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Abstract. Cyber-physical systems (CPSs) include engineered interacting net-
works of physical and computational components. As they are widely used in
many application domains, guaranteeing their correct and proper behaviour is an
essential and a challenging issue. This paper aims to contribute to a flexible de-
sign and development of structured CPSs, composed of similar elements, and
capable of (self-)adaptation to satisfy evolving internal and external constraints,
e.g. using control theory. To this end, we make use of their structure and of their
behavioural characteristics for modelling by hierarchical motifs both systems’
elements and controllers. The motivations and contributions are illustrated on a
smart building example.

1 Introduction

Cyber-physical systems (CPSs) are widely used in many application domains. Guaran-
teeing their correct and proper behaviour is an essential and a challenging issue [11].
CPSs are smart systems that include engineered interacting networks of physical and
computational components [30]. More and more devices are now organised as net-
worked communicating systems with additional constraints on the whole system archi-
tecture, e.g., some robots put together and playing sounds more or less loudly depending
on their respective positions. In this paper, we consider structured CPSs, composed of
similar elements organized in motifs, responsible for carrying out some common func-
tionalities. For example, a smart building composed of (modular) rooms and hallways
is an example of CPSs with flexible and hierarchical structure, where a temperature
regulation must be assured as a common functionality.

Managing (self-)adaptation is a topic of increasing attention and importance in soft-
ware engineering [38]], as it is crucial for functional as well as non-functional require-
ments, e.g., performance, power consumption or reliability. Component-based models
allow dealing with both types of requirements while assuring correct-by-construction
system development [[15]. In addition, component-based models are well-suited to per-
form dynamic reconfigurations modifying system’s architecture, as e.g. in BIP [5] and
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DR-BIP [4]. However, a recent survey [/13]] emphasizes the need of a suitable methodol-
ogy to ensure the correctness of reconfigurations in component-based systems (CBSs).

Self-adaptation of software elements has been extensively studied, notably using
the formalism of the well-known MAPE loop [25]], extended to MAPE-K with the
knowledge management. Feedback control theory has recently emerged as a suitable
adaptation methodology in line with the MAPE-K formulation [33]]. The MAPE-K ap-
proach has however shown to favor monolithic controllers rather than structured con-
trollers [|14], that are more appropriate for (self-)adaptive software systems. Moreover,
structured CPSs may have their implicit software regulators and explicit controllers in-
terwoven, whereas in general, controller design is too strongly decoupled from the sys-
tem under control. This is why designing and implementing more flexible controllers is
challenging.

This paper aims to contribute to a flexible design and development of structured
CPSs capable of (self-)adaptation to satisfy evolving internal and external constraints.
This raises the following research questions:

RQ1 How to define a model accounting for the structural, behavioural and data aspects
of CPSs that would be naturally amenable to hierarchical control?

RQ2 How to formulate the control problem of such structured CPSs with distributed
elements?

To answer these questions, this paper’s contribution consists in defining a notion of
hierarchical motifs allowing the modelling of both the functional and the control com-
ponents of CPSs.

The rest of the paper is organized as follows. Section [2] presents the control the-
ory background, and Section [3] introduces the motivating example of a smart building
temperature control. Section []introduces hierarchical motifs and illustrates this notion
on the smart building example. Their composition semantics is presented in Sect. [3]
(addressing @ In Section@, based on control motifs, the hierarchical control is ex-
pressed (tackling[RQ2)). Related work is presented in Section[7] and Section[§]concludes
the paper.

2 On Control Theory

Control theory (CT) aims to stabilize and configure systems that evolve through time.
CT is also a promising methodology for systems’ (self-)adaptation [18],23]]. In partic-
ular, feedback controllers are algorithms that compute the adequate values for systems
knobs, so that the measures meet their desired reference values. This decision making
is repeated in a loop, allowing dealing with dynamic systems behaviour. In the control
theory literature, knobs are also refereed to as control signals, actions or inputs, while
measures can also been called outputs or sensors signals.

To control a system, the general methodology consists in (1) identifying a plant ¥,
e.g. the model of the system to be controlled, and (2) designing its associated controller
C, the component that makes adaptation decisions to be applied to the plant [[18]]. Note
that even if the systems considered are CPSs or software, continuous control is an ade-
quate technique for self-adaptation [35]. Also, a linear control formulation has provided
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significant results even when used on complex and potentially non-linear software sys-
tems.

A block-schema representation of a feedback loop is given in Fig. [T} The plant ¥
captures the impact of changes of the values of knobs u on the measurements y, while
the controller C sets the value of the knobs u based on the measurements y and their
reference (e.g. objective value) y'¢, though the error e. Knobs and measures are signals
that evolve with time, taking continuous (possibly quantified) values. Note that there
can also be disturbances, modelled by external and uncontrolled signals that impact the
system’s behaviour.

Transfer functions Both the plant ¥ and the controller C are represented using transfer
functions. A transfer function is a mathematical model representing the transformation
of signals, e.g. how the knobs signal u affects the measurements signal y. One can thus
write

y=Yu, (1)

where a simple linear relation describes the system behaviour.

3 Motivating Example: Temperature Control in a Smart Building

To illustrate controlled CPSs with flexible and hierarchical structure, let us consider
the temperature regulation of a smart building composed of rooms and hallways (see
Fig.[2a). Some rooms are modular, meaning they can merge thanks to folding walls to
form larger spaces. The rooms are interconnected due to temperature exchanges through
walls, ceilings, and floors. Rooms are equipped with controllable heating systems. The
target temperature for a room can vary depending on its type (e.g. office, corridor, server
room) and occupation status (vacant or with people inside). Time or weather constraints
(e.g. open/closed building, winter/summer) can also modify the temperature objectives.

