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Abstract

In active noise control, pressure-based control strategies for electroacoustic absorbers depend on the loud-
speakers’ electromechanical properties, known as Thiele-Small parameters, to implement impedance control.
Due to the viscoelastic nature of loudspeaker materials, these parameters are sensitive to environmental
conditions, particularly temperature. This study investigates the impact of temperature on the impedance
control of electroacoustic absorbers. The acoustic impedance of several absorbers is measured over a broad
temperature range, and an analytical model is used to identify the variation of the Thiele-Small parameters
with temperature. A viscoelastic material characterization framework is then proposed, employing the Frac-
tional Zener, Generalized Maxwell, and Generalized Fractional Maxwell models. These models are identified
for individual absorbers and compared in terms of accuracy and computational cost. A generalized approach
through a normalized curve derived from multiple absorbers is introduced to estimate the parameters of un-
known absorbers. The pressure-based control law is subsequently updated to include temperature-dependent
parameters, enabling evaluation of their influence on absorber passivity. Results demonstrate that adapting
the control strategy using either direct measurements or model-based estimations enhances the acoustic
passivity of electroacoustic absorbers.

Keywords: Active noise control, Environmental effects, Fractional Zener model, Generalized Fractional

Maxwell model, Generalized Maxwell model, Impedance control, Loudspeakers, Viscoelastic materials

1. INTRODUCTION

Noise management is a challenge in various engineering fields, from ambient noise control to mitigating
sound in open ducts. Key applications include reducing noise in heating, ventilation, and air conditioning
(HVAC) systems, as well as controlling noise in aircraft engines. In these cases, passive noise control
techniques are commonly employed, utilizing absorbent materials and honeycomb perforated liners [1]. These
liners work based on the quarter-wavelength resonance, and demand larger thickness for efficiency at lower

frequencies. An alternative to passive liners is active impedance-based control [2]. These systems can
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outperform conventional acoustic treatments and adapt themselves to the operational regime. Based on this
concept, Rivet et al. [3] proposed a broadband set of electroacoustic absorbers (EAs) utilizing a feed forward
control architecture. They are composed of a loudspeaker from which a target impedance is achieved on
the loudspeaker (the actuator) based on collocated pressure measurements. Several studies have since been
conducted to evaluate the efficiency of these devices [1, 4, 5], as well as their limitations. To date, the effects
of loudspeaker model uncertainties upon the EA performances, has been investigated by de Bono et al. [6]
and Volery et al. [7], but such uncertainties have never been correlated with one of their most impacting
causes, which is temperature variation. The most recent application in a scaled test-rig of a turbofan engine
[8], where temperatures reach extreme values, demands to deeply investigate this fundamental correlation,
in order to realistically envisage a further step forward in the technology readiness level (TRL) of EAs.

The temperature dependency of these devices arises at the material level of the loudspeaker, which may
be composed of various materials. The spider, a flexible component that centers the voice coil and provides
restoring force during diaphragm motion, typically consists of impregnated textiles such as cotton, poly-
cotton, or Nomex, while the surround may include materials like rubber, foam, coated fabrics, or diaphragm
materials [9]. These materials exhibit viscoelastic properties [10], and environmental conditions can influence
their mechanical characteristics, potentially impacting loudspeaker vibration behavior.

Several studies have proposed methods to evaluate the operating temperature of loudspeakers. Henrick-
sen [11] analyzed the role of heat-transfer mechanisms on voice-coils, deriving a phenomenological relation
combining voice-coil temperature, electric input and loudspeaker parameters. Chapman [12] developed a
system for real-time simulation of voice-coil and magnet assembly temperatures in moving coil loudspeakers
using multiple material systems. Addressing the viscoelastic frequency-temperature dependency, Rousseau
and Vanderkooy [13] reported the properties of two loudspeakers with different loss characteristics in temper-
atures from 20 to 50 °C, while Maillou et al. [14] modeled the nonlinear frequency behavior of a loudspeaker
using polynomial nonlinearity and a generalized Hammerstein model.

The dynamics of a loudspeaker is usually modeled in terms of the Thiele-Small parameters [15, 16],
characterizing the electromechanical behavior of these devices. These parameters describe how a loudspeaker
interacts with both electrical signals and mechanical loads, allowing for the evaluation of performance
aspects like frequency response, efficiency and sound quality. Although previous studies have examined the
temperature dependence of loudspeaker material properties, a structured approach for identifying viscoelastic
behavior across different models remains unaddressed. Furthermore, no prior work in the literature has
investigated the passivity issues arising from the impact of temperature on the Thiele-Small parameters of
EAs.

To fill this gap, this work evaluates the effect of temperature on the impedance control of EAs by
studying the temperature-frequency dependence of the Thiele-Small mechanical parameters of loudspeakers,
specifically mass, resistance, and stiffness. The influence of temperature is experimentally analyzed over a
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range of -10°C to +50°C, and the Thiele-Small parameters are identified. Three viscoelastic models are then
employed to characterize the observed behavior: the fractional Zener model, the generalized Maxwell model
(GMM), and the generalized fractional Maxwell model (GFMM). The temperature-frequency dependence of
the loudspeaker’s mechanical properties is assessed by calibrating these viscoelastic models to a master curve
generated using the Williams-Landel-Ferry law. Additionally, a normalized viscoelastic model is proposed to
generalize information obtained from tested EAs to untested ones. Finally, the passivity of these devices is
evaluated under scenarios with and without parameter correction as a function of temperature. Parameter
correction is performed using both experimentally observed data and the developed normalized viscoelastic
model.

The paper is organized as follows. Section 2 presents the theoretical background, including the mechanical
modeling of the loudspeaker, the pressure-based control law applied to the EAs, the Thiele-Small param-
eter identification procedure, and the fitting of the proposed viscoelastic models. Section 3 describes the
experimental setup and the loudspeakers used in this study. Section 4 presents the results of the parameter
identification, followed by the viscoelastic model fitting in Section 5. Section 6 provides the passivity analysis
of the EAs using temperature-dependent parameters in the control law. Finally, Section 7 summarizes the

conclusions and outlines directions for future research.

2. PROBLEM FRAMEWORK AND THEORETICAL BACKGROUND

This work proposes the evaluation of the temperature effects on the impedance control of EAs. For this,

the framework presented in Fig. 1 is proposed, based on five steps:

1. To conduct experimental tests on the EAs under varying temperatures to evaluate acoustic impedance
according to ASTM E1050-24 [17], within the range of +50°C to —10°C.

2. To identify the Thiele-Small parameters from the mechanical impedance using the polyreference least-
squares complex frequency-domain method (PolyMAX).

3. To identify the fractional Zener, generalized Maxwell, and fractional generalized Maxwell models for
the mechanical properties, based on master curves derived from the Williams—Landel-Ferry law.

4. To develop a normalized GMM representing the average mechanical properties of three EAs, and
evaluate its performance in predicting the parameters of an unknown absorber.

5. To assess the passivity of the EAs under temperature variations and propose a control strategy based

on the adaptation of mechanical properties using the normalized viscoelastic model.

