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Abstract5

In active noise control, pressure-based control strategies for electroacoustic absorbers depend on the loud-

speakers’ electromechanical properties, known as Thiele-Small parameters, to implement impedance control.

Due to the viscoelastic nature of loudspeaker materials, these parameters are sensitive to environmental

conditions, particularly temperature. This study investigates the impact of temperature on the impedance

control of electroacoustic absorbers. The acoustic impedance of several absorbers is measured over a broad

temperature range, and an analytical model is used to identify the variation of the Thiele-Small parameters

with temperature. A viscoelastic material characterization framework is then proposed, employing the Frac-

tional Zener, Generalized Maxwell, and Generalized Fractional Maxwell models. These models are identified

for individual absorbers and compared in terms of accuracy and computational cost. A generalized approach

through a normalized curve derived from multiple absorbers is introduced to estimate the parameters of un-

known absorbers. The pressure-based control law is subsequently updated to include temperature-dependent

parameters, enabling evaluation of their influence on absorber passivity. Results demonstrate that adapting

the control strategy using either direct measurements or model-based estimations enhances the acoustic

passivity of electroacoustic absorbers.

Keywords: Active noise control, Environmental effects, Fractional Zener model, Generalized Fractional6

Maxwell model, Generalized Maxwell model, Impedance control, Loudspeakers, Viscoelastic materials7

1. INTRODUCTION8

Noise management is a challenge in various engineering fields, from ambient noise control to mitigating9

sound in open ducts. Key applications include reducing noise in heating, ventilation, and air conditioning10

(HVAC) systems, as well as controlling noise in aircraft engines. In these cases, passive noise control11

techniques are commonly employed, utilizing absorbent materials and honeycomb perforated liners [1]. These12

liners work based on the quarter-wavelength resonance, and demand larger thickness for efficiency at lower13

frequencies. An alternative to passive liners is active impedance-based control [2]. These systems can14
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outperform conventional acoustic treatments and adapt themselves to the operational regime. Based on this15

concept, Rivet et al. [3] proposed a broadband set of electroacoustic absorbers (EAs) utilizing a feed forward16

control architecture. They are composed of a loudspeaker from which a target impedance is achieved on17

the loudspeaker (the actuator) based on collocated pressure measurements. Several studies have since been18

conducted to evaluate the efficiency of these devices [1, 4, 5], as well as their limitations. To date, the effects19

of loudspeaker model uncertainties upon the EA performances, has been investigated by de Bono et al. [6]20

and Volery et al. [7], but such uncertainties have never been correlated with one of their most impacting21

causes, which is temperature variation. The most recent application in a scaled test-rig of a turbofan engine22

[8], where temperatures reach extreme values, demands to deeply investigate this fundamental correlation,23

in order to realistically envisage a further step forward in the technology readiness level (TRL) of EAs.24

The temperature dependency of these devices arises at the material level of the loudspeaker, which may25

be composed of various materials. The spider, a flexible component that centers the voice coil and provides26

restoring force during diaphragm motion, typically consists of impregnated textiles such as cotton, poly-27

cotton, or Nomex, while the surround may include materials like rubber, foam, coated fabrics, or diaphragm28

materials [9]. These materials exhibit viscoelastic properties [10], and environmental conditions can influence29

their mechanical characteristics, potentially impacting loudspeaker vibration behavior.30

Several studies have proposed methods to evaluate the operating temperature of loudspeakers. Henrick-31

sen [11] analyzed the role of heat-transfer mechanisms on voice-coils, deriving a phenomenological relation32

combining voice-coil temperature, electric input and loudspeaker parameters. Chapman [12] developed a33

system for real-time simulation of voice-coil and magnet assembly temperatures in moving coil loudspeakers34

using multiple material systems. Addressing the viscoelastic frequency-temperature dependency, Rousseau35

and Vanderkooy [13] reported the properties of two loudspeakers with different loss characteristics in temper-36

atures from 20 to 50 ◦C, while Maillou et al. [14] modeled the nonlinear frequency behavior of a loudspeaker37

using polynomial nonlinearity and a generalized Hammerstein model.38

The dynamics of a loudspeaker is usually modeled in terms of the Thiele-Small parameters [15, 16],39

characterizing the electromechanical behavior of these devices. These parameters describe how a loudspeaker40

interacts with both electrical signals and mechanical loads, allowing for the evaluation of performance41

aspects like frequency response, efficiency and sound quality. Although previous studies have examined the42

temperature dependence of loudspeaker material properties, a structured approach for identifying viscoelastic43

behavior across different models remains unaddressed. Furthermore, no prior work in the literature has44

investigated the passivity issues arising from the impact of temperature on the Thiele-Small parameters of45

EAs.46

To fill this gap, this work evaluates the effect of temperature on the impedance control of EAs by47

studying the temperature-frequency dependence of the Thiele-Small mechanical parameters of loudspeakers,48

specifically mass, resistance, and stiffness. The influence of temperature is experimentally analyzed over a49
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range of -10◦C to +50◦C, and the Thiele-Small parameters are identified. Three viscoelastic models are then50

employed to characterize the observed behavior: the fractional Zener model, the generalized Maxwell model51

(GMM), and the generalized fractional Maxwell model (GFMM). The temperature-frequency dependence of52

the loudspeaker’s mechanical properties is assessed by calibrating these viscoelastic models to a master curve53

generated using the Williams-Landel-Ferry law. Additionally, a normalized viscoelastic model is proposed to54

generalize information obtained from tested EAs to untested ones. Finally, the passivity of these devices is55

evaluated under scenarios with and without parameter correction as a function of temperature. Parameter56

correction is performed using both experimentally observed data and the developed normalized viscoelastic57

model.58

The paper is organized as follows. Section 2 presents the theoretical background, including the mechanical59

modeling of the loudspeaker, the pressure-based control law applied to the EAs, the Thiele-Small param-60

eter identification procedure, and the fitting of the proposed viscoelastic models. Section 3 describes the61

experimental setup and the loudspeakers used in this study. Section 4 presents the results of the parameter62

identification, followed by the viscoelastic model fitting in Section 5. Section 6 provides the passivity analysis63

of the EAs using temperature-dependent parameters in the control law. Finally, Section 7 summarizes the64

conclusions and outlines directions for future research.65

2. PROBLEM FRAMEWORK AND THEORETICAL BACKGROUND66

This work proposes the evaluation of the temperature effects on the impedance control of EAs. For this,67

the framework presented in Fig. 1 is proposed, based on five steps:68

1. To conduct experimental tests on the EAs under varying temperatures to evaluate acoustic impedance69

according to ASTM E1050-24 [17], within the range of +50◦C to –10◦C.70

2. To identify the Thiele–Small parameters from the mechanical impedance using the polyreference least-71

squares complex frequency-domain method (PolyMAX).72

3. To identify the fractional Zener, generalized Maxwell, and fractional generalized Maxwell models for73

the mechanical properties, based on master curves derived from the Williams–Landel–Ferry law.74

4. To develop a normalized GMM representing the average mechanical properties of three EAs, and75

evaluate its performance in predicting the parameters of an unknown absorber.76

5. To assess the passivity of the EAs under temperature variations and propose a control strategy based77

on the adaptation of mechanical properties using the normalized viscoelastic model.78

The underlying theoretical foundations behind the proposed framework are discussed in the subsequent79

subsections.80
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Figure 1: Proposed framework for evaluating temperature effects on the EAs.