The heat control is hierarchically structured, with (1) the lower level regulating
the temperature in a single room, with one radiator each, (2) the middle level consist-
ing of sets of modular rooms that can merge or split, (3) and the higher level setting
temperature targets for the different rooms.

As the configuration of a room evolves, it changes room structure inside its set.
The temperature regulation of such a smart building illustrates the control of flexible,
hierarchically structured systems. For the following of the example, we build on the
existing control formulations for building temperature regulation, using optimal control
techniques for multi-room apartments [21}22] and distributed control [29] for a multi-
zone system, for which we add flexibility and hierarchical considerations.
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Fig.2: One floor of the building (In (a), zigzag lines indicate foldable partition walls,
the server room is shaded. In (b), double edges are for visual clarity only, they represent
predicates on the underlying graph.)

4 Hierarchical Motifs

To address [RQI] the key element of our approach is the notion of motifs inspired by
Dynamic Reconfigurable BIP (DR-BIP) [4]]. In DR-BIP, the main role of motifs is to
specify the interconnections among components throughout the lifetime of a system by
relying on maps. In [4]], maps are defined as “abstract concepts that denote arbitrary
collections of inter-connected nodes (positions)”.

In this paper, we adapt and extend the notion of motifs to allow a flexible design, hi-
erarchical composition and control of structured CPSs. Moreover, as this paper focuses
on hierarchical control, we rely on maps of the motifs to specify how measurements
and control commands are propagated through the system hierarchy.For the purposes
of this paper, a map is a directed graph with predicates on nodes and edges.

Definition 1 (Map). A map is a tuple u = (N, E, P), where N is a set of nodes, E C NXN
is a set of edges, and P is a set of predicates on N and E.

For the sake of conciseness, we will write n € y and (n;,n,) € u, meaning, respec-
tively, n € N and (n;,m,) € E, for u = (N, E,P). We include a set of system-specific
predicates to specify the nature of some nodes (e.g. centre of a star) or particularities of
their arrangement (e.g. one node is located to the north of another).

Example 1. Figure 20| shows a motif modelling the smart building floor shown in
Fig. 2a] In particular, the motif comprises the corresponding map. The central node
in the map represents the hallway. Other nodes represent the rooms (a modular room
is also represented by a single node). We use two predicates (edge colours) to specify
the possibility of heat transfer (black) and the presence of doors (blue) between nodes.
Additionally, we use two node predicates: Server to identify the node representing the
server room, and Hallway to identify the node representing the hallway.

To be assembled hierarchically, motifs expose interfaces, which can be external
(towards higher levels of the hierarchy) or infernal (towards the sub-systems located
in the nodes of the motif’s map). An external interface provides an abstract view of



the state space of the sub-tree of the hierarchical assembly rooted in the motif w.r.t.
both coordination (i.e. the set of possible discrete actions) and control (i.e. the set of
possible measured values and the set of possible knob positions). Dually, an internal
interface specifies the sets of acceptable actions, measurements and knob positions for
the sub-tree rooted in a given node of the motif.

Let us assume given a universe of actions Act. Furthermore, let Act be a bounded
lattice with the usual lattice operations V (join) and A (meet), and bounds L (bottom)
and T (top).

Definition 2 (Interface). An interface is a tuple [ = (A,Sy,Sy,Sp, Y, U, D), where Sy,
S, and S y are vector spaces, A C Act (with L e Aand T ¢A),YC Sy, U C Sy, and
U C Sy are, resp., the set of actions A and the domains of the measurements, knobs
and the disturbances exposed by the interface.

The product of two interfaces is defined component-wise: I' x I* “A'UALS ;, xS f,,
SyXSE.Spx83, Y x Y2, U x U, D' x D).

Clearly the product operation on interfaces is associative. Therefore, we will use
the standard [ [-notation for products involving more than two interfaces. Although this
operator is only commutative up to isomorphism due to the ordering of coordinates in
the vector spaces, in this paper, we will only occasionally need an order of operands to
be fixed. For the sake of clarity, we do not fix such an order explicitly but assume that
an order is implicitly given and used consistently.

Example 2. The external interface of the Floor motif is Ir,,, = ({enter,exit},R, [0,
MAX;,,1, R, [0, MAX 1, RS, =), with the actions enter and exit representing people ar-
riving at and leaving the floor. The measure and knob P, P' € [0, MAX ;] C R represent
the power consumed since the previous measure and the target power consumed by the
entire heating system of the floor (with MAX,—the maximal total power achievable—a
parameter of the motif defined at instantiation). Finally, the disturbance d € R® (we
omit the range for conciseness) represents the temperature of the room floor Ty, the
walls T,,, the outdoor air T, and the ground T,, the solar radiation on the walls and
windows R;.

The internal interface of the Floor motif is the product of the external interfaces
of its nodes, corresponding, resp., to the control of the 3 Modular Rooms, 3 Rooms,
and one Hallway. The map of the Room Control motif (see Fig. only has one node
corresponding to the controlled room.E]

Example 3. The external interfaces of the motives Modular Room (see Fig.[3a)), Room
(see Fig. @]) and Hallway (not shown) coincide. That interface Ig,om = ({enter, exit},
R XR XN, [0, MAX ] X [-MAX 1y MAX 1] X [0, MAX 1], R X N, [0, MAX ] X [0,
MAX ], R®, -), has two actions, enter and exit, as in the Floor motif. The measure
P, € [0, MAX},,r] C R is the same as for the Floor interface (with MAX jyy < MAX}).
The knob P € [0, MAX ] C R represents the power to be applied by the room radia-
tor(s). The measure and the knob cnt, max € [0, MAX ;] C N represent the current and

the maximum admissible numbers of people. The measure T € [-MAX ,,,, MAX ] C R

3 We use the same (control) motif for all the nodes of the Floor motif.
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Fig. 3: Modular Room, Room and Room Control motifs (Square boxes on the inside
represent actions, on the outside—disturbances, rounded boxes on the inside represent
measures, on the outside—knobs.)

represents the temperature of the room. The disturbance is the same as for the Floor
motif.

