹
∙ 𝑎𝑠𝑖𝑛ℎ (

𝑗

2 ∙ 𝑗0,𝑎

) ∙ 𝑁𝑐𝑒𝑙𝑙  (5) 

𝜂𝑎𝑐𝑡,𝑐𝑎𝑡 = 
𝑅 ∙ 𝑇

𝑛 ∙ 𝛼𝑐 ∙ 𝐹
∙ 𝑎𝑠𝑖𝑛ℎ (

𝑗

2 ∙ 𝑗0,𝑐

) ∙ 𝑁𝑐𝑒𝑙𝑙  (6) 

with 𝛼𝑐 cathode charge transfer coefficient [1], 𝛼𝑎 anode 
charge transfer coefficient [1], 𝑗0,𝑎 anode exchange current 

density [𝐴 ∙ 𝑐𝑚−2] 𝑗0,𝑐 cathode exchange current density [𝐴 ∙
𝑐𝑚−2], 𝑗  current density [𝐴 ∙ 𝑐𝑚−2], 𝑁𝑐𝑒𝑙𝑙  number of stack 
cells. 

The total activation losses correspond to the addition of 
anodic and cathodic activation losses, resulting in the 
following value: 



  

𝜂𝑎𝑐𝑡 = 𝜂𝑎𝑐𝑡,𝑎𝑛 + 𝜂𝑎𝑐𝑡,𝑐𝑎𝑡 (7) 

with 𝜂𝑎𝑐𝑡 activation losses [V]. 

Ohmic resistance losses represent the resistance of the 
system to ionic and electronic transport in the system, with the 
membrane resistance being the dominant factor. Using Ohm's 
law, the ohmic losses are expressed as:  

𝜂𝑜ℎ𝑚 = 𝑅𝑒 ∙  𝑗 ∙ 𝑁𝑐𝑒𝑙𝑙 =
𝜙

𝜎𝑚

 ∙  𝑗 ∙ 𝑁𝑐𝑒𝑙𝑙 (8) 

with 𝑅𝑒 membrane resistance [Ω], 𝜙 membrane thickness [m] 
and 𝜎𝑚 membrane conductivity [S ∙ 𝑚−1]. 

The concentration overpotential, or diffusion 
overpotential, arises from gas transport limitations within the 
cell. This effect is often negligible under low current densities, 
where ohmic and activation losses dominate. A derivative of 
the Nernst equation is used to quantify the diffusion 
overpotential: 

𝜂𝑐𝑜𝑛𝑐  = (
𝑅 ∙ 𝑇

4 ∙ 𝐹
∙ 𝑙 𝑛

𝐶𝑂2,𝑚𝑒𝑚  

𝐶𝑂2,𝑚𝑒𝑚
0 +

𝑅 ∙ 𝑇

2 ∙ 𝐹
∙ 𝑙 𝑛

𝐶𝐻2,𝑚𝑒𝑚

𝐶𝐻2,𝑚𝑒𝑚
0  ) ∙ 𝑁𝑐𝑒𝑙𝑙(9) 

with 𝐶𝑂2,𝑚𝑒𝑚 oxygen concentration at membrane – anode 

interface [𝑚𝑜𝑙 ∙ 𝑙−1], 𝐶𝑂2,𝑚𝑒𝑚
0  oxygen reference concentration 

at membrane – anode interface [𝑚𝑜𝑙 ∙ 𝑙−1],  𝐶𝐻2,𝑚𝑒𝑚 hydrogen 

concentration at membrane – cathode interface [𝑚𝑜𝑙 ∙
𝑙−1], 𝐶𝐻2,𝑚𝑒𝑚

0  hydrogen reference concentration at membrane 

– cathode interface [𝑚𝑜𝑙 ∙ 𝑙−1]. 

The total voltage of the stack, as a function of the input 
current, is calculated by summing the reversible voltage and 
all losses. 