2.1. Single-degree-of-freedom loudspeaker model81

The electromechanical loudspeaker can be modeled as single-degree-of-freedom (1DOF) oscillator that is82

driven by a coil with a permanent magnetic field [18]. Figure 2a presents an EA built using a loudspeaker,83

whereas Fig. 2b showcases the pressure-current control strategy, and Fig. 2c presents a schematic repre-84

sentation of the equivalent free-body diagram of the system. For modeling the mechanical dynamics of the85

system according to the Newton’s second laws, the following hypothesis are considered: (i) forces imposed86

by the pressure wavefield are small; (ii) the system operates with low displacement in the low-frequency87

region, being assumed as a linear system. Therefore, the equilibrium of forces yields88

Mms
dv(t)

dt
= Sdp(t)−Bli(t)−Rmsv(t)−Kmc

∫
v(t)dt, (1)

where v = du/dt is the diaphragm velocity, p is the surface pressure at the diaphragm, i is the electrical89

current flowing through the voice-coil, Mms represents the mass of the driver diaphragm and coil assembly,90

Rms is the mechanical viscous resistance, Sd is the equivalent area of the driven diaphragm, and Bl is the91

force factor of the moving coil. Kmc is the total mechanical stiffness of the assembled EA, represented as92

Kmc = 1/Cms + ρc2S2
d/Vb, in which Cms is the mechanical compliance of the surrounding suspension and93

the spider, ρ is the air mass density, c is the speed of sound, Vb is the loudspeaker rear cabinet volume.94

These mechanical and electrical properties that define the frequency performance of the loudspeaker, i.e.,95

Mms, Rms, Kmc, Sd, and Bl, are known as Thielle-Small parameters.96

Considering the Laplace variable s and applying the Laplace transform to Eq. (1)97

SdP (s) = Zm(s)V (s) +BlI(s), (2)
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Figure 2: Loudspeaker considered in this study: (a) EA built with it and (b) free-body diagram.

where Zm represents the mechanical impedance of the closed-box loudspeaker98

Zm(s) = Mmss+Rms +
Kmc

s
. (3)

The dynamic response of the diaphragm to an external acoustic disturbance can be described by its99

acoustic impedance, which is defined as the complex ratio of the total sound pressure P (s) at the diaphragm100

to the diaphragm velocity V (s). In the condition of open-circuit loudspeaker, i.e., the case where no current101

circulates through the coil, Eq. (2) yields102

Za(s) =
P (s)

V (s)
=

Zm(s)

Sd
, (4)

where Za represents the acoustical impedance of the loudspeaker.103

The behavior of EAs can be controlled by adjusting their acoustic impedance to a target value. Pressure-104

based control strategies are proposed by Rivet et al. [3], Guo et al. [19], and de Bono et al. [20]. These105

control strategies rely on the values for the Thiele-Small parameters to synthesize the control based upon106

the 1DOF model described by Zm(s). Given that these parameters are related to the material properties,107

which are in turn susceptible to environmental influences, there is a need for investigating the variation of108

the Thiele-Small parameters due to environmental causes.109

2.2. Control strategies for pressure-based electroacoustic absorbers110

The EAs can be operated to achieve a target acoustic impedance using a pressure-based control law. An111

extensive discussion on acoustic impedance control using pressure-based approaches is presented by Rivet112

et al. [3].113

Considering a local control strategy [21], the transfer function between the pressure measurements and114

the imposed current to the loudspeaker coil to implement a target acoustic impedance Zat can be obtained115

from Eqs. (2) and (4):116

H(s) =
I(s)

P (s)
=

1

Bℓ

(
Sd −

Zm(s)

Zat(s)

)
, (5)
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Figure 3: Thiele–Small parameters identification procedure. LSCF stands for Least-Squares Complex Frequency-domain.

where H(s) is the control transfer function and Zat is the target impedance obtained as117

Zat(s) =
P (s)

V (s)
= µ1

Mms

Sd
s+Ratρ0c0 + µ2

Kmc

sSd
, (6)

where µ1 and µ2 are two tunable coefficients that allow for controlling the mass and stiffness of the loud-118

speaker, respectively; Rat controls the target impedance to be achieved by the loudspeaker at the resonance,119

usually expressed as a fraction of the characteristic impedance of the air; ρ0 is the air mass density, whereas120

c0 is the speed of sound.121

2.3. Thiele-Small parameters identification122

Figure 3 illustrates the Thiele-Small parameter identification procedure based on the measured mechan-123

ical impedance. The mechanical impedance is used to derive the experimental frequency response function124

Hexp(ω). The estimation of the resonance frequency of the absorber (ω̃0) is determined from the phase angle125

of the mechanical impedance, specifically at the frequency where the impedance’s imaginary part close to126

zero. Next, the nearest pole to ω̃0 in Hexp(ω) is used to build a pole-residue model H(ω). Then, the polyref-127

erence least-squares complex frequency-domain method (PolyMAX) [22] is used to fit H(ω) to Hexp(ω) and128

the model parameters, Mms, Rms, and Kmc, are obtained from the residuals.129

2.4. Viscoelastic models130

Due to the nature of the materials used to build loudspeakers and its surroundings, such as elastomers131

or treated fabrics, these devices present frequency dependent properties [13]. This frequency dependency132

can be expressed using the complex Young’s modulus representation (E∗)133

E∗(ω) = E′(ω) + jE′′(ω) = E′(ω)[1 + jη(ω)], (7)

where E′ is the storage modulus, E′′ the loss modulus, η = tan(δ) = E′′/E′ is the loss factor, ω is the134

frequency, and j =
√
−1. Given its complex nature, the frequency dependency is usually represented using135

6



modulus/phase, real/imaginary, or real/loss factor (η) plots versus the logarithm of the frequency. In the case136

of a loudspeaker built using a viscoelastic material, its Thiele-Small stiffness and damping are proportional137

to the complex modulus, thus they can be represented without loss of generality as138