The internal interface of the Modular Room motif is the product of the interfaces
corresponding to the nodes of its map. For the Room nodes, these coincide with the
external interface of the Room motif. For the singleton MRState node, the interface is
Iygsiare = ({merge, split, isMerged, isSplit}, {-},{-},{-}, 0,0, 0), i.e. it has four actions and
no measures, knobs, or disturbances. The actions correspond, resp., to merging/splitting
the room and signalling its current state, i.e. whether it is merged or split.

Finally, the external interface of the Room Control motif (see Fig. is the same
as that of the Room motif, except for the knobs. Instead of P € [0, MAX},,r] C R, it has
the knob T € [-MAXny, MAX ;] € R, which sets the desired temperature within the
controlled room.

Observe Example |1| and Example [3| to notice that the role of the Floor motif is
to derive target temperatures for each room based on the power consumption budget
allocated to the floor. The controllers of each node are then responsible for achieving
these temperatures by setting the power and the maximal capacity in their corresponding
rooms.

Let us assume given two interfaces I = (A™, St St gint yint yint pinty and
Ie)C[ e (AEXI, S;/)Ct’ S?l, Sgﬂ’ YEXI’ UEXI’ DE.X[).

Definition 3 (Aggregation). An aggregation over (I, 1°") is a mapping A : 2" x
Sint — S such that A2A" x Y™') C yer.

An aggregation combines the measurements from the nodes of a motif and propa-
gates the result to the next level of the hierarchy. Notice that the aggregation depends
on the state of the motif represented by the set of enabled internal actions.

Example 4. The external measure P, of the Floor motif is the sum of the corresponding
internal measures in the nodes: P. = },¢, n.Pc.EI This aggregation does not depend on
the enabledness of the enter and exit actions.

4 The control interposed between the Floor and the Modular Room motifs propagates the mea-
sures from the plant up.



Example 5. For the Modular Room motif, only the nodes corresponding to sub-rooms
have to be taken into account for the power consumption aggregation (cf. Example[I)):
P. = Zney/\Room(n) n.Pe.

Temperature measures provided by the sub-rooms can be aggregated to get the
global temperature of a Modular Room. We define the aggregation as the simple av-
eraging: T = m Yineunroon(ny - T> where #Room denotes the number of nodes satisfy-
ing Room. More advanced processing based on room topology and the positions of the
radiators can be used if necessary.

Finally, the aggregation of the occupancy counters depends on the state of the mod-

ular room.E] cnt = A(AMRSwate | with

1 o MRStat
A(AMRState )= TRoom 2uneunkoom(n) 1-CNt  if isMerged € A, ™",
o ’ 2 nepnroom(n) M-CIt if isSplit € AMRState,

Indeed, when a modular room is merged, it is impossible to know whether a person is
located in one sub-room or another. Therefore, we make the counters in all sub-rooms
mirror each other counting the total number of people in the modular room.

Definition 4 (Control profile). A control profile over (I, 1°") is a mapping ® : 24"
. A . R . :
SY xS xS x84 — S, such that Q24 x Y™ x U™ x U™ x D*') ¢ U™.

A control profile specifies how the control command from the hierarchy (i.e. the
external knob position) is propagated to the sub-nodes. Based on the control command
and the current internal measurements and knob positions, it computes the updated
knob positions at the nodes. Similarly to aggregations, profiles depend on the state of
the corresponding motifs.

Example 6. The control profile of the Floor motif sets the temperature target for each
room depending on the total power consumption budget (external node) as follows:

15, if Server(n), 0, if Speun-Pe < P',
nT' =18+ Ty, ifHallway(n), with Ty = P _p, -
2 ot .
19 + Teor, otherwise, P 10% otherwise

If the total consumed power is below the budget, the temperatures are assigned accord-
ing to the room profile. If power consumption exceeds budget, a correction is applied to
reduce the target temperatures in the rooms and the hallway.

Example 7. The control profile of the Modular Room depends on its state: when the
room is merged, the same power is applied to the radiators in both sub-rooms, when it
is split, the radiator power is set proportionally to the room capacity:

(P/Z)nE/J/\Room(n) ifisMerged c A/gl/flRState’
(Dp(AMRSMZe . ) — ni~MAXpmr

en 2.
ey
Zne;l/\Room(n) n'MAXPmr

3> See Example[10|in Section for further detail.

P,... ) . ifisSplit € AMRState,



Similarly, for the capacity control:

s (max)ne;l/\koom(n) ifisMerged c AQ/,I,RSMIE,
D (AT ) = n;.MAX
max(Aen ) ey ! I}"ZAX -max,... |, ifisSplit € AMRSwate,
nepARoom(n) n. pmr

(As in Example 5] the counters are mirrored when the room is merged.)

A disturbance profile specifies the disturbances at the nodes of the map based on
the external disturbances and the internal measures.

Definition 5 (Disturbance profile). A disturbance profile over (I, 1°") is a mapping
A 22" X SS9 5 S such that AQA" X Y x D) € DM,

Example 8. We omit precise description of the disturbance propagation for the sake
of conciseness. Differentiating the temperature of the outdoor air on the four sides of
each room, the disturbance profile of the Modular Room motif consists in assigning the
temperature measure of each sub-room in the place of the outdoor air disturbance on
the corresponding side of its adjacent sub-room(s). Similarly, the ambient temperature
disturbance of the Radiator component is defined by the Room temperature measure.ﬁ]

Given a map u = (N, E,P), and associated node and external interfaces (I"),¢, and
I, resp., coordination of the sub-system actions is specified using a First Order Logics
(FOL).