The underlying theoretical foundations behind the proposed framework are discussed in the subsequent

subsections.
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Figure 1: Proposed framework for evaluating temperature effects on the EAs.

2.1. Single-degree-of-freedom loudspeaker model

The electromechanical loudspeaker can be modeled as single-degree-of-freedom (1DOF) oscillator that is
driven by a coil with a permanent magnetic field [18]. Figure 2a presents an EA built using a loudspeaker,
whereas Fig. 2b showcases the pressure-current control strategy, and Fig. 2c presents a schematic repre-
sentation of the equivalent free-body diagram of the system. For modeling the mechanical dynamics of the
system according to the Newton’s second laws, the following hypothesis are considered: (i) forces imposed
by the pressure wavefield are small; (ii) the system operates with low displacement in the low-frequency
region, being assumed as a linear system. Therefore, the equilibrium of forces yields

du(t)

Mmsi
Codt

— Sup(t) = Bi(t) = Runs(t) = Kon / o(t)dt, (1)

where v = du/dt is the diaphragm velocity, p is the surface pressure at the diaphragm, ¢ is the electrical
current flowing through the voice-coil, M, represents the mass of the driver diaphragm and coil assembly,
R,,s is the mechanical viscous resistance, Sy is the equivalent area of the driven diaphragm, and Bl is the
force factor of the moving coil. K,,. is the total mechanical stiffness of the assembled EA, represented as
Kime =1/Cps + pc253 /Vp, in which C,s is the mechanical compliance of the surrounding suspension and
the spider, p is the air mass density, c¢ is the speed of sound, V; is the loudspeaker rear cabinet volume.
These mechanical and electrical properties that define the frequency performance of the loudspeaker, i.e.,
Myns, Rms, Kime, Sq, and Bl, are known as Thielle-Small parameters.

Considering the Laplace variable s and applying the Laplace transform to Eq. (1)

SuP(s) = Zyn(s)V(s) + BUI(s), 2)
4
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Figure 2: Loudspeaker considered in this study: (a) EA built with it and (b) free-body diagram.

where Z,, represents the mechanical impedance of the closed-box loudspeaker

ch
Zm(8) = Minss + Rms + p (3)

The dynamic response of the diaphragm to an external acoustic disturbance can be described by its
acoustic impedance, which is defined as the complex ratio of the total sound pressure P(s) at the diaphragm
to the diaphragm velocity V'(s). In the condition of open-circuit loudspeaker, i.e., the case where no current

circulates through the coil, Eq. (2) yields

P(s) _ Zm(s)
V(S) N Sa ’ (4)

Za(8) =

where Z, represents the acoustical impedance of the loudspeaker.

The behavior of EAs can be controlled by adjusting their acoustic impedance to a target value. Pressure-
based control strategies are proposed by Rivet et al. [3], Guo et al. [19], and de Bono et al. [20]. These
control strategies rely on the values for the Thiele-Small parameters to synthesize the control based upon
the 1DOF model described by Z,,(s). Given that these parameters are related to the material properties,
which are in turn susceptible to environmental influences, there is a need for investigating the variation of

the Thiele-Small parameters due to environmental causes.

2.2. Control strategies for pressure-based electroacoustic absorbers

The EAs can be operated to achieve a target acoustic impedance using a pressure-based control law. An
extensive discussion on acoustic impedance control using pressure-based approaches is presented by Rivet
et al. [3].

Considering a local control strategy [21], the transfer function between the pressure measurements and

the imposed current to the loudspeaker coil to implement a target acoustic impedance Z,; can be obtained

from Eqgs. (2) and (4):
gs. (2) and (4) H()_I(S)—1<S _Zm(5)> 5)
VTP T B\ Zo(s))”

5
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Figure 3: Thiele-Small parameters identification procedure. LSCF stands for Least-Squares Complex Frequency-domain.

where H(s) is the control transfer function and Z,; is the target impedance obtained as

P(S) - MmSS+R co + ch
V(s) = M1 S, atPOCO T H2 Sy s

Zar(s) = (6)

where g1 and po are two tunable coefficients that allow for controlling the mass and stiffness of the loud-
speaker, respectively; R,; controls the target impedance to be achieved by the loudspeaker at the resonance,
usually expressed as a fraction of the characteristic impedance of the air; pg is the air mass density, whereas

¢p is the speed of sound.

2.8. Thiele-Small parameters identification

Figure 3 illustrates the Thiele-Small parameter identification procedure based on the measured mechan-
ical impedance. The mechanical impedance is used to derive the experimental frequency response function
H..p(w). The estimation of the resonance frequency of the absorber (&) is determined from the phase angle
of the mechanical impedance, specifically at the frequency where the impedance’s imaginary part close to
zero. Next, the nearest pole to @y in Hezp(w) is used to build a pole-residue model H(w). Then, the polyref-
erence least-squares complex frequency-domain method (PolyMAX) [22] is used to fit H(w) to Heyp(w) and

the model parameters, M,,s, R.s, and K,,., are obtained from the residuals.

2.4. Viscoelastic models

Due to the nature of the materials used to build loudspeakers and its surroundings, such as elastomers
or treated fabrics, these devices present frequency dependent properties [13]. This frequency dependency

can be expressed using the complex Young’s modulus representation (E*)
E*(w) = F'(w) + jE"(w) = E"(w)[1 + jn(w)], (7)

where E’ is the storage modulus, E” the loss modulus, n = tan(é) = E”/E’ is the loss factor, w is the

frequency, and j = v/—1. Given its complex nature, the frequency dependency is usually represented using

6
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modulus/phase, real /imaginary, or real/loss factor (1) plots versus the logarithm of the frequency. In the case
of a loudspeaker built using a viscoelastic material, its Thiele-Small stiffness and damping are proportional

to the complex modulus, thus they can be represented without loss of generality as
K*(w) = K'(w) + j K" (w) = K'(w)[1 + jn(w)], (8)

where K* is the complex stiffness, K’ is the stiffness correspondent to the storage modulus, and K" is the
stiffness correspondent to the loss modulus.

Numerous rheologic representations are available in the literature to model viscoelastic behavior, includ-
ing representations using spring-dashpot elements [23]. Figure 4 presents the rheologic representation of
four common models: the standard linear (Classical Zener), the fractional Zener, the generalized Maxwell,
and the generalized fractional Maxwell. To fit these models to the loudspeaker materials, experimental
measurements of Thiele-Small parameters over a range of frequencies and temperatures are first performed
to characterize the complex stiffness of the system. Applying the time—temperature superposition principle,
the data are shifted to form master curves using shift factors determined through the Williams-Landel-Ferry
(WLF) law. Subsequently, the viscoelastic models are identified by fitting their parameters to achieve close

agreement with the constructed master curves.