𝑈𝑠𝑡𝑎𝑐𝑘(𝐼, 𝑇) = 𝑉0(𝑇) + 𝜂𝑎𝑐𝑡(𝐼, 𝑇)  + 𝜂𝑐𝑜𝑛𝑐(𝐼, 𝑇)

+𝜂𝑂ℎ𝑚(𝐼, 𝑇)  (10)
 

The determination of activation overpotentials and ohmic 
losses requires a detailed understanding of the parameters that 
influence them, such as the anode and cathode charge transfer 
coefficients (𝛼𝑎𝑛, 𝛼𝑐𝑎𝑡), the exchange current densities ( 
𝑗0,𝑎𝑛 , 𝑗0,𝑐𝑎𝑡), and the membrane conductivity (𝜎𝑚). These 

parameters are tied to the system's electrochemical physics and 
depend on temperature, pressure, and material properties. The 
following section focuses on deriving and refining these 
parameters based on physical principles. 

C. Electrochemical parameters modeling 

The influence of operating conditions on electrochemical 

parameters can be described using physical equations. 

Specifically, the exchange current density (𝑗0,𝑎𝑛, 𝑗0,𝑐𝑎𝑡), 

charge transfer coefficient (𝛼𝑎𝑛, 𝛼𝑐𝑎𝑡), and membrane 

conductivity (𝜎𝑚) are highly dependent on factors such as 

pressure, temperature, and concentration: 
𝑗0 = 𝑓(𝑃, 𝑇) (11) 

𝛼 = 𝑓(𝑃, 𝑇, 𝐶𝑖) (12) 

𝜎𝑚 = 𝑓(𝑇, 𝐻𝑅) (13) 

with P is partial pressure of hydrogen or oxygen at electrode 
interface [bar], T temperature of electrode [K], 𝐶𝑖 

concentration at electrode interface [𝑚𝑜𝑙 ∙ 𝑙−1] and 𝐻𝑅 is 
relative humidity of the membrane [1]. 

 In this study, certain assumptions simplify the model and 
reduce its complexity. Experimental bench data confirm that 
the system operates under atmospheric pressure. Although 
technology theoretically prevents liquid water from forming at 
the cathode side, hydraulic pressure causes water to permeate 
the membrane alongside H+ protons. As a result, the 
membrane's hydration level is assumed to remain at nearly 
maximum. 

The concentration of species at the electrode interface is 
difficult to measure at the system level under operating 
conditions without significantly impacting the system. To 
address this, it is assumed that pressure variations and species 
concentration have a negligible effect on the model parameters 
governing electrochemical activation and ohmic losses. These 
simplifications reduce the complexity of the parameter space, 
allowing the model to focus on temperature as the dominant 
factor influencing key parameters such as 𝑗0,𝑎𝑛, 𝑗0,𝑐𝑎𝑡, 𝛼𝑎𝑛, 

𝛼𝑐𝑎𝑡  and 𝜎. 

Temperature is a critical factor affecting the performance 
of electrochemical systems. For many physical parameters, 
such as exchange current density and conductivity, the 
temperature dependence can be modeled using an Arrhenius-
type equation. This approach has been extensively applied to 
describe the oxygen evolution reaction (OER) and hydrogen 
evolution reaction (HER) kinetics. For instance, Moore et al. 
[15] derived the following equation for the OER. The 
parameters for the OER and HER are highly dependent on the 
electrode materials used, such as platinum and iridium oxide 
in PEM water electrolyzers. To generalize the relationship and 
account for variations in electrode materials, the exchange 
current density is expressed as: 

𝑗0,𝑎𝑛 = 𝛾𝑎 ∙ exp (−
𝐸𝑎

𝑅 ∙ 𝑇
) (14) 

𝑗0,𝑐𝑎𝑡 = 𝛾𝑐 ∙ exp (−
𝐸𝑐

𝑅 ∙ 𝑇
) (15) 

with 𝐸𝑎 and 𝐸𝑐  are defined as activation energy for the 
electrode reaction in [𝐽 ∙ 𝑚𝑜𝑙−1], 𝛾𝑎 and 𝛾𝑐 the pre-exponential 
factor [1]. 

Based on traditional modeling of ohmic conductivity of the 
membrane in fuel cell, the conductivity of membrane 
parameter is modeled as a function of temperature using an 
Arrhenius-type equation: 

𝜎𝑚(𝑇) = 𝛾𝑚 ∙ exp (−
𝐸𝐻+

𝑅 ∙ 𝑇
) (16) 

with 𝐸𝐻+ is a parameter that represents the activation energy 
for proton transport in the membrane [𝐽 ∙ 𝑚𝑜𝑙−1], 𝛾𝑚 the pre-
exponential factor [1]. 