Definition 6 (Interaction constraints). An interaction logic £(X) over (u, I"™, I°), where
= (I")ney> is an FOL with the signature X, such that

{E} U {Pp |p e P} U {aext’ al’nt,yim’ uext’ dext} cx (2)

with the usual FOL satisfaction relation |=.
The interpretation domain of L(X) is as follows (we use I and v to denote an inter-
pretation of non-logical symbols and a valuation of variables, resp.):

— the variables range over the nodes of the map p, i.e. codom(v) = N,

— the predicate T (E)(ny,ny) = ((n1,n2) € E) encodes graph connectivity in the map,

— symbols PP are interpreted as the corresponding map predicates: I (PP) = p,

— the constant I(a®) : {-} — A% determines which external action is to be fired
under the interpretation I,

— the function T(a™) : N — U,eny A", such that I(a")(n) € A", for any n € N,
determines which internal actions are to be fired under the interpretation I,

— the function I(y™) : N — U,en Y", such that I(y")(n) € Y", for any n € N,
determines the internal measures,

— the constant T(u®?) : {-} — U®" determines the external knob position,

— finally, the constant I(d®") : {-} — D®" determines the external disturbance value.

¢ The Room temperature measure depends on the Radiator casing temperature measure, thereby
creating a feedback loop affecting the radiator control.



An interaction constraint over (u, I, I?") is a formula ¢ € L(X), such that (L,
(L)neﬂ,ylnt, uext,dext) I: <p, for any ymt e Ylf’lt’ MEX[ e UEX[’ and de.X[ E DC)C[-

Intuitively, the interaction constraint specifies what actions can be taken by each of
the motif’s sub-systems in view of the received measurements and control command
and how these actions are combined to be exposed through the external interface.

Notice that we do not limit the signature of £(2) to the symbols explicitly stated in
Definition[§] In particular, symbols can be included to represent internal knob positions
or external measurements, or, alternatively, aggregation and profile mappings. Other
symbols may represent additional non-persistent information, i.e. carrying values that
are discarded from one interaction to another.

Example 9. The interaction constraint defines the syncrhonisations of the internal and
external actions of the Modular Room motif:

Vn(Room(n)), ((a”” (n) = enter = a®' = enter) A 3)
A @™ (n) = exit => a™ = exif)) A 4)

Alnprsiare = MRState(myrsiare) A ()
a ¢ {enter, exit) = a™ (Nyrsiae) € {isMerged, isSplit} N 6)

a" (Nyirstare) = isMerged =
(ae"’ = exit = Vn(Room(n)),a™ (n) = exit (7
A a®! = enter = Vn(Room(n)),a™ (n) = enter) A
a" (yrsiare) = isSplit =
(am = exit = 3'n(Room(n)) : a™(n) = exit (8)
A a®! = enter = 3A!n(Room(n)) : a™(n) = enter) A
(aim(nMRStafe) € {merge, split} = Vn(Room(n)), y"(n).cnt = O)' ©)

Lines (B) and [@) above specify that a person can only enter or exit a sub-room if they,
resp., enter or exit the modular room. Line (3) states that there is a node, denoted
NpRState, that keeps track of the modular room’s state. Line (@) states that when executing
enter or exit of the room, the state signal must necessarily be consulted. If the room is
merged (lines (7)), exiting or entering the modular room means doing so for all sub-
rooms (cf. Examples [ and[7). If the room is split (lines (8))), there must be exactly one
sub-room on which the same action is performed. Finally, line (9) requires that the room
be empty whenever its state is changed.

Notice that the “signalling” actions isMerged and isSplit are not exported directly.
They are only fired as part of interactions with enter and exit actions of the nodes. These
interactions are exported as the corresponding external actions of the motif.

To summarise, a motif comprises all the elements introduced in Definitions [T] to[6]

Definition 7 (Motif). A motif is a tuple M E Wy M, I, A, D, 4, ), where 1 is a
map, I" (for each n € u) and I*" are, resp., node and external interfaces, such that



A C Act, A" C Act, for each n € p, and every external action a € A* is a join of
internal ones, i.e. there exists N C pand a, € A", foreachn € N, such that a = \/ ey ap.

Denote I [Teu I" the internal interface of the motif. The remaining four compo-
nents, A, @, 4, and ¢, are then, resp., an aggregation, a control profile, a disturbance
profile, and an interaction constraint over (u, I'™, I*").

Internal measures Y™, external knobs U, and external disturbances D can be
construed as inputs of a motif. Dually, external measures Y*¥, internal knobs U"", and
internal disturbances D™ can be construed as its outputs.

5 Composition Semantics

In the context of structured CPSs, their model is a tree with motifs at all internal nodes
and components defining the systems’ behaviour at the leaves. Figure [ shows a frag-
ment of such a tree modelling the Smart Building example. The children of each internal
node correspond to the nodes of the map of the motif. The flexibility of our approach
lies with the fact that we do not restrict the nature of components, which may be instan-
tiated motifs (see Definition E]below), simple, timed or hybrid automataﬂ or any other
kind of objects that have an operational semantics expressible as a Labelled Transition
System (LTS) of the following kind.