2.4.1. Williams-Landel-Ferry law

The Williams-Landel-Ferry (WLF) law is an empirical equation used to describe how the viscoelastic
properties of polymers change with temperature near a reference point [24]. It describes how the time-
temperature superposition principle can be employed to shift viscoelastic response data, forming a master
curve that facilitates the prediction of material behavior across a broad range of timescales. The temperature
evolution of the shift factor a; can be expressed as law

—C)(T —Ty)

—CY+ (T T’ )

log(ar) =

where T is the temperature under analysis, Tj is a reference temperature, and C) and CJ are constants.

Then, the reduced frequencies can be expressed as a function of the shift factors

far = foar, (10)

where fj is the natural frequency of the EAs at each temperature.

2.4.2. Fractional Zener model
The classical Zener model, also known as the standard linear solid model, consists of a spring (elastic
element) in parallel with a Maxwell element (a spring and dashpot in series) [25]. This configuration

can represent the viscoelastic behavior of materials under small deformations by balancing elasticity and

7
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Figure 4: Rheologic representation of viscoelastic models: (a) standard linear (Classical Zener), (b) Fractional Zener, (c)
Generalized Maxwell, and (d) Generalized Fractional Maxwell. In the figures, k; denotes the stiffness of the i-th element, 7;

the relaxation time, and «; the derivative order of the fractional elements.

viscosity. However, it is limited in its capacity to describe complex real-world responses, particularly over a
broad frequency range.

The Fractional Zener expands the classical Zener by including a fractional derivative in the dashpot
element. The fractional derivatives allow describing behaviors between purely elastic and purely viscous
[26]. The complex stiffness of a viscoelastic material using the fractional Zener model (K}.,) with respect
to the angular frequency w can be expressed as

ko + koo (JwT)®

K;‘Z(w): 1+(jw7')a

(1)

where ko = lim, 0 K5y (W), koo = lim,, o0 K5, (w), T is the characteristic time constant of the system (or

relaxation time), and « is the fractional derivative order. The characteristic time constant is defined as

1

1 [ Ko\
_ 12
r— o (KOO> , (12)

where wp;. is the angular frequency of maximum damping. The fractional derivative order « is defined as

2\/ KOEoo + (Koo + KO)\/ 1 + n}?)ic
, 13
N2ie (Koo + Ko)? + (Koo — Ko)? (13)

2
a = —arcsin | Npic (Koo — Ko) X
T

where ;. is the maximum damping rate, at wp;. [27].

2.4.8. Generalized Maxwell model
A GMM is composed of Maxwell cells connected in parallel and the model order is defined by the number
of cells [28]. The rheological formulation of this model is given by
JwT;
K¢ =k ki——— 14
amm (W 0+Z Tr jur (14)
8
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where Ky, is the complex stiffness, kg is the static stiffness taken at w = 0, k; is the stiffness of the i-th
spring, and 7; is the relaxation time of the dashpot. By increasing the number of cells, a GMM model can

represent increasingly complex viscoelastic behaviors.

2.4.4. Generalized Fractional Maxwell model

A GFMM is composed of a spring in parallel with multiple fractional Maxwell elements, i.e., multiple
fractional springpot elements [28]. The main difference between the GMM and the GFMM is the addition
of fractional derivatives to each Maxell cell, thus the model yields

(jwi)®

15
T (wry) (15)

where K¢y 18 the complex stiffness, ko is the static stiffness taken at w = 0, k; is the stiffness of the

spring, 7; is the relaxation time of the dashpot, and «; is the fractional derivative of the i-th cell.

3. EXPERIMENTAL SETUP

Three EAs are evaluated experimentally to define the acoustic impedance of the loudspeakers and account
for experimental dispersion. These EAs, also referred as cells A, B and C in the following, are identical
from a design perspective. The impedance tube used for the experiments is built in aluminum, has a square
cross-section of 50 mm and a length of 300 mm. Three PCB Piezotronics 130F21 microphones are positioned
at distances of 100 mm, 150 mm, and 200 mm from the excitation source, and referenced as P1, P2 and P3
in the following, respectively.

Data acquisition is performed using the NI cDAQ-9174 system, with NI 9234 module for data acquisition
and NI 9263 module for signal generation. A Stage Line STA-102 amplifier is placed between the signal
generator and the input speaker to amplify the input signal. The excitation consists of white noise signal
in a frequency range between 100 Hz and 3000 Hz and a sound pressure level (SPL) of 100 dB. The
frequency limits are defined based on ASTM E1050-24, considering both the microphone spacing and the
cutoff frequency of the tube which is approximately 3430 Hz.

Impedance measurements are conducted across a wide range of temperatures to evaluate the tempera-
ture dependency of the mechanical properties. A Climats PCH60 thermal chamber is used to control the
temperature of the square impedance tube, covering a range from —10°C to +50°C. This temperature range
is selected mainly by the limitation of the experimental setup. According to the PCB 130F21 specifications,
these microphones have an operating temperature range of —10°C to 50°C. Additionally, the current gener-
ation the acoustic cells is not designed for very high temperatures, as degradation of polymer parts (mainly
in the loudspeaker) is likely to occur.

The impedance tube is mounted at the top of the chamber and subjected to a temperature cycle, as
detailed in Fig. 5. The cycle begins with an initial pre-heating phase lasting 90 minutes, during which the

9
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used to suspend the tube, (4) the NI ¢cDAQ-9174, (5) the Stage Line STA-102 amplifier, and (6) the P1 microphone - PCB
130F21, (7) the P2 microphone - PCB 130F21, (8) the P3 microphone - PCB 130F21, and (9) the PCB input loudspeaker.

temperature is raised to +55°C. Following pre-heating, the temperature is held constant at +55°C for 5
minutes to ensure system stabilization. Then, a constant cooling gradient of -0.5°C/min is applied until
the temperature reaches -15°C, followed by a 5-minutes stabilization period. This gradient, together with
the high conductivity of aluminum used in the impedance tube construction supports rapid temperature
equalization and enforce temperature homogeneity within the tube. The temperature inside the tube is
monitored using a thermocouple, and data recorded at temperatures above +50°C and below -10°C are
discarded. Three sequential pressure measurements are performed, each during 10 seconds, and the system
holds 30 seconds before starting a new round. This cycle is repeated during all the temperature gradient
duration, which results in 360 pressure measurements from +50°C to -10°C. Due to the limitations imposed
by the automated measurement scheme within the closed environment of the thermal chamber, microphone
switching at all temperature, as proposed by the ASTM-1058-24, is not straightforward. Therefore, this
procedure was evaluated only at the ambient temperature configuration to compensate for any potential
discrepancies between amplitude and phase of the microphones.

The sampling frequency is 51200 Hz and the post-processing is made through a power spectral density

10
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computation using the Welch’s estimator through a hanning window with 8192 points and a 50% overlapping
between adjacent time frames.

Three different EAs similar to the one presented in Fig. 2a and named A, B and C are used in the
following. They are identical in their desing, using loudspeakers from the same manufacturer. Differences
between them can arise from the manufacturing process of the components, and the assembly of the EA,

which is manual.