K∗(ω) = K ′(ω) + jK ′′(ω) = K ′(ω)[1 + jη(ω)], (8)

where K∗ is the complex stiffness, K ′ is the stiffness correspondent to the storage modulus, and K ′′ is the139

stiffness correspondent to the loss modulus.140

Numerous rheologic representations are available in the literature to model viscoelastic behavior, includ-141

ing representations using spring-dashpot elements [23]. Figure 4 presents the rheologic representation of142

four common models: the standard linear (Classical Zener), the fractional Zener, the generalized Maxwell,143

and the generalized fractional Maxwell. To fit these models to the loudspeaker materials, experimental144

measurements of Thiele–Small parameters over a range of frequencies and temperatures are first performed145

to characterize the complex stiffness of the system. Applying the time–temperature superposition principle,146

the data are shifted to form master curves using shift factors determined through the Williams–Landel–Ferry147

(WLF) law. Subsequently, the viscoelastic models are identified by fitting their parameters to achieve close148

agreement with the constructed master curves.149

2.4.1. Williams-Landel-Ferry law150

The Williams-Landel-Ferry (WLF) law is an empirical equation used to describe how the viscoelastic151

properties of polymers change with temperature near a reference point [24]. It describes how the time-152

temperature superposition principle can be employed to shift viscoelastic response data, forming a master153

curve that facilitates the prediction of material behavior across a broad range of timescales. The temperature154

evolution of the shift factor at can be expressed as law155

log(at) =
−C0

1 (T − T0)

−C0
2 + (T − T0)

, (9)

where T is the temperature under analysis, T0 is a reference temperature, and C0
1 and C0

2 are constants.156

Then, the reduced frequencies can be expressed as a function of the shift factors157

fat = f0at, (10)

where f0 is the natural frequency of the EAs at each temperature.158

2.4.2. Fractional Zener model159

The classical Zener model, also known as the standard linear solid model, consists of a spring (elastic160

element) in parallel with a Maxwell element (a spring and dashpot in series) [25]. This configuration161

can represent the viscoelastic behavior of materials under small deformations by balancing elasticity and162
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Figure 4: Rheologic representation of viscoelastic models: (a) standard linear (Classical Zener), (b) Fractional Zener, (c)

Generalized Maxwell, and (d) Generalized Fractional Maxwell. In the figures, ki denotes the stiffness of the i-th element, τi

the relaxation time, and αi the derivative order of the fractional elements.

viscosity. However, it is limited in its capacity to describe complex real-world responses, particularly over a163

broad frequency range.164

The Fractional Zener expands the classical Zener by including a fractional derivative in the dashpot165

element. The fractional derivatives allow describing behaviors between purely elastic and purely viscous166

[26]. The complex stiffness of a viscoelastic material using the fractional Zener model (K∗
FZ) with respect167

to the angular frequency ω can be expressed as168

K∗
FZ(ω) =

k0 + k∞(jωτ)α

1 + (jωτ)α
, (11)

where k0 = limω→0 K
∗
FZ(ω), k∞ = limω→∞ K∗

FZ(ω), τ is the characteristic time constant of the system (or169

relaxation time), and α is the fractional derivative order. The characteristic time constant is defined as170

τ =
1

ωpic

(
K0

K∞

) 1
2α

, (12)

where ωpic is the angular frequency of maximum damping. The fractional derivative order α is defined as171

α =
2

π
arcsin

ηpic(K∞ −K0)×
2
√
K0E∞ + (K∞ +K0)

√
1 + η2pic

η2pic(K∞ +K0)2 + (K∞ −K0)2

 , (13)

where ηpic is the maximum damping rate, at ωpic [27].172

2.4.3. Generalized Maxwell model173

A GMM is composed of Maxwell cells connected in parallel and the model order is defined by the number174

of cells [28]. The rheological formulation of this model is given by175

K∗
GMM (ω) = k0 +

N∑
i=1

ki
jωτi

1 + jωτi
, (14)
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where K∗
GMM is the complex stiffness, k0 is the static stiffness taken at ω = 0, ki is the stiffness of the i-th176

spring, and τi is the relaxation time of the dashpot. By increasing the number of cells, a GMM model can177

represent increasingly complex viscoelastic behaviors.178

2.4.4. Generalized Fractional Maxwell model179

A GFMM is composed of a spring in parallel with multiple fractional Maxwell elements, i.e., multiple180

fractional springpot elements [28]. The main difference between the GMM and the GFMM is the addition181

of fractional derivatives to each Maxell cell, thus the model yields182

K∗
GFMM (ω) = k0 +

N∑
i=1

ki
(jωτi)

αi

1 + (jωτi)αi
, (15)

where K∗
GFMM is the complex stiffness, k0 is the static stiffness taken at ω = 0, ki is the stiffness of the183

spring, τi is the relaxation time of the dashpot, and αi is the fractional derivative of the i-th cell.184

3. EXPERIMENTAL SETUP185

Three EAs are evaluated experimentally to define the acoustic impedance of the loudspeakers and account186

for experimental dispersion. These EAs, also referred as cells A, B and C in the following, are identical187

from a design perspective. The impedance tube used for the experiments is built in aluminum, has a square188

cross-section of 50 mm and a length of 300 mm. Three PCB Piezotronics 130F21 microphones are positioned189

at distances of 100 mm, 150 mm, and 200 mm from the excitation source, and referenced as P1, P2 and P3190

in the following, respectively.191

Data acquisition is performed using the NI cDAQ-9174 system, with NI 9234 module for data acquisition192

and NI 9263 module for signal generation. A Stage Line STA-102 amplifier is placed between the signal193

generator and the input speaker to amplify the input signal. The excitation consists of white noise signal194

in a frequency range between 100 Hz and 3000 Hz and a sound pressure level (SPL) of 100 dB. The195

frequency limits are defined based on ASTM E1050-24, considering both the microphone spacing and the196

cutoff frequency of the tube which is approximately 3430 Hz.197

Impedance measurements are conducted across a wide range of temperatures to evaluate the tempera-198

ture dependency of the mechanical properties. A Climats PCH60 thermal chamber is used to control the199

temperature of the square impedance tube, covering a range from −10◦C to +50◦C. This temperature range200

is selected mainly by the limitation of the experimental setup. According to the PCB 130F21 specifications,201

these microphones have an operating temperature range of −10◦C to 50◦C. Additionally, the current gener-202

ation the acoustic cells is not designed for very high temperatures, as degradation of polymer parts (mainly203

in the loudspeaker) is likely to occur.204

The impedance tube is mounted at the top of the chamber and subjected to a temperature cycle, as205

detailed in Fig. 5. The cycle begins with an initial pre-heating phase lasting 90 minutes, during which the206