Other parameters exhibit simpler relationships with 
temperature. In this model, it is assumed that the charge 
transfer coefficient (𝛼𝑎𝑛, 𝛼𝑐𝑎𝑡) is often modeled as a linear 
function of temperature, with the influence of pressure 
considered negligible under typical operating conditions. 
Tijani et al. [18] demonstrated that the dependence of α on 



  

pressure is minimal, allowing the relationship with 
temperature to be expressed as: 

𝛼𝑎𝑛(𝑇) = 𝜙𝑎 ∙ 𝑇 + 𝛽𝑎 (17) 

𝛼𝑐𝑎𝑡(𝑇) = 𝜙𝑐 ∙ 𝑇 + 𝛽𝑐  (18) 

with 𝜙𝑎,  𝜙𝑐, 𝛽𝑎 and 𝛽𝑐 are material-specific coefficients 
derived from experimental data. 

The relationships between electrochemical parameters 
established propose a more detailed model for electrochemical 
dependence of some materials in the system. The next step 
involves parameter identification using experimental data. 
This step ensures that the model accurately captures the 
physical behavior of the system by estimating key parameters 
such as 𝛼𝑎𝑛, 𝛼𝑐𝑎𝑡 , 𝑗0,𝑎𝑛, 𝑗0,𝑐𝑎𝑡 and 𝜎𝑚 under realistic operating 

conditions. 

III. IDENTIFICATION AND VALIDATION 

A. Parameter identification using genetic algorithm 

The system studied is a PEM electrolyzer stack 
manufactured by Leancat (LCWE-25-10 model) with a 
nominal power of 1 kW, a current range of 15 to 50 A, a 
hydrogen operating pressure of 0 to 20 barg, an operating 
temperature range of 30 to 70°C, and an active surface area of 
25 cm². Characterization was performed using a specific 
current profile to identify activation and ohmic resistance 
losses, with data acquired at 40°C, 45°C, 50°C, 60°C, and 
70°C under atmospheric pressure. The current profile ranged 
from 0 to 50 A, corresponding to current densities from 0 to 2 
𝐴 ∙ 𝑐𝑚−2. Voltage, current, and temperature measurements 
were logged every 100 milliseconds using synchronized, high-
precision acquisition systems, while a buffer tank ensured 
precise temperature control. Data analysis shows minimal 
voltage differences between 40°C and 50°C in the activation 
region due to limited heat generation. Higher temperatures 
reduce voltage demand, confirming that increased operating 
temperature improves efficiency by lowering activation losses. 

 

Figure 1 depicts the profile of current density as a function 
of time, measured in seconds. Initially, the current density rises 
gradually in discrete steps until it reaches approximately 2 𝐴 ∙
𝑐𝑚−2 and the current density decreases in a similar stepwise 
manner, returning to zero. This profile aims to study the 
electrochemical response of voltage with step rise and 
decrease.  

The minimal set of inputs for the model is designed with 
an industrial perspective in mind, considering systems 
equipped with only a limited number of measurement sensors, 
which are the current profile supplied to the system and the 
water temperature at the stack inlet. These constraints are used 
to identify model parameters and estimate their values under 
the given operating conditions. To further refine the 
coefficients derived from the model equations, a genetic 
algorithm (GA) is employed. GA offers advantages over 
traditional optimization methods, such as the least mean square 
method, as it is less prone to becoming trapped in local optima 
[16, 17]. The optimization objective function minimizes the 
error between the experimentally measured voltage and the 
voltage predicted by the model. The root mean square error 
(RMSE) is used as the objective function, as it is widely 
applied in regression analysis for its ability to evaluate 
prediction accuracy. 

In addition to minimizing the RMSE, physical constraints 
are imposed using a penalty function. For each constraint 
violation, a penalty is added to the total error, ensuring that the 
optimization results respect the physical principles of the 
system. The total cost function is expressed as follows: 

𝐿(𝑥) = 𝑅𝑀𝑆𝐸(𝑥) + 𝑟 ∙ 𝑝𝑥 (19) 

where 𝐿(𝑥) is the objective function, 𝑟 is the penalty factor and 
𝑝𝑥 is the distance between the estimated parameter value and 
its upper or lower bounds. 