4. THIELE-SMALL PARAMETERS IDENTIFICATION

The acoustic impedance for the three tested loudspeakers is determined in accordance with ASTM E1050-
08. For tests conducted inside the thermal chamber, air density and sound velocity are adjusted for each
sample using the formulation proposed in the ASTM E1050-24 [17] and the thermocouple readings.

The effects of the thermal chamber on the impedance measurements were evaluated at several setpoints,
where the chamber was briefly switched off (fan and compressor disabled), a measurement was taken, and the
result was compared with the measurement acquired during the ramp at the same instantaneous temperature.
The on/off results were indistinguishable within the measurement uncertainty, indicating that background
noise generated by the chamber equipment does not affect the impedance measurements. This outcome is
mainly attributed to the fact that the impedance tube is closed and subjected to an SPL of 100 dB, which
is considerably higher than the noise level inside the chamber.

Additionally, two complementary checks were made. (i) At several setpoints, impedance measurements
acquired during a continuous temperature ramp were compared, at the same instantaneous temperature,
with measurements obtained after the chamber had reached thermal equilibrium; differences were negligible.
(ii) Each cell was tested twice on different days to probe variability in external conditions and in the cham-
ber’s PID control actions; both runs yielded nearly identical temperature-evolution curves for impedance,
confirming repeatability. Collectively, these checks indicate that although the tube is not rigidly anchored to
the chamber walls, chamber-induced vibrations did not bias the measured impedance under normal operating

conditions.

4.1. Temperature influence on Thiele-Small parameters

Figure 6 illustrates the acoustic impedance near resonance and the corresponding FRFs in displacement
per unit force for loudspeakers A, B, and C, evaluated at 5°C increments. The three loudspeakers exhibit
similar temperature-dependent behaviors, with the real part of the impedance reaching a minimum value
around resonance, and the imaginary part being negative before resonance and positive after it. Notably, the
real part of the impedance remains stable with respect to temperature below the characteristic impedance

of air (represented by the dashed black line) near resonance. Outside resonance, the impedance increases

11
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Figure 6: Experimental results obtained from the impedance tube: real (Re) and imaginary (Im) measurements for the acoustic
impedance from -10°C to 50°C for (a) cell A, (b) cell B, and (c) cell C. In the impedance curves, the dotted horizontal line
represents the typical air impedance at room temperature (415 Pa.s/m); and magnitude and phase of the FRF calculated from
the mechanical impedance for (d) cell A, (e) cell B, and (f) cell C. In the FRFs, the dashed lines represents the model obtained
using PolyMAX, with the region used for the fitting process (-3.5dB from resonance) highlighted in with dots.

rapidly, with this behavior becoming more pronounced below 10°C, when it sharply rises. This occurs
primarily due to the larger shift in the natural frequency of the loudspeaker at lower temperatures.
Figure 6(d—f) shows the FRFs in displacement per unit force, obtained by converting the acoustic

impedance to mechanical impedance using Eq. (4). The PolyMAX model reproduces the system behavior
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Table 1: Resonance frequencies for EAs A, B, and C. The variation in resonance frequency is expressed relative to the value at

20°C, which is used as the reference.

Cell A Cell B Cell C
Resonance Resonance Resonance
Temperature Variation Variation Variation
frequency frequency frequency
[cl [7] (7] [7]
[Hz] [Hz] [Hz]

-10 856.2 32.2 818.8 314 766.7 27.3
0 762.5 17.7 722.9 16.1 685.4 13.8
10 689.6 6.4 658.3 5.7 629.2 4.5
20 647.9 - 622.9 - 602.1 -
30 616.7 -4.8 608.3 -2.3 589.6 -2.1
40 602.1 -7.1 597.9 -4.0 579.2 -3.8
50 591.7 -8.7 591.7 -5.0 572.9 -4.8

900
Cell A
Cell B |4
—Cell C
550 | | | | | 7
-10 0 10 20 30 40 50

Temperature [°C]

Figure 7: Natural frequency for three loudspeakers measured from -10 to 50°C.

in the vicinity of the primary resonance in both magnitude and phase. Because the identification employs
a 1-DOF model, fidelity degrades away from resonance. The choice of a 1-DOF model is motivated by the
need for a low-order representation to implement real-time control on the embedded microcontroller and
to mitigate instabilities [6], as well as by the fact that the loudspeaker acts as an absorber predominantly
around its resonance, where a single, clearly identifiable mode dominates, as evidenced by the impedance
curves and FRFs.

Table 1 and Fig. 7 present the resonance frequency for the loudspeakers of the EAs A, B, and C. The
resonance frequency can be tracked by identifying the points where the imaginary part of the impedance
are closer to zero. At 20°C, the loudspeakers A, B, and C present natural frequencies of 647.9 Hz, 622.9
Hz, and 602.1 Hz, respectively. Between 20°C and 50°C, the natural frequency of the system varies to 591.7
Hz for loudspeaker A, 591.7 Hz for loudspeaker B, and 572.9 for loudspeaker C, which represents variations
of -8.7%, -5.0%, and 4.8% variation, respectively. In the range from 20°C to -10°C, the natural frequency
shifts to 856.2 Hz, 818.8 Hz, and 766.7 Hz for loudspeakers A, B, and C, representing variations of 32.2%,
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31.4% and 27.3%, respectively. This behavior indicates non-linear changes in the material properties as a
function of temperature. This phenomena can also be observed by the fact that, between 50°C and 20°C,
the curves are closely grouped, but they diverge significantly below 20°C.

The method outlined in Section 2.3 is applied to identify the Thiele-Small parameters of the EAs. Figure
6d-f presents the FRFs obtained using mechanical impedance. For the identification process, the assumption
of a 1DOF system is valid only near resonance, therefore boundaries are applied with a -3.5 dB criterion.
The change in natural frequency is even more apparent while evaluating the FRFs.

Figure 8 and Tab. 2 present the estimated Thiele-Small parameters with respect to temperature for
the loudspeakers A, B and C. Note that the mass of the three loudspeakers remains almost constant, with
small experimental variations likely due to measurement noise. In contrast, the resistance and stiffness
exhibit nonlinear behavior. Resistance increases from -10°C and reaches a maximum near 0°C, after which
it decreases and stabilizes around 30°C. The stiffness decreases with temperature with a greater rate of
change below 20°C, then reduces its rate of decreasing. This non-linearity in stiffness corresponds to the

behavior observed in the resonance frequency above and below 20°C.