Definition 8 (Object). An object implementing the interface (A,Sy,Svy,Sp,Y,U, D) is
an entity that can be given an operational semantics in the form of an LTS defined by
the transition relation— C (24 XY x U) X (A x U x D) x (24 x Y x U), such that,

' you')) €—, we have a € A" and u' =

— for any transition (A", y, u), (a,u, d), (A
u,
— for any state (A°",y,u) and any u’ € U, d € D, there exist A°" , y' , such that (A",
you), (L', d), (A, y' ') € —.
' d
We write (A", y, u) =5 (A" y' . u') to denote (A", y, u), (a,u’, d), (A", ,u')) € —.
The state of an object is thus defined by the set of enabled actions and the current
measurements and knob positions. The conditions imposed on the transition relation
mean that (1) only enabled actions can be fired, (2) the knob positions can only be set
externally and are not affected by the behaviour of the object, and (3) the bottom action
is always enabled.

Example 10. Radiator, Counter, and Modular Room State components shown at the
leaves of the assembly tree in Fig. d] are objects in the sense of Definition[8] The Mod-
ular Room State component typfﬂ implements the interface of the MRState node in the
Modular Room motif (cf. Example [3)). It has been extensively used in the examples of
the previous section. It is worth noting the self-loop transitions labelled by the actions
isMerged and isSplit. Their purpose is to signal that the component is, resp., in one of
the states merged and split.

7 Our approach to modelling timed and hybrid aspects is based on [[7,/8]. We do not present it
here for the sake of conciseness.
8 The full assembly comprises three instances—one for each Modular Room.
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To allow hierarchical composition of motifs, we need to define what it means to
instantiate a node of a motif with another one.

Definition 9 (Instantiation). A motif instantiation is a triple (M, N,{O, |n € N}) with M
a motif, N C uy a set of nodes, and, for each node n € N, O,, an object implementing
the corresponding interface I of M. An instantiation is closed if N is the set of all nodes
of uy. Otherwise, it is open.

To allow the use of instantiated motifs as objects to, in turn, instantiate motifs at
higher hierarchical levels, we must define their operational semantics. The semantics of
a closed motif instantiation (M, u, {O, |1 € pp}) is given by the following Structural
Operational Semantics (SOS) [32]] rule.

aeA” a= \/ a, u e U™ (@, (@Inep> Onneps 1) E @
neu
(u;z)ney = dﬁ( U Af,ns (yn)ney, (un)ney, I/t,) (dn)nEﬂ = A( U A;n’ (yn)ney’ d)

neu neu
,
antlypd,

VYn € M, (Af,n, Yns un) I (An ’y}/'l’ u;l)
A = { =\/de A‘ € A A @ Ot “)}

nep
y=A( A uner) ¥ = A A 0)nes)
neu neu

a,u,d (10)
(Ae”,y, M) % (Aen/’yl’ I/l’)

Informally, given an enabled joint action a € A" (premises 1, 2) and a proposed
position of the external knob u’ (premise 3), such that a, the current internal measure-
ments (y,)neu> and the current external knob position u satisfy the interaction constraint
¢ (premise 4), and the actuation of the internal knobs (u},),e, defined by the profile
(premise 5) confronted with their disturbances (d,)ne, (premise 6) allow transitions
within the objects at the nodes of the motif map (premises 7, 9), the motif instantia-
tion can change its state accordingly (rule conclusion) with the set of enabled actions
and the aggregation of the measurements in the target state being determined by the en-
abled actions, the proposed position of the external knob and the measurements exposed
at the nodes of the motif (premises 8, 10).

Notice that, this semantics is an abstraction of the true behaviour of the object since
it hides the internal measures. Therefore, subject to model checking, it can produce
false positives. However, its execution in the context of simulation or control is driven
in the bottom-up fashion using only the true values of the internal measures.

Proposition 1. The semantics (I0) defines an object in the sense of Definition[S}

Proof sketch. We have to show that, in the composed LTS, (1) only enabled actions can
be fired, (2) the knob positions can only be set externally and are not affected by the
behaviour of the object, and (3) the bottom action is always enabled. The first two items
follow trivially from premise 1 and the conclusion of the rule, resp. To show the third



item, consider @ = L. Rule (T0) reduces to

I/l’ c Uext

(u;[)nEp = QD( U Azn’ (yn)nE;n (un)nE;u I/t,) (dn)nEy = A( U Azn’ (yn)ne;u d)
neu neu

L,u,,dy,
Ve, (A, yn, ) — (AL, v, uy,)

A = { =\/de A‘ € A A @ Ot ‘”}

neu
y= ﬂ(UAZns (yn)ney) y, = ﬂ(UAfzn’y;)nE#
neu neu

an

1,

N
(Aen,y’ u) =5 (Aen’y/’ l/tl)

Indeed, from premise 2 of rule (10), we have a, = L, for all n € u. Since Deﬁnition@
requires that the interaction constraint does not block L, the premise 4 is trivially satis-
fied. The premise 7 (premise 4 in rule (I))) is satisfied because the motif is instantiated
with objects. All the remaining premises are non-blocking. O

This semantics is synchronous in the sense that transitions of both the motif and
all the objects in its instantiation are taken atomically in one step. This is reflected by
the last premises in (10) and (L)), since the updated measurements y;, are necessary to
compute y’.

6 Control Protocols

This section focuses on linking the proposed modelling approach with the classical
Control Theory. That link is necessary for defining control functions for the control
motifs of the assembly. First we define control motifs—a special case of motifs defined
in Section[d] Second, in order to address[RQ2] we establish a link between the control
formulation presented in Section [2] and the definition of motifs. Finally, we focus on
hierarchical systems, establishing the plant formulation for instantiated motifs (i.e. sub-
trees of the assembly tree).

6.1 Control Motifs

Based on preliminaries from Section 2] we consider the basic control signals: measures
y, reference values for these measures y’ef, and knobs u, a tunable signal that allows
leveraging the measures signal. Some authors explicitly consider the error between ref-
erence and measure values. In our approach, it can be computed from these signals. In
addition, we include the (external) disturbances in the control motif.

