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Abstract— This article presents the electrochemical aspect of
a multiphysics model for a 1 kW proton exchange membrane
(PEM) water electrolyzer. The electrochemical sub-model is
based on established equations, incorporating corrections to the
standard electrochemical formula to enhance generalization
across different temperatures. The model parameters affecting
electrochemical performance are identified to better represent
real physical processes. Validation is conducted using
experimental data obtained under various inlet temperature
conditions. The optimized model accurately predicts
electrochemical behavior in the temperature range of 40°C to
70°C. These results demonstrate the model's capability to reflect
temperature-dependent electrochemical processes.

I. INTRODUCTION

In the context of achieving carbon neutrality, the
development of efficient and sustainable technologies to
reduce the environmental impact of industries has gained
significant attention. Hydrogen is widely seen as a key
approach to addressing global warming and is already used in
many industrial applications [1, 2, 3]. Due to its broad range
of uses, transitioning to a hydrogen-based economy needs
substantial advancements in the efficiency and sustainability
of hydrogen production methods. To achieve carbon neutrality
by 2050, France has committed to investing in hydrogen
energy development, including the installation of at least 6.5
GW of electrolyzer capacity [4]. Similarly, the European
Union aims to reach climate neutrality by 2050 through a
series of actions, such as the Green Deal project [5].

One promising approach to large-scale hydrogen
production is the direct coupling of water electrolyzers with
intermittent renewable energy sources, such as wind and solar
power. This integration enables the production of "green
hydrogen,” but it also presents challenges. High variability in
the electrical current supplied by renewable sources can lead
to premature aging of electrolyzers and increased overall
system costs [6]. Among the various electrolyzer technologies,
Proton Exchange Membrane (PEM) water electrolyzers are
particularly suited for use with renewable energy sources due
to their superior dynamic performance, wide operating range,
compact design, and ability to produce high-purity hydrogen
without the need for potassium hydroxide as an electrolyte [7,
8]. Other technologies, such as Alkaline, Solid-Oxide (SO),
and Anion Exchange Membrane (AEM) electrolyzers, offer
specific advantages but are presently less adaptable to
fluctuating power inputs.

Physics-based models play a critical role in understanding
and predicting the performance of electrolyzers under various
operating conditions. For PEM electrolyzers, it is important to
model power consumption as a function of time compared to
hydrogen production to evaluate performance. Stack-level

modeling, which considers the collective behavior of multiple
cells, is preferred for its proximity to real-world operation. It
enables researchers to numerically approximate system
performance while isolating it from plant-level complexities.

Over the past decade, most PEM electrolyzer models have
been empirical, semi-empirical, or analytical, with limited
validation using experimental data [9, 10, 11]. Although
several models, such as those developed by Agbli et al. [12],
have provided valuable insights, advancements in PEM
electrolyzer modeling have been relatively scarce since the last
comprehensive review on the subject [10]. Existing models
primarily focus on the cell level and attempt to couple different
physical phenomena. When transitioning from cell-level to
stack-level modeling, challenges such as parameter
inhomogeneity and scaling effects further complicate the
process [13].

The model proposed in this study builds upon the work of
Agbli et al. [12] and incorporates corrections to
electrochemical equations for modeling activation, ohmic, and
diffusion losses. Unlike previous models, which assume
symmetrical reactions with a charge transfer coefficient of 0.5
for both the anode and cathode, this study introduces a novel
approach for identifying electrochemical parameters,
including anode and cathode charge coefficients, using
physics-based equations.