Table 2: Mechanical Thiele-Small parameters identified for temperature range from -10°C to 50°C for loudspeakers A, B, and

C. For this study, the values measured at 20 °C are considered as reference.

Temperature [°C]

Loudspeaker Parameter o o o 20 20 0 =0 Mean STD. CV [%]

Mpms [g] 0.525 0.545 0.542 0.551 0.586 0.589 0.592 0.562 0.027 4.8

A Rms [Ns/m]  0.324 0.402 0.355 0.298 0.266 0.266 0.274 0.312 0.052 16.5

Kme [kN/m] 15.2 12.6 10.1 9.1 8.7 8.4 8.2 10.3 2.64 25.6

Mms [g] 0.508 0.488 0.502 0.507 0.504 0.498 0.498 0.501 0.007 1.3

B Rms [Ns/m]  0.287 0.370 0.323 0.259 0.240 0.239 0.251 0.281 0.049 17.5

Kme [kN/m] 133 101 85 7.6 72 69 67 8.6 2.36 27.4

Mps [g] 0470 0.459 0474 0480 0.493 0.498 0.498 0.482 0.015 3.1

C Rms [Ns/m] 0.255 0.324 0.278 0.225 0.203 0.198  0.203 0.241 0.047 19.7

Kme [kN/m]| 10.9 8.5 7.3 6.8 6.6 6.5 6.3 7.6 1.65 21.8
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Figure 8: Thiele-Small parameters with respect to temperature. Estimated properties: (a) Mms, (b) Rms, and (¢) Kme for

three loudspeakers.

5. VISCOELASTIC MODEL

Due to the comparable behavior of properties across different EAs, a general approach to describe the
material is proposed. To achieve this, three viscoelastic models are investigated: the fractional Zener model,

the GMM, and the GFMM.

5.1. Master curve

A viscoelastic model requires the complex modulus properties to be represented as functions of frequency
and temperature. Since the loudspeaker properties are determined using FRFs, the resonance frequencies at
each temperature are considered as the vibration frequency of the loudspeaker at that specific temperature.
Using the resonance frequency and temperature data, curves for the storage modulus and loss factor are
constructed. The WLF law is applied to calculate the shift factors for each frequency-temperature pair, as
illustrated in Fig. 9a, allowing for the construction of a master curve, based on reduced frequency (f,).
These shift factors enable the development of a reduced frequency curve containing the storage modulus and
loss factor plots, as shown in Figs. 9b and 9c. The following subsections present the fitting of the properties

for cell A.

5.2. Model fitting

5.2.1. Fractional Zener

The fractional Zener model involves four parameters for fitting: ko, koo, Wpic, and 7p;c. The frequency
and maximum loss factor can be directly evaluated from Fig. 9c, yielding values of 5250 Hz and 0.156,
respectively. Using these parameters, kg and ko, are determined through constrained nonlinear optimization,
with bounds established based on the projected asymptotes in Fig. 9b, i.e., 1 kN/m and 30 kN/m. The

fractional Zener model is adjusted for two different scenarios: (i) for a general fitting for the complete
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Figure 9: Master curve for cell A obtained using the Wiliam-Landel-Ferry law: (a) translation factors, (b) real part of the

stiffness, and (c) imaginary part of the stiffness for cell A.

frequency spectra and (ii) for a reduced fitting considering only frequencies above 4 x 102 Hz. This limit is

selected because it represents the first inflection point in the imaginary component of K. Figure 10 display

the optimized Zener model for the complete and reduced frequency spectra.

20 I I 2.5 0.20
L4 Expelrimental data ® Experimental data
Fractional Zener - Complete Fractional Zener - Complete
Fractional Zener - Reduced Fractional Zener - Reduced
2.0+
_15p _ \ 0.15
= g
z z =
=, 215y ER
3 2 i \
10+ 0.10
1.0
-« - ® Experimental data
Fractional Zener - Complete
Fractional Zener - Reduced
5 i 0.5 ~ 0.05 — - - .
10t 10? 10* 10! 10° 10! 10? 10% 10* 10° 10 10° 10! 10°
far [Hz] Reduced Frequency [Hz] Reduced Frequency [Hz

Figure 10: Real and imaginary components of the stiffness and loss factor of the optimized Fractional Zener models for cell A.
“Complete” refers to the model identified using the entire frequency spectrum, while “Reduced” refers to the model considering

fat above 4 x 102 Hz.

While the fractional Zener model effectively fits most of the storage modulus, it demonstrates limitations
in accurately capturing the loss factor, particularly in the low and high reduced frequency regions. When
fitting the complete frequency spectra, the model cannot achieve satisfactory results for the imaginary part,
even though it respects the maximum value of tan(d) which is equal to 0.156. This indicates that the model
lacks the capacity of representing a material with double curvature in its damping response. The fractional
Zener is able to describe a behavior with single glass transition with lim,,_,o Im(K*) = limy 0o Im(K*) =0
and a monotonic evolution of the loss factor before and after the glass transition. However, the experimental
data do not agree with this, as the loss factor increases below 200 Hz, in Fig. 10. The parameters of the

fitted models are presented in Tab. 3.
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Table 3: Identified parameters for the fractional Zener model considering the complete and reduced data sets.

ko [kN/m] ko [kN/m] el
Complete 6.2 23.7 0.297
Reduced 7.1 22.0 0.343

5.2.2. Generalized Mazwell and fractional Zener models

As the Fractional Zener model is unable to fully describe the behavior of the material, GMMs and
GFMMs are proposed. These models can effectively capture a wide range of viscoelastic behaviors but
involve a trade-off with the increased complexity of a multivariate identification problem.

From an optimization point of view, the GMM model identification is defined as
M N 2 2
! K (wj) = Kp(w)) K(wj) — K (wj)
= — 1
in, Llko. ki) = 375 Z: Z: (( Kly(w;) * K (w;) 1)

subject to ko >0, k; >0, 7; >0, i=1,...,N, (17)

where K\, and K,

are the real and imaginary part of the complex stiffness predicted by the GMM from
Eq. (14), K}, and K, are the real and imaginary parts of the experimental complex stiffness, kg is the static
stiffness of model, k; is the stiffness of the spring in the i-th cell, 7; is the time constant of the dashpot in
i-th cell, and N is the number of cells, and M is the number of j-th discrete frequencies. Therefore, each
optimization problem has 2N 4+ 1 parameters consisting of one value for ky and values for k; and 7; for each
cell in Eq. (14). To account for physical constraints, ko, k;, and 7; must be positive.

For the GFMM model, the addition of the fractional derivative adds a new parameter to the optimization,

which is defined as

min Ll ko) — —— 37 ((K@(wn—f@,i(w)ﬂ (KM(WJ) K;;(wj>>2>, 18)

k‘o,k,’,,Ti,ai MN N Kg( ])

subject to k; >0, 7, > 0, t1=1,...,N,
(19)
0<a; <1, 1=1,...,N,
where «; is the fractional order of each cell. Therefore, the optimization problem has 3N 4 1 parameters
consisting of one value for kg, and values for k;, 7;, and «; for each cell in Eq. (15). In addition to the
constraints on k; and 7;, the partial derivative order a;; must be between 0 and 1.
The reduced frequency of the system ranges between 10' Hz and 10° Hz in Fig. 9b and 9c. To avoid a

highly unconstrained problem, additional constraints are imposed to the first and last values of 7 to ensure

that there are anchor points on the limits of the search domain in the format of

10° < 1/7; < 10*, and
10° < 1/7x < 10°.
17
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This means that the optimizer must search for at least one anchor point at each border of the domain in the
form of 7y and 7. In preliminary evaluations, this increased considerably the stability of the optimization
strategy compared to a scenario without any limitation on the borders of the search region. For the remaining
parameters [7 : 7v_1] the optimizer is limited between 10' and 10° Hz.