Consider an object implementing the interface (A, Sy,Sv,Sp, ¥, U, D). Its control
is realized by a control function c : 28%xSyxSyxSyxSp— Sy. The first parameter
of the control function is the control mode determined by the set of enabled actions in
the current state of the object. Given the control mode A" C A, the current aggregated
measurement y € Y, the knob position u € U, a reference value y’ef € Y, and disturbance



d € D, the control function defines the corresponding new value of the knob u’ =
c(A)y, u,y’ef, d) € U of the object.

We define control motifs, which are a special case of motifs in Definition [/| char-
acterised by such control functions. We put M. = ({-}, I, I*",id, c, id, true), where {-}
is a singleton map (one node, no edges), Ié’” = (A,Sy,Sy,Sp, Y, U, D) (same as the
interface implemented by the object), I = (A,Sy,Sy,Sp, L, Y, D), id : Sy — Sy is
the identity aggregation, the control function c plays the role of the control profile, and
id : S p — Sp is the identity disturbance profile. The use of the constant predicate frue
means that no interaction constraints are imposed by the motif. In the external interface
of a control motif, the knob is replaced by the reference values of the measures. An
control profile arising in the context of our running example is shown in Fig.

We do not impose any constraints on the nature of the control function. However, in
the remainder of the paper, we consider linear controllers.

6.2 Linking Control Formulation & Motifs

The notions of plant, controller and their transfer function can be linked with the motifs
as defined in Definition 7] and specified in Section [6.1]

Let us first consider a motif M in the most general case. The plant transfer function
¥, as defined in Eq. (I), captures the impact of changes of knobs u on measurements y.
It is a mathematical model linking elements in the motif’s external interface ", with
u€ U™ and y € Y*. The impact of disturbances d on measurements is also taken into
account in the model, e.g. by artificially augmenting the measurement vector y with the
disturbances.

Example 11. The room plant ¥, is the model that represents the impact of the heat-
ing power on the temperature. It can be expressed as a multi-input multi-output model.:
Following Examples 2] and [3] the evolution of the Room motif temperature y,oom (de-
noted T in Fig. [3b) can be computed based on the temperature of the floor Ty, of the
walls T, of the outdoor air T, and of the ground T, as well as the solar radiation
on the walls and windows R, and the radiation coming from the people in the room
cnt - R,, where R, is the average radiation per person and cnt is the counter (see the
Counter component in Fig.[). The heat power control knob u,om (denoted P in Fig.[30))
is the internal heat flux in the room coming from the radiators.
We define x as the set of all relevant disturbances (temperatures and radiations):

def

X = [yroom Tf Tw To Tg Rs cnt - RO]T = [yroom droom]T . (12)

Note that for a room connected to several others, T,, can be a vector. The evolution of
indoor temperatures can be modelled as:

{x = Ax + Bu,pom, (13)

Yroom = Cx

where X' denotes either the derivative of x in the continuous-time case, or its value at
the next time-step in the discrete-time case. EIA and B are matrices taking into account

9 Note that the conventional notation in control formulation is rather x*.



the convection, thermal resistances, and capacity of the various elements around the
room ETI The matrix C selects the room temperature among all the indoor ones: C =
[1000000]

The transfer function ¥,oom is then classically computed based on the matrices of
the model as:

P pom(s) = C(sI — A)"'B, (14)

with I the identity matrix of adequate size and s the complex variable. Note that the
model takes into account the count of occupants in the room, to compute the induced
radiation, and is thus a hybrid system, with both discrete- and continuous-state inter-
faces. However, in the following, we focus on linear continuous control, e.g. by consid-
ering all the elements of the state x as continuous in the control formulation, and let the
hybrid control formulation as future work.

The plant ¥ is thus a partial view of a motif, only concerned with the external
interface signals evolution. Its dependence with internal elements can be explored in
the case where the map is specified, as presented in the next section.

We now consider a control motif M.. The controller C captures the impact of the
reference and the measures (often through their difference, i.e. the reference tracking
error), and the disturbances d on the knobs signal :

u=CGuY,y,d. (15)

Thus, the controller C models the link between the elements of the internal and external
interfaces of the control motif M..

Example 12. For our running example, the controller C,,, computes the heat power
knob value u,,,, based on the target temperature y:f;];,m, the room measured temperature
Yroom and all the disturbances, that is the x vector. For the linear time-invariant system
that we consider, the optimal controller can be computed as a state feedback, with
precompensation for the reference tracking:

Urpom = —Kx + Gy:zj;ms (16)

where K is the state feedback gain; and G is the precompensation gain, both being
vectors of appropriate sizes. K is computed based on the plant ¥y, more particularly
on A and B, by pole placement. It allows specifying the desired closed-loop behavior, for
instance the speed of reactivity of the control. The precompensation is computed based
on A, B, C, and K, ensuring that the measure follows the reference. In this example, the
controller Cyom is thus composed of two transfer functions: K and G.

Note that this controller is a state feedback (i.e. the control is computed based on x,
meaning a measure of all its elements is needed), output feedback could rather be used
(i.e. using only Y,oom in the control formulation: u,pom = —KYr0om + Gy:f;};m ) if the plant
extended with the disturbances d,,., is observable. In this case, a Luenberger observer
or a Kalman filter could be used to estimate the full state x.

10 Computing the exact values of the A and B matrices is out of the scope for this work, the
interested reader can refer to [21] for an example of those matrices.
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Fig. 5: Hierarchical control schema.