9
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Figure 5: Experimental setup with: (a) schematic description of experiment, (b) temperature cycle, (c) thermal chamber, and

(d) impedance tube and electronics. In the figures, the numbers represent (1) the EA, (2) the thermocouple, (3) the springs

used to suspend the tube, (4) the NI cDAQ-9174, (5) the Stage Line STA-102 amplifier, and (6) the P1 microphone - PCB

130F21, (7) the P2 microphone - PCB 130F21, (8) the P3 microphone - PCB 130F21, and (9) the PCB input loudspeaker.

temperature is raised to +55◦C. Following pre-heating, the temperature is held constant at +55◦C for 5207

minutes to ensure system stabilization. Then, a constant cooling gradient of -0.5◦C/min is applied until208

the temperature reaches -15◦C, followed by a 5-minutes stabilization period. This gradient, together with209

the high conductivity of aluminum used in the impedance tube construction supports rapid temperature210

equalization and enforce temperature homogeneity within the tube. The temperature inside the tube is211

monitored using a thermocouple, and data recorded at temperatures above +50◦C and below -10◦C are212

discarded. Three sequential pressure measurements are performed, each during 10 seconds, and the system213

holds 30 seconds before starting a new round. This cycle is repeated during all the temperature gradient214

duration, which results in 360 pressure measurements from +50◦C to -10◦C. Due to the limitations imposed215

by the automated measurement scheme within the closed environment of the thermal chamber, microphone216

switching at all temperature, as proposed by the ASTM-1058-24, is not straightforward. Therefore, this217

procedure was evaluated only at the ambient temperature configuration to compensate for any potential218

discrepancies between amplitude and phase of the microphones.219

The sampling frequency is 51200 Hz and the post-processing is made through a power spectral density220

10



computation using the Welch’s estimator through a hanning window with 8192 points and a 50% overlapping221

between adjacent time frames.222

Three different EAs similar to the one presented in Fig. 2a and named A, B and C are used in the223

following. They are identical in their desing, using loudspeakers from the same manufacturer. Differences224

between them can arise from the manufacturing process of the components, and the assembly of the EA,225

which is manual.226

4. THIELE-SMALL PARAMETERS IDENTIFICATION227

The acoustic impedance for the three tested loudspeakers is determined in accordance with ASTM E1050-228

08. For tests conducted inside the thermal chamber, air density and sound velocity are adjusted for each229

sample using the formulation proposed in the ASTM E1050-24 [17] and the thermocouple readings.230

The effects of the thermal chamber on the impedance measurements were evaluated at several setpoints,231

where the chamber was briefly switched off (fan and compressor disabled), a measurement was taken, and the232

result was compared with the measurement acquired during the ramp at the same instantaneous temperature.233

The on/off results were indistinguishable within the measurement uncertainty, indicating that background234

noise generated by the chamber equipment does not affect the impedance measurements. This outcome is235

mainly attributed to the fact that the impedance tube is closed and subjected to an SPL of 100 dB, which236

is considerably higher than the noise level inside the chamber.237

Additionally, two complementary checks were made. (i) At several setpoints, impedance measurements238

acquired during a continuous temperature ramp were compared, at the same instantaneous temperature,239

with measurements obtained after the chamber had reached thermal equilibrium; differences were negligible.240

(ii) Each cell was tested twice on different days to probe variability in external conditions and in the cham-241

ber’s PID control actions; both runs yielded nearly identical temperature-evolution curves for impedance,242

confirming repeatability. Collectively, these checks indicate that although the tube is not rigidly anchored to243

the chamber walls, chamber-induced vibrations did not bias the measured impedance under normal operating244

conditions.245

4.1. Temperature influence on Thiele-Small parameters246

Figure 6 illustrates the acoustic impedance near resonance and the corresponding FRFs in displacement247

per unit force for loudspeakers A, B, and C, evaluated at 5◦C increments. The three loudspeakers exhibit248

similar temperature-dependent behaviors, with the real part of the impedance reaching a minimum value249

around resonance, and the imaginary part being negative before resonance and positive after it. Notably, the250

real part of the impedance remains stable with respect to temperature below the characteristic impedance251

of air (represented by the dashed black line) near resonance. Outside resonance, the impedance increases252
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Figure 6: Experimental results obtained from the impedance tube: real (Re) and imaginary (Im) measurements for the acoustic

impedance from -10◦C to 50◦C for (a) cell A, (b) cell B, and (c) cell C. In the impedance curves, the dotted horizontal line

represents the typical air impedance at room temperature (415 Pa.s/m); and magnitude and phase of the FRF calculated from

the mechanical impedance for (d) cell A, (e) cell B, and (f) cell C. In the FRFs, the dashed lines represents the model obtained

using PolyMAX, with the region used for the fitting process (-3.5 dB from resonance) highlighted in with dots.

rapidly, with this behavior becoming more pronounced below 10◦C, when it sharply rises. This occurs253

primarily due to the larger shift in the natural frequency of the loudspeaker at lower temperatures.254

Figure 6(d–f) shows the FRFs in displacement per unit force, obtained by converting the acoustic255

impedance to mechanical impedance using Eq. (4). The PolyMAX model reproduces the system behavior256
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Table 1: Resonance frequencies for EAs A, B, and C. The variation in resonance frequency is expressed relative to the value at

20◦C, which is used as the reference.

Cell A Cell B Cell C

Temperature

[◦C]

Resonance

frequency

[Hz]

Variation

[%]

Resonance

frequency

[Hz]

Variation

[%]

Resonance

frequency

[Hz]

Variation

[%]

-10 856.2 32.2 818.8 31.4 766.7 27.3

0 762.5 17.7 722.9 16.1 685.4 13.8

10 689.6 6.4 658.3 5.7 629.2 4.5

20 647.9 - 622.9 - 602.1 -

30 616.7 -4.8 608.3 -2.3 589.6 -2.1

40 602.1 -7.1 597.9 -4.0 579.2 -3.8

50 591.7 -8.7 591.7 -5.0 572.9 -4.8
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Figure 7: Natural frequency for three loudspeakers measured from -10 to 50◦C.