Bounds are chosen based on experimental observations 
and prior knowledge, ensuring the parameters remain 
physically meaningful within the range of operating 
conditions. For each parameter, there were as follows: 

0.1 < 𝛼𝑎𝑛 < 0.3 (20) 

0.6 < 𝛼𝑐𝑎𝑡 < 1.1 (21) 

1 ∙ 10−12A ∙ cm−2 < 𝑗0,𝑎𝑛 < 1 ∙ 10−8 A ∙ cm−2 (22) 

1 ∙ 10−3A ∙ cm−2 < 𝑗0,𝑐𝑎𝑡 < 1 ∙ 10−1 A ∙ cm−2 (23) 

10 𝑚𝑆 ∙ 𝑐𝑚−1 < 𝜎𝑐𝑒𝑙𝑙 < 100 𝑚𝑆 ∙ 𝑐𝑚−1 (24) 

For this optimization problem, the GA configuration 
includes a population of 100 individuals and is considered to 
provide a sufficiently diverse sample of potential solutions. 
This ensures that the search space is adequately covered, while 
remaining computationally tractable. Each individual is 
represented by a vector of 10 genes, where each gene 
corresponds to a specific electrochemical parameter. This 
encapsulates the complex physical characteristics of the 
system. The population evolves over 500 generations, which 
allows the algorithm many opportunities to iteratively refine 
solutions through selection, crossover, and mutation. This 
increases the likelihood of converging on a global optimum 
while mitigating the risk of premature convergence on local 
optima. In each generation, 10 parents are selected using a 
tournament selection strategy. The remaining individuals, 
despite not being selected as direct contributors to the 
subsequent generation, nevertheless exert an influence on the 
competitive dynamics by participating in tournaments and by 
ensuring the maintenance of overall genetic diversity. The 
tournament strategy compares a subset of individuals and 
selects the best among them. This strategy balances 

 

Fig. 1. Profile of experimental current density 



  

exploration and exploitation of the search space. The crossover 
operation is performed using a single-point method, and 
mutations are applied adaptively. Adaptive mutations are 
defined as the dynamic adjustment of the mutation rate based 
on the current state of the population. During periods of 
stagnation or reduced diversity, the mutation rate is 
dynamically increased to promote exploration, while during 
periods of steady convergence, it is decreased to refine optimal 
solutions. To retain high-quality solutions, elitism is 
implemented, preserving the two best individuals in each 
generation. The initial population is either explicitly provided 
or randomly generated within the predefined parameter 
bounds. 

 The optimization yields a root mean squared error 
(RMSE) for training data of 0.093 V at 40 °C and 0.100 V at 
60 °C. For the validation data set, the results are 0.148 V at 50 
°C and 0.151 V at 70 °C (see figure 3). The small difference 
between training and validation errors indicates a robust 
model, with low prediction errors under these conditions. The 
value of each coefficient from 40 to 80 °C remains within the 
bounds. The set of parameters obtained is as follows: 𝜙𝑎 =
9.26 ∙ 10−4, 𝛽𝑎 =  5.82 ∙ 10−1 , 𝜙𝑐 =  9.99 ∙ 10−4 ,  𝛽𝑐 =
 1.36 ∙ 10−2, 𝛾𝑎 = 9.98 ∙ 10−7, 𝐸𝑎 = 1.00 ∙ 104, 𝛾𝑐 = 9.98, 
𝐸𝑐 =  1.32 ∙ 104, 𝛾𝑚 = 6.34 ∙ 10−1, 𝐸𝐻+ =  5.99 ∙ 103.  

 

As shown in Figure 2, the results indicate excellent 
parameter estimation, with a mean error RMSE for the four 
curves of 0.123 V between the experimental and modeled data 
points. The results confirm that the identified parameters 
accurately capture the system's behavior, with their values 
being consistent and physically meaningful under all 
conditions evaluated. 

With the identified parameter set validated against 
experimental data, the next step involves analyzing the impact 
of these parameters on the system's performance. This includes 
investigating their temperature dependence and physical 
significance to ensure the model aligns with the underlying 
electrochemical principles of PEM electrolyzers. 