6.3 Hierarchical Control

We consider CPSs with a hierarchical structure, in which there is at least one controller.
At a given level, the motif map and interfaces are instantiated, and we fix an order on the
nodes of the map. A schematic representation of the control schema is given in Figure[5]
Note that here the disturbances are not explicitly written in the following formulations
for the sake of simplicity, as it can be considered as part of the measurement vector y
(model extension with disturbance model).

The plant ¥ modeling the knobs-to-measures behaviour of the motif M, can be
expressed using the control profile @, the aggregation A, and recursion over the lower
level motifs. At a given level, the measure y € Y (external interface) is the aggregation
of the measures of the lower levels y;:

y=Ay, (17)
withy = [y1,-+,¥i,---,¥.]7 € Y™ (internal interfaces). The controller C computes
the knob u € U%" (external interface), that is distributed among the lower levels as u;
by the profile function @:

u = du, (18)

withw = [uy,--- ,u;, - ,u,]7 € U™ (internal interfaces).
The measure at a lower level can be derived from the value of the knob that was
enforced, and is modelled by the subsystem transfer function P;:

yi = Piu;. (19)

Note that if the lower level is not controlled, then P; = ¥;. Otherwise, it is the
transfer function of the controlled closed loop.
The hierarchical control consists then in designing C to regulate the plant ¥, recur-
sively formulated as:
Y =APP, (20)

WltthZd[Pl, ,Piy - ,Pn] XIn~

Example 13. Following Examples[I1|and[I2] let us now consider the hierarchical level
of a modular room, composed of n rooms. The hierarchical control formulation allows
deriving the model of the modular room V,,, based on the room models ¥,y ;, and on



the aggregation and profile. At the lower levels, each room is controlled by a feedback
controller; their equivalent closed-loop transfer function is thus.{];r]

Cro()m,i lproom,i

= .
1 + Croom,i 5ymom,i

The modular room relevant temperature is the average temperatures in all rooms when
it is merged, and the individual temperature measures otherwise. The aggregation A,
can be written as:

A = H-«-%]ifstatezmerged, @1
" I, if state = split.

The profile @y, distributes equally the temperature references, if we consider that
all rooms are of similar use, and can be expressed as:

T
qu,=[1-~-1] ) (22)

Overall, the modular room plant is then:
liymr = ﬂmrProom@mr, (23)

With Pruam = [Proom,l e Pmom,n] X In'

7 Related Work

On component-based models with layered architectures In this paper, only generic
concepts of component-based systems are considered to allow applying the paper’s
proposals on hierarchical motifs to various component-based models, see e.g. a recent
survey [[13]] for a list of component-based models. There are many approaches to model
CBSs in general, and those supporting hierarchical style in particular [6}(10}/12,/16].
In [37]], C2SADEL, a software architecture description and evolution language, defines
C2-style architectures that can be seen as a network of concurrent components linked
together by connectors, which are message routing devices. On its side 7-ADL [31]],
which is formally derived from m-calculus, also allows defining architectural styles us-
ing it.

BIP [5]] and DR-BIP [4] are suitable frameworks for developing CBSs with a lay-
ered structure. Some of these frameworks support monitoring and run-time property
verification. However the hierarchical motifs integrating control that may usefully im-
pact systems’ architecture design and development and bring new verification and val-
idation results, are original contributions of the present paper. Our use of motifs was
inspired by DR-BIP. The results of this paper serve as a proof of concept aiming to
implement a (DR-)BIP extension integrating hierarchical control motifs. Similarly, we
use automata-based models of components and their underlying parallel and hierarchi-
cal compositions to represent the behavioural aspects of motifs and composed systems.

' Note that, for simplicity, this formulation assumes that the controller is based on output feed-
back, i.e. not state feedback and without precompensation.



It should be noted that, in a sense, our notion of instantiation is dual to the notion of
deployment used in DR-BIP. Instead of specifying the nodes where each component is
deployed, we specify objects, which may be components or motifs, that are located in
nodes. Instantiation allows us to assemble motifs hierarchically. Hence, there is no need
to have multiple components deployed on the same node. Instead, they can be arranged
in an intermediate motif instantiating the node in question.

Fractal [[10] allows defining a component assembly by linking their interfaces. Com-
ponents’ interfaces can be of two types dedicated either to the component content or to
its membrane (control interfaces). Control interfaces allow building controllers, namely
LifeCycleController, BindingController and AttributeController for primitive compo-
nents, or ContentController for composite components. Standard control interfaces pro-
vided by Fractal components make it possible to create new components, modify the
content of composites by adding or removing subcomponents, and to create or remove
connections between interfaces. Differently from previous works, our approach pro-
vides the model of hierarchical motifs for both system’s entities and their control. Deal-
ing with attributes becomes possible at the composite level too thanks to motif’s profile
and aggregation functions. It greatly contributes to a flexible controllers design for sys-
tems with layered architectures.

Even more relevant is a less known work by Jean-Bernard Stefani [36[], which in-
troduced the G-Kells framework to describe dynamic structures with sharing. Accord-
ing to [36], G-Kells can be understood as an outgrowth of prior work by Stefani and
Di Giusto [20]], where they proposed a process calculus interpretation of the BIP model.
As such G-Kells, DR-BIP and the hierarchical motif framework proposed in this paper
share significant strands of genetic material. One common characteristic shared by G-
Kells and our current proposal is the focus on the structuring elements of the system.
Indeed, both approaches avoid specifying exactly the nature of the primitive behaviours,
assuming only that their semantics can be defined in terms of a certain type of LTSs. Be-
yond that, one of the two principal characteristics of the G-Kells framework, arguably, is
sharing: a given component (location) can be simultaneously attached to several other
locations (e.g. a process can be a functional component of a larger system all while
being hosted by a virtual machine). Moreover, no constraints are imposed on the at-
tachment graph, which need not even be a Directed Acyclic Graph (DAG). In contrast,
our current approach relies on a tree structure. In the future, we plan to generalise the
approach to DAGs, which will require addressing the issue of conflict resolution, no-
tably w.r.t. the control theoretic aspects of our work. The other principal characteristic
of G-Kells is the structure dynamicity. While already addressed in DR-BIP, we leave
the dynamicity in hierarchical motifs for future work.