An optimization process based on particle swarm (PSO) [29] is proposed, as depicted in Fig. 11. The
optimization process begins by defining the order of the GMM (or GFMM). Based on this order, the PSO
algorithm generates a particle swarm with candidates within the search space, corresponding to values of the
parameters k; and 7;. For each candidate, the complex stiffness is computed and compared with experimental
values using the loss function within the optimization process defined by Eqgs. (16) and (18). The optimizer

evaluates the convergence of the loss and iteratively generates new particle swarms until the loss converges.

Particle swarm optimization |

Generate Evaluate Loss

‘_’ swarm | ] GMM or GEMM [ | K =K HET I ction

Optimized
)
model

GMM
order Update swarm
parameters

Figure 11: GMM and GFMM optimization process using the particle swarm algorithm.

Figure 12 presents the real and imaginary parts of the fitted GMM, along with the loss factor tan(d)
considering multiple model orders. For low-order models, such as third and fourth orders, the results
exhibit oscillatory behavior. As the model order increases, the fitted model stabilizes. Conversely, GMMs
with orders higher than five can describe both the real and imaginary parts of the material stiffness with
increasing accuracy. This contrasts with the results obtained using the fractional Zener model, as shown in
Fig. 10, highlighting the superior generalization capability of the GMM model.

Figure 13 shows similar results for the GFMM model. In lower-order models, the real and imaginary
parts of the fitted GFMM also exhibit oscillatory behaviors, with the oscillations being more pronounced in
the imaginary part of the stiffness. In higher order models, this oscillation reduces progressively.

As the results depend on the order of the GMM and GFMM, Fig. 14 illustrates the convergence analysis
of the mean squared error (MSE) and optimization time for the GMM and GFMM as functions of model
order. A total of 20 simulations are performed for each model order to account for the variability in the
PSO algorithm results. The results demonstrate that the model error decreases with increasing model order,
stabilizing at approximately 0.65 for orders 6 and above for the GFMM and at order 7 for the GMM.

For lower-order models, the GFMM exhibits lower dispersion and convergence comparable to the GMM,

as shown by the smaller quartile sizes in the box plots for orders 5 and 6. Further analysis up to order 20
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Figure 13: Results for the process of identification of GFMM of order 3, 4 5, 7 and 14: (a) real part of the stiffness, (b)

imaginary part of the stiffness. and (c) loss factor.

confirms this stabilization in the MSE. However, despite its stable average error, the GFMM model exhibits
instabilities in the form of outliers for higher orders (e.g., orders 16-20). This behavior is attributed to the
model’s sensitivity to the values of a; in each cell; in higher-order models, the optimizer must simultaneously
search across multiple cells, increasing the complexity of the optimization process. An optimal balance
between accuracy and complexity is observed at approximately order 9. Further simulations with higher-
order models did not result in a reduced MSE. Despite multiple optimization strategies and solvers being
tested, the MSE could not be reduced below ~ 0.5 when fitting the real and imaginary parts of the complex
stiffness simultaneously. When each component was fitted independently, the model achieved near-zero
MSE, indicating that the model structure can reproduce either component in isolation. However, coupling
between the real and imaginary parts in the joint objective introduces a trade-off and discrepancies in the
real-part stiffness response dominate (Figs. 12a and 13a), producing an apparent error floor around 0.5.
Additionally, the non-smooth experimental data, seen as jumps at 600 Hz and 2500 Hz on Fig. 10 could be

fitter only with very high order models (with a low physical meaning). These jumps lead to residual values
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which cannot be lowered with the considered smooth models.

From the computational point of view, the GFMM model is significantly more intensive. Figure 14b
illustrates the dispersion of the time required for one optimization round as a function of model order.
The computational time for the GFMM model is substantially higher than that for the GMM model. For
instance, a sixth-order GMM requires a median computation time of 3 seconds, while the GFMM requires
a median of 42 seconds for the same task. At higher orders, the difference becomes even more pronounced.
For a 20th-order model, the GMM requires 13 seconds, whereas the GFMM requires 135 seconds.

This increase in computational time can be further analyzed by evaluating the average time required
for one optimization round as a function of the number of parameters in the model, as shown in Fig. 14c.
The GFMM model is significantly more costly to fit, with an average computation time of 164 seconds for
a model with 61 parameters. In comparison, a GMM model of similar size can be optimized in 23 seconds.
Furthermore, a GMM model with 201 parameters can be fitted in approximately 50 seconds, whereas a
GFMM model of the same size was not trained due to an estimated optimization time of approximately 600
seconds, based on extrapolation from Fig. 14c. The variability introduced by the derivative parameter in
the GFMM model increases the complexity of the optimization problem, causing the optimizer to require
significantly more time to converge to an optimal solution. Therefore, for both viscoelastic models, an order
between 7 and 10 offers the best trade-off considering error reduction and computational cost.

It is important to emphasize that the reported times are related to model optimization, not deployment.
For a single forward evaluation of the fitted models, the computational costs are 6.9, 16.0, and 117.8 us for
the Fractional Zener, GMM, and GFMM models, respectively. Given a controller sampling period of 20 us
(50 kHz) for the EAs [6] and the fact that temperature gradients in typical applications are on the order of
°C/min, parameter updates can be performed at multi-second intervals outside the high-rate control loop.
Consequently, any of the models can be employed in real-time operation.
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Figure 15: Properties of cells A, B, and C before and after normalization: (a) natural frequency, (b) storage modulus, and
(c) loss factor. The properties are normalized using the reference values (K¢ and forey), yielding: (d) normalized reduced
frequency (fat), () normalized storage stiffness (K’), and (f) normalized loss stiffness (K’'). The normalized plots also include
the average of the normalized properties, shown in black. In the figure legends, “Avg. norm. data” refers to the average of the

normalized data.

5.3. Normalized viscoelastic model

Given that the EAs are identical from a design perspective, their mechanical properties are expected to
exhibit some degree of similarity. Examining the trends in M,,s, Rmns, and K,,. of the EAs in Fig. 8, one
can observe a consistent pattern with a visible offset in the average values. This trend persists in fy and in
K’ and n after applying the WFL law, as shown in Fig. 15a-c. This suggests the feasibility of developing
a generalized viscoelastic model capable of describing multiple EAs. Such a model would take as input
a reference value for an absorber and a target temperature, yielding an estimate of the properties at this
temperature.

To build this generalized model, the properties of the EAs A, B, and C are normalized using the Thiele-
Small parameters at the temperature of 20°C, as this condition can be imposed in using an air-conditioning

system. Subsequently, the normalized storage modulus (K*) can be calculated as

_ K* K’
K= —— = ——(1+in), 20
i e L) (20)

where K,.; is the reference stiffness at 20°C. The normalized reduced frequency (fq:) obtained from the
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WFL law can be defined as
_Clo (T - Tref)

Jur = 10C + (T =T), (21)

where fg s is the reference natural frequency at 20°C. The normalized properties and their averaged values

are shown in Figs. 15d to 15f.