in the vicinity of the primary resonance in both magnitude and phase. Because the identification employs257

a 1-DOF model, fidelity degrades away from resonance. The choice of a 1-DOF model is motivated by the258

need for a low-order representation to implement real-time control on the embedded microcontroller and259

to mitigate instabilities [6], as well as by the fact that the loudspeaker acts as an absorber predominantly260

around its resonance, where a single, clearly identifiable mode dominates, as evidenced by the impedance261

curves and FRFs.262

Table 1 and Fig. 7 present the resonance frequency for the loudspeakers of the EAs A, B, and C. The263

resonance frequency can be tracked by identifying the points where the imaginary part of the impedance264

are closer to zero. At 20◦C, the loudspeakers A, B, and C present natural frequencies of 647.9 Hz, 622.9265

Hz, and 602.1 Hz, respectively. Between 20◦C and 50◦C, the natural frequency of the system varies to 591.7266

Hz for loudspeaker A, 591.7 Hz for loudspeaker B, and 572.9 for loudspeaker C, which represents variations267

of -8.7%, -5.0%, and 4.8% variation, respectively. In the range from 20◦C to -10◦C, the natural frequency268

shifts to 856.2 Hz, 818.8 Hz, and 766.7 Hz for loudspeakers A, B, and C, representing variations of 32.2%,269
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31.4% and 27.3%, respectively. This behavior indicates non-linear changes in the material properties as a270

function of temperature. This phenomena can also be observed by the fact that, between 50◦C and 20◦C,271

the curves are closely grouped, but they diverge significantly below 20◦C.272

The method outlined in Section 2.3 is applied to identify the Thiele-Small parameters of the EAs. Figure273

6d-f presents the FRFs obtained using mechanical impedance. For the identification process, the assumption274

of a 1DOF system is valid only near resonance, therefore boundaries are applied with a -3.5 dB criterion.275

The change in natural frequency is even more apparent while evaluating the FRFs.276

Figure 8 and Tab. 2 present the estimated Thiele-Small parameters with respect to temperature for277

the loudspeakers A, B and C. Note that the mass of the three loudspeakers remains almost constant, with278

small experimental variations likely due to measurement noise. In contrast, the resistance and stiffness279

exhibit nonlinear behavior. Resistance increases from -10◦C and reaches a maximum near 0◦C, after which280

it decreases and stabilizes around 30◦C. The stiffness decreases with temperature with a greater rate of281

change below 20◦C, then reduces its rate of decreasing. This non-linearity in stiffness corresponds to the282

behavior observed in the resonance frequency above and below 20◦C.283

Table 2: Mechanical Thiele-Small parameters identified for temperature range from -10◦C to 50◦C for loudspeakers A, B, and

C. For this study, the values measured at 20 ◦C are considered as reference.

Loudspeaker Parameter
Temperature [◦C]

Mean STD. CV [%]
-10 0 10 20 30 40 50

A

Mms [g] 0.525 0.545 0.542 0.551 0.586 0.589 0.592 0.562 0.027 4.8

Rms [Ns/m] 0.324 0.402 0.355 0.298 0.266 0.266 0.274 0.312 0.052 16.5

Kmc [kN/m] 15.2 12.6 10.1 9.1 8.7 8.4 8.2 10.3 2.64 25.6

B

Mms [g] 0.508 0.488 0.502 0.507 0.504 0.498 0.498 0.501 0.007 1.3

Rms [Ns/m] 0.287 0.370 0.323 0.259 0.240 0.239 0.251 0.281 0.049 17.5

Kmc [kN/m] 13.3 10.1 8.5 7.6 7.2 6.9 6.7 8.6 2.36 27.4

C

Mms [g] 0.470 0.459 0.474 0.480 0.493 0.498 0.498 0.482 0.015 3.1

Rms [Ns/m] 0.255 0.324 0.278 0.225 0.203 0.198 0.203 0.241 0.047 19.7

Kmc [kN/m] 10.9 8.5 7.3 6.8 6.6 6.5 6.3 7.6 1.65 21.8
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Figure 8: Thiele-Small parameters with respect to temperature. Estimated properties: (a) Mms, (b) Rms, and (c) Kmc for

three loudspeakers.

5. VISCOELASTIC MODEL284

Due to the comparable behavior of properties across different EAs, a general approach to describe the285

material is proposed. To achieve this, three viscoelastic models are investigated: the fractional Zener model,286

the GMM, and the GFMM.287

5.1. Master curve288

A viscoelastic model requires the complex modulus properties to be represented as functions of frequency289

and temperature. Since the loudspeaker properties are determined using FRFs, the resonance frequencies at290

each temperature are considered as the vibration frequency of the loudspeaker at that specific temperature.291

Using the resonance frequency and temperature data, curves for the storage modulus and loss factor are292

constructed. The WLF law is applied to calculate the shift factors for each frequency-temperature pair, as293

illustrated in Fig. 9a, allowing for the construction of a master curve, based on reduced frequency (fat).294

These shift factors enable the development of a reduced frequency curve containing the storage modulus and295

loss factor plots, as shown in Figs. 9b and 9c. The following subsections present the fitting of the properties296

for cell A.297

5.2. Model fitting298

5.2.1. Fractional Zener299

The fractional Zener model involves four parameters for fitting: k0, k∞, ωpic, and ηpic. The frequency300

and maximum loss factor can be directly evaluated from Fig. 9c, yielding values of 5250 Hz and 0.156,301

respectively. Using these parameters, k0 and k∞ are determined through constrained nonlinear optimization,302

with bounds established based on the projected asymptotes in Fig. 9b, i.e., 1 kN/m and 30 kN/m. The303

fractional Zener model is adjusted for two different scenarios: (i) for a general fitting for the complete304
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Figure 9: Master curve for cell A obtained using the Wiliam-Landel-Ferry law: (a) translation factors, (b) real part of the

stiffness, and (c) imaginary part of the stiffness for cell A.

frequency spectra and (ii) for a reduced fitting considering only frequencies above 4× 102 Hz. This limit is305

selected because it represents the first inflection point in the imaginary component of K ′′. Figure 10 display306

the optimized Zener model for the complete and reduced frequency spectra.307
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Figure 10: Real and imaginary components of the stiffness and loss factor of the optimized Fractional Zener models for cell A.

“Complete” refers to the model identified using the entire frequency spectrum, while “Reduced” refers to the model considering

fat above 4× 102 Hz.