This article presents the electrochemical part of a
multiphysics model applied to a dry cathode PEM electrolyzer
stack with experimental validation performed on a 10-cell
stack. The use of a short stack provides a balance between
experimental feasibility and the complexity of scaling effects.
The proposed modeling approach integrates cell-level physics
with stack-level calibration using real experimental data. The
model accurately predicts system behavior under various
operating conditions, including dynamic load changes, and
highlights key physical phenomena that influence
performance. Furthermore, the study discusses the model's
limitations, such as challenges in scaling from cell-level to
stack-level modeling. These analyses aim to identify areas for
improvement and provide a comprehensive understanding of
the model's strengths and weaknesses. By bridging the gap
between cell-level and stack-level modeling, this study
contributes to the development of more robust and accurate
models for PEM electrolyzers. Such advancements are
essential for improving hydrogen production systems and
supporting the transition to a sustainable hydrogen-based
economy.

To accurately model PEM water electrolyzers, it is
essential to account for the electrochemical processes that
govern their operation. These processes include activation,



ohmic, and diffusion losses, which collectively impact the
system’s efficiency and performance. A precise understanding
of these phenomena is necessary to develop models capable of
predicting system behavior under varying operating
conditions. By incorporating corrections to electrochemical
equations and finding key parameters such as charge transfer
coefficients at the anode and cathode, this study finally aims
to enhance the reliability and applicability of PEM electrolyzer
models. This refined electrochemical model serves as the
foundation for the Multiphysics modeling approach.

The paper is organized as follows: Section Il presents the
electrochemical modelling of the PEM water electrolyzer,
detailing the key hypotheses in Part A, the formulation of
activation, ohmic, and diffusion losses in Part B, and the detail
model of electrochemical parameter to take temperature
dependence into account in Part C. Section Il describes the
identification and validation of these parameters via a genetic-
algorithm—based estimation routine, and Section IV draws the
conclusions and outlines perspectives for  further
improvement.

Il. MODELING OF PEM WATER ELECTROLYZER

A. Modelling hypothesis

Developing a physics-based model involves carefully
considering the physical limits that affect the system. Various
hypotheses have been proposed to accurately model the
operation of the stack by considering different physical
phenomena:

e Cells are assumed to be identical, independent, and
isolated.

e Mechanical motion and electromagnetic forces are
neglected.

e Current density is considered uniform across the
entire active area of the electrodes.

e Auxiliary components, such as cooling and gas
handling systems, are not modeled, and their impact
on system behavior is assumed to be negligible.

e The cathode is modeled as a dry system, with no
liquid water present at the cathode side.

e The anode operates at atmospheric pressure,
simplifying pressure-dependent phenomena.

e  Temperature is considered uniform throughout the
system.

This model achieves high accuracy in simulating the
responses of the electrolyzer within a temperature range of 30
°C to 70 °C. These hypotheses provide a balance between
simplifying assumptions and physical fidelity.

B. Electrochemical modeling

Electrochemical physics describes chemical phenomena
coupled with electrical energy. This enables the quantification
of voltage losses and the assessment of system performance.
The Gibbs free energy, a key thermodynamic quantity, is
calculated using the following equation:

AG = AH — TAS €))

where AG is the free Gibbs energy [J - mol™1], AH is the
standard enthalpy [J - mol™1], T is the temperature [K] and AS
is the entropy difference [J - mol™! - K71]

The reversible voltage corresponds to the minimum
voltage required for the electrolysis reaction to occur under
ideal conditions and is defined as

_ AG @
rev — n- F
with n the number of electrons exchanged, F the Faraday
constant [C - mol™'], V., is the reversible voltage [V].

At standard conditions at 25°C and 1 atm, the Gibbs free
energy is 237 kJ-mol™! and the minimum dissociation
voltage of water is 1.23 V. A temperature-dependent
expression for the reversible voltage was proposed by Harrison
et al. [13], based on thermodynamic values:

Voop = 1.229 = 0.9+ 1073 - (T — 298) (3)

with T is stack temperature [K].