A 10th-order GMM is fitted to the averaged normalized data following the optimization process described
in Section 5.2.2. Figures 16a, 16c, and 16b illustrates the normalized values of K, K, and f, respectively,
as represented by the normalized experimental data and the GMM. To use the GMM for prediction, one
can select a target temperature value in Fig. 16a (for instance represented by the sample points in red)
and determine the corresponding value of the normalized reduced frequency. Then, by evaluating the GMM
model, the real and imaginary part of the normalized stiffness can be obtained. The normalization process

can subsequently be reversed using the reference values at 20°C in Eqgs. (20) and (21).
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Figure 16: Results for the process of identification of a GMM of order 10 to the normalized data: (a) temperature-reduced
frequency relationship. In the charts, red dots depicts selected temperature samples evaluated at -10, 0, 10, 20, 30, 40 and 50
°C to evaluate the model normalized model, (b) normalized real part of the stiffness, and (c) normalized imaginary part of the

stiffness. These normalized samples are also used to reconstruct the properties for cell D: (d) fo, (€) Rms, and (f) Kpme.

To assess the performance of the normalized model, a fourth EA, designated as cell D, is introduced.
This EA was tested using the same protocol defined in Section 3, but its properties were not included in the

development of the viscoelastic model. The GMM is sampled at temperatures of -10, 0, 10, 20, 30, 40, and
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50°C (represented by red dots in Figs. 16d-f) and used to estimate R,,s and K,,s. The estimated values
follow the same trend as the experimentally measured ones, although an underestimation is observed at both
low and high temperatures. This can be attributed to the viscoelastic model, which underestimates the real
part of the stiffness at lower and higher reduced frequencies. Nevertheless, the overall trend of decreasing
resonance frequency with increasing temperature is captured by the estimated values. Table 4 compares the
natural frequency values for cell D obtained experimentally and those estimated by the normalized GMM.
Notably, the error remains below 10% across the entire temperature range. If a fixed value at ambient
temperature were used instead, the error in the predicted natural frequency would be —26.4% at —10°C and

3.7% at higher temperatures.

Table 4: Comparison of the results for cell D using the viscoelastic model.

T [°C] fo.p, fo Difference [%]

model

-10 782.8 776.2 0.8
0 702.1 720.1 -2.6
10 645.8 670.7 -3.9
20 619.3 636.0 -2.7
30 608.3 609.2 -0.1
40 602.1 583.5 3.1
50 595.8 558.0 6.4

6. IMPACTS OF THE TEMPERATURE ON THE PASSIVITY OF EAS

After evaluating the temperature effects on the Thiele-Small parameters, characterizing a viscoelastic
model for individual EAs, and developing a normalized model to estimate the properties of unknown EAs,
the influence of temperature on these devices during operation is assessed. To this end, three strategies are

considered:

e Strategy #1 assumes no prior knowledge of the EA beyond its properties measured at ambient

temperature.
e Strategy #2 adapts the properties of the EA using experimentally measured Thiele-Small parameters.

e Strategy #3 employs the 10th-order viscoelastic model to approximate the Thiele-Small parameters,

allowing adaptation of both the control parameters and system properties as temperature varies.

These three strategies are designed to assess different levels of information availability regarding the EAs
in a practical application: (1) a scenario in which only the reference properties at ambient temperature are

available; (2) a scenario where a complete set of experimentally measured properties is accessible; and (3)
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an intermediate case, more representative of practical applications, where reference parameters at 20°C are
available and their variation with temperature is estimated using the viscoelastic model.

The influence of temperature on the EAs is evaluated over a broad frequency range by adjusting the
control parameters p1, o, and Ry, from Eq. (6). Given that the target mass and target stiffness are defined
in terms of the control parameters py and ps as Mgy = 1 My and Kgp = poKone, respectively, the target

frequency of the system can be expressed as

1 K L2
— / — [ 22 22
fi 2w N My fo w1’ (22)

where f; is the target frequency in Hz. The mass control parameter p is maintained at a constant value of

0.4 due to passivity concerns previously demonstrated by de Bono et al. [6]. Therefore, the target frequency
is adjusted by varying ps, while R,; is modified to control the bandwidth.

For Strategy #1, as the Thiele-Small parameters are considered constant, po is defined by a discrete set
of values: [0.2,0.4,1.0,2.0]. Conversely, in Strategies #2 and #3, the Thiele-Small parameters vary with
temperature, and the control parameters are adapted accordingly to achieve the same target frequencies
defined in Strategy #1. The three strategies are summarized in Table 5, with cells A and D under analysis.
For cell A, all properties are assumed to be available. For cell D, only the properties at ambient temperature

are considered known, with their temperature dependence estimated using the viscoelastic model.

Table 5: Strategies used to evaluate the influence of the temperature on the performance of the EAs

Thiele-Small Control parameters
Strategy Description Cell
parameters Hni H2 Rat
#1 Constant Thiele-Small parameters A Table 2 04 [0.20.41.02.0] [0.51.02.0]

Variable Thiele-Small parameters
#2 A Table 2 0.4 [0.1 - 2.5] [0.5 1.0 2.0]

using experimental results

Variable Thiele-Small parameters .
#3 D Figure 16 0.4 [0.1 - 2.5] [0.5 1.0 2.0]

from the viscoelastic model

The absorption coefficient under normal incidence is used as a performance metric for the EAs. It is
defined as
a(w) =1~ [R(w)*, (23)

where a(w) denotes the absorption coefficient and R(w) is the reflection coefficient, given by

R(w) = % (24)

with the reduced impedance defined as z = Z(w)/pc.

The absorption coefficient quantifies the proportion of incident acoustic energy absorbed by the wall. A

value of 1 indicates total absorption, meaning the EA fully absorbs the incident wave with no reflection.
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Figure 17: Results for the absorption coefficient with varying temperature and control parameters for cell A using constant
Thiele-Small parameters: (a) Rqt = 0.5 and p2 = 0.2, (b) Rqt = 0.5 and p2 = 0.4, (¢) Rat = 0.5 and p2 = 1.0, (d) Rat = 0.5
and p2 = 2.0, () Rat = 1.0 and p2 = 0.2, (f) Rat = 1.0 and po = 0.4, (g) Rat = 1.0 and p2 = 1.0, (h) Ret = 1.0 and p2 = 2.0,
(i) Rat = 2.0 and p2 = 0.2, (j) Rat = 2.0 and p2 = 0.4, (k) Ret = 2.0 and p2 = 1.0, and (1) Rqt = 2.0 and p2 = 2.0 .

Conversely, a value of 0 indicates total reflection, with no absorption of the incident energy, and a negative

value corresponds to the loss of acoustical passivity (reflected energy higher than incident one).