While the fractional Zener model effectively fits most of the storage modulus, it demonstrates limitations308

in accurately capturing the loss factor, particularly in the low and high reduced frequency regions. When309

fitting the complete frequency spectra, the model cannot achieve satisfactory results for the imaginary part,310

even though it respects the maximum value of tan(δ) which is equal to 0.156. This indicates that the model311

lacks the capacity of representing a material with double curvature in its damping response. The fractional312

Zener is able to describe a behavior with single glass transition with limω→0 Im(K∗) = limω→∞ Im(K∗) = 0313

and a monotonic evolution of the loss factor before and after the glass transition. However, the experimental314

data do not agree with this, as the loss factor increases below 200 Hz, in Fig. 10. The parameters of the315

fitted models are presented in Tab. 3.316
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Table 3: Identified parameters for the fractional Zener model considering the complete and reduced data sets.

k0 [kN/m] k∞ [kN/m] α

Complete 6.2 23.7 0.297

Reduced 7.1 22.0 0.343

5.2.2. Generalized Maxwell and fractional Zener models317

As the Fractional Zener model is unable to fully describe the behavior of the material, GMMs and318

GFMMs are proposed. These models can effectively capture a wide range of viscoelastic behaviors but319

involve a trade-off with the increased complexity of a multivariate identification problem.320

From an optimization point of view, the GMM model identification is defined as321

min
k0,ki,τi

L(k0, ki, τi) =
1

MN

M∑
j=1

N∑
i=1

((
K ′

M(ωj)−K ′
E(ωj)

K ′
E(ωj)

)2

+

(
K ′′

M(ωj)−K ′′
E(ωj)

K ′′
E(ωj)

)2
)
, (16)

322

subject to k0 > 0, ki > 0, τi > 0, i = 1, . . . , N, (17)

where K ′
M and K ′′

M are the real and imaginary part of the complex stiffness predicted by the GMM from323

Eq. (14), K ′
E and K ′′

E are the real and imaginary parts of the experimental complex stiffness, k0 is the static324

stiffness of model, ki is the stiffness of the spring in the i-th cell, τi is the time constant of the dashpot in325

i-th cell, and N is the number of cells, and M is the number of j-th discrete frequencies. Therefore, each326

optimization problem has 2N +1 parameters consisting of one value for k0 and values for ki and τi for each327

cell in Eq. (14). To account for physical constraints, k0, ki, and τi must be positive.328

For the GFMM model, the addition of the fractional derivative adds a new parameter to the optimization,329

which is defined as330

min
k0,ki,τi,αi

L(k0, ki, τi, αi) =
1

MN

M∑
j=1

N∑
j=1

((
K ′

M(ωj)−K ′
E,i(ωj)

K ′
E(ωj)

)2

+

(
K ′′

M(ωj)−K ′′
E(ωj)

K ′′
E(ωj)

)2
)
, (18)

331

subject to ki > 0, τi > 0, i = 1, . . . , N,

0 < αi < 1, i = 1, . . . , N,
(19)

where αi is the fractional order of each cell. Therefore, the optimization problem has 3N + 1 parameters332

consisting of one value for k0, and values for ki, τi, and αi for each cell in Eq. (15). In addition to the333

constraints on ki and τi, the partial derivative order αi must be between 0 and 1.334

The reduced frequency of the system ranges between 101 Hz and 105 Hz in Fig. 9b and 9c. To avoid a

highly unconstrained problem, additional constraints are imposed to the first and last values of τ to ensure

that there are anchor points on the limits of the search domain in the format of

100 < 1/τ1 < 101, and

105 < 1/τN < 106.
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This means that the optimizer must search for at least one anchor point at each border of the domain in the335

form of τ1 and τN . In preliminary evaluations, this increased considerably the stability of the optimization336

strategy compared to a scenario without any limitation on the borders of the search region. For the remaining337

parameters [τ2 : τN−1] the optimizer is limited between 101 and 105 Hz.338

An optimization process based on particle swarm (PSO) [29] is proposed, as depicted in Fig. 11. The339

optimization process begins by defining the order of the GMM (or GFMM). Based on this order, the PSO340

algorithm generates a particle swarm with candidates within the search space, corresponding to values of the341

parameters ki and τi. For each candidate, the complex stiffness is computed and compared with experimental342

values using the loss function within the optimization process defined by Eqs. (16) and (18). The optimizer343

evaluates the convergence of the loss and iteratively generates new particle swarms until the loss converges.344

GMM 
order

Generate 
swarm

Particle swarm optimization

Evaluate 
GMM or GFMM 𝐾!∗ = 𝐾# + 𝑖𝐾′′ Loss 

function

Update swarm 
parameters

Optimized 
model

YesNo

𝐾$∗

Convergence?

Figure 11: GMM and GFMM optimization process using the particle swarm algorithm.

Figure 12 presents the real and imaginary parts of the fitted GMM, along with the loss factor tan(δ)345

considering multiple model orders. For low-order models, such as third and fourth orders, the results346

exhibit oscillatory behavior. As the model order increases, the fitted model stabilizes. Conversely, GMMs347

with orders higher than five can describe both the real and imaginary parts of the material stiffness with348

increasing accuracy. This contrasts with the results obtained using the fractional Zener model, as shown in349

Fig. 10, highlighting the superior generalization capability of the GMM model.350

Figure 13 shows similar results for the GFMM model. In lower-order models, the real and imaginary351

parts of the fitted GFMM also exhibit oscillatory behaviors, with the oscillations being more pronounced in352

the imaginary part of the stiffness. In higher order models, this oscillation reduces progressively.353

As the results depend on the order of the GMM and GFMM, Fig. 14 illustrates the convergence analysis354

of the mean squared error (MSE) and optimization time for the GMM and GFMM as functions of model355

order. A total of 20 simulations are performed for each model order to account for the variability in the356

PSO algorithm results. The results demonstrate that the model error decreases with increasing model order,357

stabilizing at approximately 0.65 for orders 6 and above for the GFMM and at order 7 for the GMM.358

For lower-order models, the GFMM exhibits lower dispersion and convergence comparable to the GMM,359

as shown by the smaller quartile sizes in the box plots for orders 5 and 6. Further analysis up to order 20360
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Figure 12: Results for the process of identification of GMM of order 3, 4 5, 7 and 14: (a) real part of the stiffness, (b) imaginary

part of the stiffness. and (c) loss factor.
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Figure 13: Results for the process of identification of GFMM of order 3, 4 5, 7 and 14: (a) real part of the stiffness, (b)

imaginary part of the stiffness. and (c) loss factor.

confirms this stabilization in the MSE. However, despite its stable average error, the GFMM model exhibits361

instabilities in the form of outliers for higher orders (e.g., orders 16–20). This behavior is attributed to the362

model’s sensitivity to the values of αi in each cell; in higher-order models, the optimizer must simultaneously363

search across multiple cells, increasing the complexity of the optimization process. An optimal balance364

between accuracy and complexity is observed at approximately order 9. Further simulations with higher-365

order models did not result in a reduced MSE. Despite multiple optimization strategies and solvers being366

tested, the MSE could not be reduced below ≈ 0.5 when fitting the real and imaginary parts of the complex367

stiffness simultaneously. When each component was fitted independently, the model achieved near-zero368