As the system is not ideal, the reversible voltage is
corrected using the Nernst equation [14], which accounts for
pressure differences to calculate the true open-circuit voltage
(OCV):
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with R is ideal gas constant [J - K~ - mol™], P4 o reference
fluid pressure at the cathode [Bar], P, reference fluid
pressure at the anode [Bar], py, partial pressure of hydrogen
at the cathode [Bar], po, partial pressure of oxygen at the
anode [Bar], ay, is activity of water [1].

an,0

Voltage losses beyond the reversible voltage, called
overpotentials, must be overcome for the electrolysis reaction
to proceed. The main overpotentials include activation, ohmic,
and diffusion losses.

The activation overpotential accounts for the energy
barrier associated with the electrochemical reactions.
Assuming uniform current density across the electrodes, the
activation losses at the anode and cathode are given by:

R-T . j
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Nactcat = m'asmh T Joe * Neeu (6)

with «, cathode charge transfer coefficient [1], «, anode
charge transfer coefficient [1], j,, anode exchange current
density [A - cm™?] j, . cathode exchange current density [4 -
cm™2],j current density [A - cm™2], N, number of stack
cells.

The total activation losses correspond to the addition of
anodic and cathodic activation losses, resulting in the
following value:
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Nact = Nactan T Nact,cat
with n,., activation losses [V].

Ohmic resistance losses represent the resistance of the
system to ionic and electronic transport in the system, with the
membrane resistance being the dominant factor. Using Ohm's
law, the ohmic losses are expressed as:
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with R, membrane resistance [€1], ¢ membrane thickness [m]
and o,,, membrane conductivity [S - m™1].

The  concentration  overpotential, or  diffusion
overpotential, arises from gas transport limitations within the
cell. This effect is often negligible under low current densities,
where ohmic and activation losses dominate. A derivative of
the Nernst equation is used to quantify the diffusion
overpotential:
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with Co, mem OXygen concentration at membrane — anode
interface [mol - I71], ng,mem oxygen reference concentration
at membrane — anode interface [mol - [71], Ch,mem hydrogen
concentration at membrane — cathode interface [mol -
-1, Cﬁ,z‘mem hydrogen reference concentration at membrane
— cathode interface [mol - [71].

The total voltage of the stack, as a function of the input
current, is calculated by summing the reversible voltage and
all losses.

Ustack (I' T) = VO(T) + Nace (1’ T) + Ncone (11 T)
+1orm (I, T) (10)

The determination of activation overpotentials and ohmic
losses requires a detailed understanding of the parameters that
influence them, such as the anode and cathode charge transfer
coefficients (ag,, @.q:), the exchange current densities (
JoansJocat), and the membrane conductivity (o,,). These
parameters are tied to the system's electrochemical physics and
depend on temperature, pressure, and material properties. The
following section focuses on deriving and refining these
parameters based on physical principles.

C. Electrochemical parameters modeling

The influence of operating conditions on electrochemical
parameters can be described using physical equations.
Specifically, the exchange current density (jo an,Jjo,cat):
charge transfer coefficient (au,, acq:), and membrane
conductivity (o) are highly dependent on factors such as
pressure, temperature, and concentration:

Jo=f(.T) 1D
a= f(P' T, Cl) (12)
om = f(T,HR) (13)

with P is partial pressure of hydrogen or oxygen at electrode
interface [bar], T temperature of electrode [K], C;

concentration at electrode interface [mol-("'] and HR is
relative humidity of the membrane [1].

In this study, certain assumptions simplify the model and
reduce its complexity. Experimental bench data confirm that
the system operates under atmospheric pressure. Although
technology theoretically prevents liquid water from forming at
the cathode side, hydraulic pressure causes water to permeate
the membrane alongside H* protons. As a result, the
membrane's hydration level is assumed to remain at nearly
maximum.

The concentration of species at the electrode interface is
difficult to measure at the system level under operating
conditions without significantly impacting the system. To
address this, it is assumed that pressure variations and species
concentration have a negligible effect on the model parameters
governing electrochemical activation and ohmic losses. These
simplifications reduce the complexity of the parameter space,
allowing the model to focus on temperature as the dominant
factor influencing key parameters such as jg an. jo,cat: Xan:
QAeqr aNd 0.