On feedback control for software systems An overview on discrete-time control ap-
proaches for self-adaptive systems can be found in [[15]. Control theory is a promising
methodology for computing systems’ (self-)adaptation [[18}23]. In [33]], a feedback con-
trol for both continuous-time and discrete-time cases has been related to the well-known
MAPE-K loop in the framework of autonomic computing [25]. Control is then defined
as a problem of restricting the uncontrolled system’s behaviour, in order to enforce the
desired behaviour, and avoid the undesirable one.



In [39], it is considered that MAPE addresses adaptation of software rather than
physical properties or resources, whereas control theory (CT) loops are powerful at
keeping some variables either at prescribed set points or within ranges, in the face of
disturbances. [2]] focuses on CPSs, trying to avoid that the issues in the software part
affect the physical part. A safety controller is generated that a decision module can sub-
stitute to the complex controller to avoid violations of formal safety properties, in a
sandboxing approach. Such a system augmentation is automatically generated thanks
to reachability methods for hybrid systems. Hardware failure is not however consid-
ered. Controller synthesis for multi-agent control has recently been considered in [27],
where signal temporal logic is used to express temporal behaviors of system, deriving
continuous-time assume-guarantee contracts. Hierarchical organisation of systems is
however not considered in this work.

In the model predictive control (MPC), the upper layer commands are fed to the
lower levels adapting its behaviour when the conditions require such an action. Our
work contributes to a conjecture in [39] by illustrating that in adaptive software the CT
and MPC control scheme can be re-used, where the upper layer may be realized using
MAPE. Finally, with relation to [26] focusing on brownout as opposed to blackout, the
novelty of our approach consists in considering distributed or hierarchical control, and
in handling different functionalities, i.e., in enabling a multi-variable control.

Formal methods for validating control systems Using formal methods for designing
and validating systems’ controllers with the aim to guarantee their desired properties,
e.g. safety properties, is not new. However, as emphasized in [17], it is hard to formally
verify properties of such feedback control systems.

In this context, used formal models are often focused on discrete time control part
while abstracting continuous-time dynamics, at least partially. For example, static anal-
ysis techniques used in [3]] for analysing automata modeling the control structure of
synchronous embedded controllers, do not address continuous-time system control.
In [1f], theorem provers usefully provide static sufficient conditions for ensuring de-
sirable safety properties for the closed-loop control designs. Differently from these ap-
proaches, we integrate the dynamics of the plants together with disturbances into the
motif notion, in order to control and adapt hierarchical systems.

Verification of data-driven systems’ representations controlled with feedback tech-
niques is described in [[17]], where neural networks (NN) are used for their modeling
with the aim to enforce properties such as reachability, safety, and stability of the feed-
back laws. This data-driven approach is promising, however in [17], systems with a
layered control structure are not dealt with.

In [28] the authors aim to establish a common language to unify the study of archi-
tecture at different spatio-temporal scales. The proposed language for layered control
architectures (LCAs) allows for a form of a hierarchy of control loops. Feedback con-
trol is however only considered at the lowest level, while other layers use other deci-
sion making techniques. Unlike this work, our approach allows modeling of structured
systems with controllers potentially available at each level. For LCA systems, [24] in-
troduces a new multiclock logic (MCL) to express assume-guarantee contracts, in order
to prove global stability properties of a system using the stability properties of its com-
ponents. Differently from [24]], we use automata-based models of components and their



compositions. Our logic is used to express FOL interaction constraints among hier-
archical motifs including control motifs, whereas MCL uses variables and clocks for
assume-guarantee contracts at system-level and component-level verification.

In [34]], the authors aim to verify properties of a broad class of continuous-time sys-
tems composed of interconnected components. The approach defines weak and strong
semantics of assume-guarantee contracts for a compositional reasoning, where the week
semantics is sufficient to deal with acyclic interconnections, and the strong one is re-
quired to reason on cyclic interconnections. In our framework, we aim to extend the
class of the systems beyond those described by differential inclusions and invariance
assume-guarantee contracts, where this strong-week semantics relationship applies.

8 Conclusion

This paper provided theoretical underpinnings to modeling both the system and its con-
trol by using hierarchical motifs with the aim to allow structured CPSs to be adaptive.
More precisely, hierarchical motifs have been introduced in a control-compatible man-
ner. We expect our paper to pave the way for the larger challenge of preserving control
properties (convergence speed, transient response etc. ), in addition to stability of feed-
back laws studied, e.g. in [[17,[24].

As a future work direction, we intend to consider systems with discrete state changes,
so that theory of control for hybrid systems would be necessary to study the behaviour
of such systems, and the preservation of properties such as stability.

Behavioural refinement is another future work direction. We intend to exploit the
notions of approximate simulation relations introduced in [19] that are suitable for
safety critical systems’ control and its refinement. In addition, we intend to integrate
the interaction logic for parameterized systems in 9], which is decidable as it can be
embedded in WSkS.

Finally, the key limitation of our approach is the tree structure of the considered
hierarchical models. In future work, we intend to generalise to directed acyclic graphs
by adding a conflict resolution layer in front of the motif’s profile. Such a generalisation
would allow the modelling of dynamically reconfigurable systems, where an object has
to be redeployed from one node to another in a non-atomic manner.
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