MSE, indicating that the model structure can reproduce either component in isolation. However, coupling369

between the real and imaginary parts in the joint objective introduces a trade-off and discrepancies in the370

real-part stiffness response dominate (Figs. 12a and 13a), producing an apparent error floor around 0.5.371

Additionally, the non-smooth experimental data, seen as jumps at 600 Hz and 2500 Hz on Fig. 10 could be372

fitter only with very high order models (with a low physical meaning). These jumps lead to residual values373
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Figure 14: Convergence analysis for the GMM and GFMM optimization process using the PSO: (a) mean square error (MSE)

convergence with respect to the model order , (b) average optimization time with respect to the model order, and (c) average

optimization time with respect to the number of parameters.

which cannot be lowered with the considered smooth models.374

From the computational point of view, the GFMM model is significantly more intensive. Figure 14b375

illustrates the dispersion of the time required for one optimization round as a function of model order.376

The computational time for the GFMM model is substantially higher than that for the GMM model. For377

instance, a sixth-order GMM requires a median computation time of 3 seconds, while the GFMM requires378

a median of 42 seconds for the same task. At higher orders, the difference becomes even more pronounced.379

For a 20th-order model, the GMM requires 13 seconds, whereas the GFMM requires 135 seconds.380

This increase in computational time can be further analyzed by evaluating the average time required381

for one optimization round as a function of the number of parameters in the model, as shown in Fig. 14c.382

The GFMM model is significantly more costly to fit, with an average computation time of 164 seconds for383

a model with 61 parameters. In comparison, a GMM model of similar size can be optimized in 23 seconds.384

Furthermore, a GMM model with 201 parameters can be fitted in approximately 50 seconds, whereas a385

GFMM model of the same size was not trained due to an estimated optimization time of approximately 600386

seconds, based on extrapolation from Fig. 14c. The variability introduced by the derivative parameter in387

the GFMM model increases the complexity of the optimization problem, causing the optimizer to require388

significantly more time to converge to an optimal solution. Therefore, for both viscoelastic models, an order389

between 7 and 10 offers the best trade-off considering error reduction and computational cost.390

It is important to emphasize that the reported times are related to model optimization, not deployment.391

For a single forward evaluation of the fitted models, the computational costs are 6.9, 16.0, and 117.8 µs for392

the Fractional Zener, GMM, and GFMM models, respectively. Given a controller sampling period of 20 µs393

(50 kHz) for the EAs [6] and the fact that temperature gradients in typical applications are on the order of394

◦C/min, parameter updates can be performed at multi-second intervals outside the high-rate control loop.395

Consequently, any of the models can be employed in real-time operation.396
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Figure 15: Properties of cells A, B, and C before and after normalization: (a) natural frequency, (b) storage modulus, and

(c) loss factor. The properties are normalized using the reference values (Kref and f0ref ), yielding: (d) normalized reduced

frequency (f̄at), (e) normalized storage stiffness (K̄′), and (f) normalized loss stiffness (K̄′′). The normalized plots also include

the average of the normalized properties, shown in black. In the figure legends, “Avg. norm. data” refers to the average of the

normalized data.

5.3. Normalized viscoelastic model397

Given that the EAs are identical from a design perspective, their mechanical properties are expected to398

exhibit some degree of similarity. Examining the trends in Mms, Rms, and Kmc of the EAs in Fig. 8, one399

can observe a consistent pattern with a visible offset in the average values. This trend persists in f0 and in400

K ′ and η after applying the WFL law, as shown in Fig. 15a-c. This suggests the feasibility of developing401

a generalized viscoelastic model capable of describing multiple EAs. Such a model would take as input402

a reference value for an absorber and a target temperature, yielding an estimate of the properties at this403

temperature.404

To build this generalized model, the properties of the EAs A, B, and C are normalized using the Thiele-405

Small parameters at the temperature of 20◦C, as this condition can be imposed in using an air-conditioning406

system. Subsequently, the normalized storage modulus (K̄∗) can be calculated as407

K̄∗ =
K∗

Kref
=

K ′

Kref
(1 + iη), (20)

where Kref is the reference stiffness at 20◦C. The normalized reduced frequency (fat) obtained from the408
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WFL law can be defined as409

f̄at =
f0

f0ref
× 10

−C10(T − Tref )

C20 + (T − Tref ) , (21)

where f0,ref is the reference natural frequency at 20◦C. The normalized properties and their averaged values410

are shown in Figs. 15d to 15f.411

A 10th-order GMM is fitted to the averaged normalized data following the optimization process described412

in Section 5.2.2. Figures 16a, 16c, and 16b illustrates the normalized values of K ′, K ′′, and f0, respectively,413

as represented by the normalized experimental data and the GMM. To use the GMM for prediction, one414

can select a target temperature value in Fig. 16a (for instance represented by the sample points in red)415

and determine the corresponding value of the normalized reduced frequency. Then, by evaluating the GMM416

model, the real and imaginary part of the normalized stiffness can be obtained. The normalization process417

can subsequently be reversed using the reference values at 20◦C in Eqs. (20) and (21).418
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Figure 16: Results for the process of identification of a GMM of order 10 to the normalized data: (a) temperature-reduced

frequency relationship. In the charts, red dots depicts selected temperature samples evaluated at -10, 0, 10, 20, 30, 40 and 50
◦C to evaluate the model normalized model, (b) normalized real part of the stiffness, and (c) normalized imaginary part of the

stiffness. These normalized samples are also used to reconstruct the properties for cell D: (d) f0, (e) Rms, and (f) Kmc.

To assess the performance of the normalized model, a fourth EA, designated as cell D, is introduced.419

This EA was tested using the same protocol defined in Section 3, but its properties were not included in the420

development of the viscoelastic model. The GMM is sampled at temperatures of -10, 0, 10, 20, 30, 40, and421
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50◦C (represented by red dots in Figs. 16d–f) and used to estimate Rms and Kms. The estimated values422

follow the same trend as the experimentally measured ones, although an underestimation is observed at both423

low and high temperatures. This can be attributed to the viscoelastic model, which underestimates the real424

part of the stiffness at lower and higher reduced frequencies. Nevertheless, the overall trend of decreasing425

resonance frequency with increasing temperature is captured by the estimated values. Table 4 compares the426

natural frequency values for cell D obtained experimentally and those estimated by the normalized GMM.427

Notably, the error remains below 10% across the entire temperature range. If a fixed value at ambient428

temperature were used instead, the error in the predicted natural frequency would be –26.4% at –10◦C and429

3.7% at higher temperatures.430

Table 4: Comparison of the results for cell D using the viscoelastic model.