Temperature is a critical factor affecting the performance
of electrochemical systems. For many physical parameters,
such as exchange current density and conductivity, the
temperature dependence can be modeled using an Arrhenius-
type equation. This approach has been extensively applied to
describe the oxygen evolution reaction (OER) and hydrogen
evolution reaction (HER) kinetics. For instance, Moore et al.
[15] derived the following equation for the OER. The
parameters for the OER and HER are highly dependent on the
electrode materials used, such as platinum and iridium oxide
in PEM water electrolyzers. To generalize the relationship and
account for variations in electrode materials, the exchange
current density is expressed as:

. Eq
Joan = Ya " €XP (_ ﬁ) (14)

(15)

with E, and E. are defined as activation energy for the
electrode reaction in [J - mol™1], y, and y, the pre-exponential
factor [1].

Based on traditional modeling of ohmic conductivity of the
membrane in fuel cell, the conductivity of membrane
parameter is modeled as a function of temperature using an
Arrhenius-type equation:

. E.
Jo,cat = Ve " €XP (_ R- T)

Ey+
16
R - T) (16)
with E,+ is a parameter that represents the activation energy
for proton transport in the membrane [J - mol™1], y,,, the pre-
exponential factor [1].

Im(T) = Ym " €Xp (—

Other parameters exhibit simpler relationships with
temperature. In this model, it is assumed that the charge
transfer coefficient (g, acq:) 1S Often modeled as a linear
function of temperature, with the influence of pressure
considered negligible under typical operating conditions.
Tijani et al. [18] demonstrated that the dependence of a on



pressure is minimal, allowing the relationship with
temperature to be expressed as:
aan(T) =¢, T+ P, (17)
et (T) = e - T + B (18)

with ¢,, ¢., B, and B, are material-specific coefficients
derived from experimental data.

The relationships between electrochemical parameters
established propose a more detailed model for electrochemical
dependence of some materials in the system. The next step
involves parameter identification using experimental data.
This step ensures that the model accurately captures the
physical behavior of the system by estimating key parameters
such as agn, @cars jo,ans Jocar aNd o, Under realistic operating
conditions.

I1l. IDENTIFICATION AND VALIDATION

A. Parameter identification using genetic algorithm

The system studied is a PEM electrolyzer stack
manufactured by Leancat (LCWE-25-10 model) with a
nominal power of 1 kW, a current range of 15 to 50 A, a
hydrogen operating pressure of 0 to 20 barg, an operating
temperature range of 30 to 70°C, and an active surface area of
25 cm2. Characterization was performed using a specific
current profile to identify activation and ohmic resistance
losses, with data acquired at 40°C, 45°C, 50°C, 60°C, and
70°C under atmospheric pressure. The current profile ranged
from 0 to 50 A, corresponding to current densities from 0 to 2
A-cm™2. Voltage, current, and temperature measurements
were logged every 100 milliseconds using synchronized, high-
precision acquisition systems, while a buffer tank ensured
precise temperature control. Data analysis shows minimal
voltage differences between 40°C and 50°C in the activation
region due to limited heat generation. Higher temperatures
reduce voltage demand, confirming that increased operating
temperature improves efficiency by lowering activation losses.
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Current density [A/cm?]
- w

e
3

—Profile

0
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time [h]

Fig. 1. Profile of experimental current density

Figure 1 depicts the profile of current density as a function
of time, measured in seconds. Initially, the current density rises
gradually in discrete steps until it reaches approximately 2 A -
cm™2 and the current density decreases in a similar stepwise
manner, returning to zero. This profile aims to study the
electrochemical response of voltage with step rise and
decrease.