6.1. Control with fixed properties

Figure 17 shows the absorption coefficient results for cell A under Strategy #1. Each curve represents
the absorption coefficient at a specific temperature, ranging from —10°C to 50°C. Vertical dashed lines
indicate the resonance frequency of the absorber (black) and the target frequencies (red). Regions where the
absorption coefficient drops below zero are highlighted in red, indicating areas of negative absorption. In
these regions, the EAs lose lose acoustical passivity and are subjected to possible instability when coupled
with an enclosed cavity [6].

The EA employing a control law without adapting its properties to temperature variations exhibits
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multiple regions in which it loss passivity. For instance, it occurs for R, = 0.5 and pe = 0.2 around 600
Hz, for all cases with pus = 1.0 and pus = 2.0 between 600 and 900 Hz, and for R, and us = 2.0 above
1700 Hz. These instabilities occur across the entire temperature range but are more pronounced at lower
temperatures and lower frequencies.

Focusing on the tests with R,; = 1.0, Strategy #1 exhibits two regions where the absorption coefficient
is close to one at low target frequencies (ug = 0.2). As the target frequency increases, the system begins to
show instabilities around 700 Hz, with this behavior becoming more pronounced at higher target frequencies.
Additionally, evaluating a line with constant R, e.g, Figs. 17i-1, strategy #1 appears to become non-passive

as the target stiffness increases.

6.2. Control with varying Thiele-Small parameters based on experimental values

In Strategy #2, the measured Thiele-Small parameters for cell A are incorporated into the control law.
Figure 18 shows the EA absorption coefficient for temperatures from —10°C to 50°C. Compared with
Strategy #1, which assumes constant parameters (Fig. 17), Strategy #2 yields markedly improved passivity
around the target frequency. Instabilities are observed primarily at —10°C when targeting frequencies at
or below the absorber’s resonance, i.e., o < 1.0. In all scenarios, the EA exhibits non-passive regions at
high frequencies, likely attributable to the phase lag introduced by control-loop delay, as demonstrated by
De Bono et al. [6], and lack of validity for the 1IDOF model implemented in the control law. This type of
non-passivity appears insensitive to updating the Thiele-Small parameters with temperature. Nevertheless,
the observed improvement in passivity near resonance underscores the value of temperature-dependent

parameter updates.

6.3. Control with varying properties from the viscoelastic model

Given that experimentally testing each EA using a thermal chamber is neither practical nor cost-effective,
and considering that correcting the Thiele-Small parameters can improve the operational passivity of these
devices, Strategy #3 evaluates the feasibility of obtaining these parameters from the viscoelastic model and
subsequently using them to update the control law.

Figure 19 presents the absorption coefficient results for cell D. Notably, the absorber remains stable
across the entire frequency and temperature range, consistent with the results obtained for cell A under
Strategy #2 and in contrast to the behavior observed under Strategy #1. Therefore, the viscoelastic model

can serve as a reliable source of information for the control of the EAs.

7. CONCLUSIONS

This study investigates the impact of temperature variations on the mechanical properties of loudspeaker
materials used in EAs. The results demonstrate that the system’s natural frequency exhibits a non-linear
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Figure 18: Results for the absorption coefficient with varying temperature and control parameters for cell A using variable
Thiele-Small parameters: (a) Rqt = 0.5 and p2 = 0.2, (b) Rqt = 0.5 and p2 = 0.4, (¢) Rat = 0.5 and p2 = 1.0, (d) Rat = 0.5
and p2 = 2.0, () Rat = 1.0 and p2 = 0.2, (f) Rat = 1.0 and po = 0.4, (g) Rat = 1.0 and p2 = 1.0, (h) Ret = 1.0 and p2 = 2.0,
(i) Rat = 2.0 and p2 = 0.2, (j) Rat = 2.0 and p2 = 0.4, (k) Ret = 2.0 and p2 = 1.0, and (1) Rqt = 2.0 and p2 = 2.0 .

relationship with temperature, showing small variations of up to 8.1% at higher temperatures (50°C) and
significantly larger changes of up to 31.9% at lower temperatures (-10°C) compared to the reference value
at 20°C.

By identifying the Thiele-Small parameters from experimental frequency response functions, it was ob-
served that the equivalent mass of the loudspeaker remains constant across the studied temperature range.
In contrast, the stiffness and resistance display non-linear trends, with a noticeable transition around 20°C.
This non-linear behavior is consistent with the viscoelastic nature of the materials used in loudspeaker
construction.

To identify such material behavior, this study proposes three viscoelastic models, namely the frac-

tional Zener, generalized Maxwell, and the generalized fractional Maxwell, to characterize the temperature-
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Figure 19: Results for the absorption coefficient with varying temperature and control parameters for cell D using variable
Thiele-Small parameters based on the normalized viscoelastic model: (a) Rqt = 0.5 and p2 = 0.2, (b) Rat = 0.5 and pu2 = 0.4,
(¢) Rat = 0.5 and p2 = 1.0, (d) Rat = 0.5 and p2 = 2.0, (e) Rat = 1.0 and p2 = 0.2, (f) Rat = 1.0 and p2 = 0.4, (g) Rat = 1.0
and p2 = 1.0, (h) Rat = 1.0 and pg = 2.0, (i) Rat = 2.0 and pu2 = 0.2, (j) Rat = 2.0 and pu2 = 0.4, (k) Rqt = 2.0 and pu2 = 1.0,
and (1) Rgt = 2.0 and p2 = 2.0 .

frequency dependency of the materials. These models, fitted to experimental data using optimization al-
gorithms, demonstrate varying levels of accuracy and computational efficiency. The Generalized Maxwell,
particularly at higher orders, provides superior flexibility in capturing the complex material behavior com-
pared to the Fractional Zener model, and a lower computational cost when compared to the general fractional
Maxwell model.

A normalized viscoelastic model was developed using the average Thiele-Small parameters from three
EAs, based on reference values at 20°C. This model was employed to estimate the parameters of an untested
absorber, reducing the average error in the natural frequency compared to using constant properties based on
the parameters measured at the reference temperature. Such a model enables the prediction of the properties

of untested electroacoustic absorbers by integrating reference values with a generalized framework derived
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from tested materials.

Finally, the electroacoustic absorbers were evaluated in an active configuration to assess the effect of
temperature on their passivity. In cases where the Thiele-Small parameters were not updated with temper-
ature variations, the absorbers lost passivity and exhibited issues in multiple frequency regions, particularly
near resonance. Correcting the parameters using experimentally measured data or properties obtained from
the viscoelastic model improved passivity, with the latter approach proving to be a practical method for
evaluating multiple absorbers with limited available information.

Future works could include analyzing the uncertainty associated with the Thiele-Small parameters to
assess the convergence of the viscoelastic model as a function of the sample size used to construct the
normalized model.

Another open research possibility is the evaluation of larger temperature ranges, specially for extreme
operational temperatures, as turbo fan engines might experience both very low temperatures at cruise flight
and high temperatures while operating in hot weather. The experimental apparatus used in this work
could be expanded, including the characterization of the sensitivity of the microphones with temperature
to evaluate potential impacts on the results and the evaluation of the capacity of the viscoelastic model to

extrapolate in large temperature ranges.
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