After identifying the optimal electrochemical parameters 
using the genetic algorithm, the model is validated by 
comparing its predictions to experimental data obtained under 

various operating conditions. This step ensures that the 
identified parameters accurately capture the electrochemical 
behavior of the PEM electrolyzer stack. Validation also 
confirms the model’s consistency with physical principles and 
its reliability within the defined operating range. 

B. Validation part 

 

Model validation was conducted using additional data 
acquired at 45°C. The simulation results (Fig. 4) show a high 
level of accuracy, with errors below 5%. At 45°C and 1 bar 
pressure, the model yielded an MSE of 0.003 V² and an RMSE 
of 56 mV, demonstrating the reliability of the model's 
assumptions, computational algorithms, and parameter 
estimation. Prediction error is remarkably low for a stack of 10 
cells. The model is thus validated over the full operating range 
of 40°C to 70°C. 

 

At low current densities (< 0.5 𝐴 ∙ 𝑐𝑚−2), the model 
accurately captures the steep increase in voltage caused by 
activation losses. The Butler-Volmer equation effectively 
represents the electrochemical reactions in this region, with the 
charge transfer coefficients (𝛼𝑎𝑛, 𝛼𝑐𝑎𝑡) and the exchange 
current densities (𝑗0,𝑎𝑛 , 𝑗0,𝑐𝑎𝑡) effectively characterize the 

electrochemical kinetics in this region. From the graphic, this 
region is observed at voltage between 14 and 16 V, where the 
activation overvoltage is the most important. Notably, these 
parameters exhibit significant temperature dependence, an 

 

Fig. 2. Results with genetic algorithm estimations of 

coefficients at different temperatures. 

 

Fig. 3. Validation result with genetic algorithm at 
different temperatures. 

 

Fig. 4. Model simulation vs experimental data at 45 °C. 



  

increase in temperature reduces the activation barrier. thereby 
enhancing the exchange current densities in accordance with 
Arrhenius behavior. The close agreement between simulated 
and experimental results in this range confirms the model’s 
ability to characterize electrochemical kinetics. In the 
intermediate current density range (0.5 - 2 𝐴 ∙ 𝑐𝑚−2), the 
voltage increases linearly with current density, a trend 
characteristic of ohmic losses. Furthermore, the temperature 
dependence of ionic conductivity (𝜎𝑚), wherein higher 
temperatures generally improve ion mobility, is accurately 
integrated.  

During validation, both ascending and descending current 
profiles were tested. The electrolyzer exhibits hysteresis due to 
differing system conditions when the current is increased 
versus decreased. To account for this, the experimental setup 
included a rising and then a falling current profile, and the 
voltage values at identical current steps were averaged to 
precisely characterize hysteresis effects across the operating 
range. The observed voltage hysteresis is primarily attributed 
to the dynamics of reactive species and the stack temperature 
which is higher in the falling part. This approach provides a 
robust quantitative measure of the hysteresis phenomena 
impacting electrochemical performance.  

The strong correlation between the model predictions and 
experimental data confirms that the model accurately captures 
the key electrochemical processes within the PEM electrolyzer 
stack. This validation establishes confidence in the model’s 
capability to simulate stack performance, enabling its 
application for further analysis. Recognizing the limitations of 
this study is essential for assessing the potential restrictions on 
the generalizability and practical applicability of its findings.  

IV. CONCLUSION 

This study presents a validated precise electrochemical 
model for a PEM electrolyzer stack, capable of accurately 
predicting system performance across an operating range of 
40°C to 70°C. By integrating electrochemical kinetics, ionic 
conductivity, and activation losses into the model, the 
simulation results demonstrate strong agreement with 
experimental data, with average errors below 5%. The use of 
genetic algorithms for parameter identification has proven 
effectiveness in optimizing model coefficients, ensuring that 
the results align with physical principles. 

This work provides a reliable and versatile tool for 
analyzing and optimizing PEM electrolyzer stacks. The model 
can serve as a foundation for future studies, enabling 
researchers to explore the impact of operating conditions on 
system performance. In an industrial context, this model could 
support the development of more efficient hydrogen 
production systems by providing insights into key factors 
influencing efficiency and durability.  
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