The minimal set of inputs for the model is designed with
an industrial perspective in mind, considering systems
equipped with only a limited number of measurement sensors,
which are the current profile supplied to the system and the
water temperature at the stack inlet. These constraints are used
to identify model parameters and estimate their values under
the given operating conditions. To further refine the
coefficients derived from the model equations, a genetic
algorithm (GA) is employed. GA offers advantages over
traditional optimization methods, such as the least mean square
method, as it is less prone to becoming trapped in local optima
[16, 17]. The optimization objective function minimizes the
error between the experimentally measured voltage and the
voltage predicted by the model. The root mean square error
(RMSE) is used as the objective function, as it is widely
applied in regression analysis for its ability to evaluate
prediction accuracy.

In addition to minimizing the RMSE, physical constraints
are imposed using a penalty function. For each constraint
violation, a penalty is added to the total error, ensuring that the
optimization results respect the physical principles of the
system. The total cost function is expressed as follows:

L(x) = RMSE(x) + 71 p, (19)

where L(x) is the objective function, r is the penalty factor and
py 1S the distance between the estimated parameter value and
its upper or lower bounds.

Bounds are chosen based on experimental observations
and prior knowledge, ensuring the parameters remain
physically meaningful within the range of operating
conditions. For each parameter, there were as follows:

0.1 < a,, <03 (20)

0.6 < Qg < 1.1 21)
1:10712A-ecm™2 < jogn <1-108A-cm™2  (22)
1-1073A - cm™ < joeqr <1-1071A-cm™2 (23)
10mS-cm™ < g, < 100mS - cm™? (24)

For this optimization problem, the GA configuration
includes a population of 100 individuals and is considered to
provide a sufficiently diverse sample of potential solutions.
This ensures that the search space is adequately covered, while
remaining computationally tractable. Each individual is
represented by a vector of 10 genes, where each gene
corresponds to a specific electrochemical parameter. This
encapsulates the complex physical characteristics of the
system. The population evolves over 500 generations, which
allows the algorithm many opportunities to iteratively refine
solutions through selection, crossover, and mutation. This
increases the likelihood of converging on a global optimum
while mitigating the risk of premature convergence on local
optima. In each generation, 10 parents are selected using a
tournament selection strategy. The remaining individuals,
despite not being selected as direct contributors to the
subsequent generation, nevertheless exert an influence on the
competitive dynamics by participating in tournaments and by
ensuring the maintenance of overall genetic diversity. The
tournament strategy compares a subset of individuals and
selects the best among them. This strategy balances



exploration and exploitation of the search space. The crossover
operation is performed using a single-point method, and
mutations are applied adaptively. Adaptive mutations are
defined as the dynamic adjustment of the mutation rate based
on the current state of the population. During periods of
stagnation or reduced diversity, the mutation rate is
dynamically increased to promote exploration, while during
periods of steady convergence, it is decreased to refine optimal
solutions. To retain high-quality solutions, elitism is
implemented, preserving the two best individuals in each
generation. The initial population is either explicitly provided
or randomly generated within the predefined parameter
bounds.

The optimization yields a root mean squared error
(RMSE) for training data of 0.093 V at 40 °C and 0.100 V at
60 °C. For the validation data set, the results are 0.148 V at 50
°C and 0.151 V at 70 °C (see figure 3). The small difference
between training and validation errors indicates a robust
model, with low prediction errors under these conditions. The
value of each coefficient from 40 to 80 °C remains within the
bounds. The set of parameters obtained is as follows: ¢, =
9.26-107%, B, = 5.82-1071, ¢.= 9.99-107%, pB.=
1.36-107%, y, = 9.98-1077, E, = 1.00 - 10%, y, = 9.98,
E. = 1.32-10% 1y, =6.34-107%, E4+ = 5.99-103.
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Fig. 2. Results with genetic algorithm estimations of
coefficients at different temperatures.

As shown in Figure 2, the results indicate excellent
parameter estimation, with a mean error RMSE for the four
curves of 0.123 V between the experimental and modeled data
points. The results confirm that the identified parameters
accurately capture the system's behavior, with their values
being consistent and physically meaningful under all
conditions evaluated.

With the identified parameter set validated against
experimental data, the next step involves analyzing the impact
of these parameters on the system's performance. This includes
investigating their temperature dependence and physical
significance to ensure the model aligns with the underlying
electrochemical principles of PEM electrolyzers.

After identifying the optimal electrochemical parameters
using the genetic algorithm, the model is validated by
comparing its predictions to experimental data obtained under

various operating conditions. This step ensures that the
identified parameters accurately capture the electrochemical
behavior of the PEM electrolyzer stack. Validation also
confirms the model’s consistency with physical principles and
its reliability within the defined operating range.

B. Validation part
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Fig. 3. Validation result with genetic algorithm at
different temperatures.

Model validation was conducted using additional data
acquired at 45°C. The simulation results (Fig. 4) show a high
level of accuracy, with errors below 5%. At 45°C and 1 bar
pressure, the model yielded an MSE of 0.003 V2 and an RMSE
of 56 mV, demonstrating the reliability of the model's
assumptions, computational algorithms, and parameter
estimation. Prediction error is remarkably low for a stack of 10
cells. The model is thus validated over the full operating range
of 40°C to 70°C.

Evolution of electrolyzer stack voltage vs. time
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Fig. 4. Model simulation vs experimental data at 45 °C.

At low current densities (< 0.5 A-cm™2), the model
accurately captures the steep increase in voltage caused by
activation losses. The Butler-Volmer equation effectively
represents the electrochemical reactions in this region, with the
charge transfer coefficients (a,,, a..:) and the exchange
current densities (joqn, jocqr) effectively characterize the
electrochemical kinetics in this region. From the graphic, this
region is observed at voltage between 14 and 16 V, where the
activation overvoltage is the most important. Notably, these
parameters exhibit significant temperature dependence, an




increase in temperature reduces the activation barrier. thereby
enhancing the exchange current densities in accordance with
Arrhenius behavior. The close agreement between simulated
and experimental results in this range confirms the model’s
ability to characterize electrochemical Kkinetics. In the
intermediate current density range (0.5 - 2 A-cm™2), the
voltage increases linearly with current density, a trend
characteristic of ohmic losses. Furthermore, the temperature
dependence of ionic conductivity (o,,), wherein higher
temperatures generally improve ion mobility, is accurately
integrated.

During validation, both ascending and descending current
profiles were tested. The electrolyzer exhibits hysteresis due to
differing system conditions when the current is increased
versus decreased. To account for this, the experimental setup
included a rising and then a falling current profile, and the
voltage values at identical current steps were averaged to
precisely characterize hysteresis effects across the operating
range. The observed voltage hysteresis is primarily attributed
to the dynamics of reactive species and the stack temperature
which is higher in the falling part. This approach provides a
robust quantitative measure of the hysteresis phenomena
impacting electrochemical performance.

The strong correlation between the model predictions and
experimental data confirms that the model accurately captures
the key electrochemical processes within the PEM electrolyzer
stack. This validation establishes confidence in the model’s
capability to simulate stack performance, enabling its
application for further analysis. Recognizing the limitations of
this study is essential for assessing the potential restrictions on
the generalizability and practical applicability of its findings.

IV. CONCLUSION

This study presents a validated precise electrochemical
model for a PEM electrolyzer stack, capable of accurately
predicting system performance across an operating range of
40°C to 70°C. By integrating electrochemical Kinetics, ionic
conductivity, and activation losses into the model, the
simulation results demonstrate strong agreement with
experimental data, with average errors below 5%. The use of
genetic algorithms for parameter identification has proven
effectiveness in optimizing model coefficients, ensuring that
the results align with physical principles.

This work provides a reliable and versatile tool for
analyzing and optimizing PEM electrolyzer stacks. The model
can serve as a foundation for future studies, enabling
researchers to explore the impact of operating conditions on
system performance. In an industrial context, this model could
support the development of more efficient hydrogen
production systems by providing insights into key factors
influencing efficiency and durability.
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