T [◦C] f0exp f0model
Difference [%]

-10 782.8 776.2 0.8

0 702.1 720.1 -2.6

10 645.8 670.7 -3.9

20 619.3 636.0 -2.7

30 608.3 609.2 -0.1

40 602.1 583.5 3.1

50 595.8 558.0 6.4

6. IMPACTS OF THE TEMPERATURE ON THE PASSIVITY OF EAS431

After evaluating the temperature effects on the Thiele–Small parameters, characterizing a viscoelastic432

model for individual EAs, and developing a normalized model to estimate the properties of unknown EAs,433

the influence of temperature on these devices during operation is assessed. To this end, three strategies are434

considered:435

• Strategy #1 assumes no prior knowledge of the EA beyond its properties measured at ambient436

temperature.437

• Strategy #2 adapts the properties of the EA using experimentally measured Thiele-Small parameters.438

• Strategy #3 employs the 10th-order viscoelastic model to approximate the Thiele-Small parameters,439

allowing adaptation of both the control parameters and system properties as temperature varies.440

These three strategies are designed to assess different levels of information availability regarding the EAs441

in a practical application: (1) a scenario in which only the reference properties at ambient temperature are442

available; (2) a scenario where a complete set of experimentally measured properties is accessible; and (3)443
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an intermediate case, more representative of practical applications, where reference parameters at 20◦C are444

available and their variation with temperature is estimated using the viscoelastic model.445

The influence of temperature on the EAs is evaluated over a broad frequency range by adjusting the446

control parameters µ1, µ2, and Rat from Eq. (6). Given that the target mass and target stiffness are defined447

in terms of the control parameters µ1 and µ2 as Mat = µ1Mms and Kat = µ2Kmc, respectively, the target448

frequency of the system can be expressed as449

ft =
1

2π

√
Kat

Mat
= f0

√
µ2

µ1
, (22)

where ft is the target frequency in Hz. The mass control parameter µ1 is maintained at a constant value of450

0.4 due to passivity concerns previously demonstrated by de Bono et al. [6]. Therefore, the target frequency451

is adjusted by varying µ2, while Rat is modified to control the bandwidth.452

For Strategy #1, as the Thiele-Small parameters are considered constant, µ2 is defined by a discrete set453

of values: [0.2, 0.4, 1.0, 2.0]. Conversely, in Strategies #2 and #3, the Thiele-Small parameters vary with454

temperature, and the control parameters are adapted accordingly to achieve the same target frequencies455

defined in Strategy #1. The three strategies are summarized in Table 5, with cells A and D under analysis.456

For cell A, all properties are assumed to be available. For cell D, only the properties at ambient temperature457

are considered known, with their temperature dependence estimated using the viscoelastic model.458

Table 5: Strategies used to evaluate the influence of the temperature on the performance of the EAs

Strategy Description Cell
Thiele-Small

parameters

Control parameters

µ1 µ2 Rat

#1 Constant Thiele-Small parameters A Table 2 0.4 [0.2 0.4 1.0 2.0] [0.5 1.0 2.0]

#2
Variable Thiele-Small parameters

using experimental results
A Table 2 0.4 [0.1 - 2.5] [0.5 1.0 2.0]

#3
Variable Thiele-Small parameters

from the viscoelastic model
D Figure 16 0.4 [0.1 - 2.5] [0.5 1.0 2.0]

The absorption coefficient under normal incidence is used as a performance metric for the EAs. It is459

defined as460

α(ω) = 1− |R(ω)|2, (23)

where α(ω) denotes the absorption coefficient and R(ω) is the reflection coefficient, given by461

R(ω) =
z − 1

z + 1
, (24)

with the reduced impedance defined as z = Z(ω)/ρc.462

The absorption coefficient quantifies the proportion of incident acoustic energy absorbed by the wall. A463

value of 1 indicates total absorption, meaning the EA fully absorbs the incident wave with no reflection.464
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Figure 17: Results for the absorption coefficient with varying temperature and control parameters for cell A using constant

Thiele-Small parameters: (a) Rat = 0.5 and µ2 = 0.2, (b) Rat = 0.5 and µ2 = 0.4, (c) Rat = 0.5 and µ2 = 1.0, (d) Rat = 0.5

and µ2 = 2.0, (e) Rat = 1.0 and µ2 = 0.2, (f) Rat = 1.0 and µ2 = 0.4, (g) Rat = 1.0 and µ2 = 1.0, (h) Rat = 1.0 and µ2 = 2.0,

(i) Rat = 2.0 and µ2 = 0.2, (j) Rat = 2.0 and µ2 = 0.4, (k) Rat = 2.0 and µ2 = 1.0, and (l) Rat = 2.0 and µ2 = 2.0 .

Conversely, a value of 0 indicates total reflection, with no absorption of the incident energy, and a negative465

value corresponds to the loss of acoustical passivity (reflected energy higher than incident one).466

6.1. Control with fixed properties467

Figure 17 shows the absorption coefficient results for cell A under Strategy #1. Each curve represents468

the absorption coefficient at a specific temperature, ranging from –10◦C to 50◦C. Vertical dashed lines469

indicate the resonance frequency of the absorber (black) and the target frequencies (red). Regions where the470

absorption coefficient drops below zero are highlighted in red, indicating areas of negative absorption. In471

these regions, the EAs lose lose acoustical passivity and are subjected to possible instability when coupled472

with an enclosed cavity [6].473

The EA employing a control law without adapting its properties to temperature variations exhibits474
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multiple regions in which it loss passivity. For instance, it occurs for Rat = 0.5 and µ2 = 0.2 around 600475

Hz, for all cases with µ2 = 1.0 and µ2 = 2.0 between 600 and 900 Hz, and for Rat and µ2 = 2.0 above476

1700 Hz. These instabilities occur across the entire temperature range but are more pronounced at lower477

temperatures and lower frequencies.478

Focusing on the tests with Rat = 1.0, Strategy #1 exhibits two regions where the absorption coefficient479

is close to one at low target frequencies (µ2 = 0.2). As the target frequency increases, the system begins to480

show instabilities around 700 Hz, with this behavior becoming more pronounced at higher target frequencies.481

Additionally, evaluating a line with constant Rat, e.g, Figs. 17i-l, strategy #1 appears to become non-passive482

as the target stiffness increases.483

6.2. Control with varying Thiele-Small parameters based on experimental values484

In Strategy #2, the measured Thiele–Small parameters for cell A are incorporated into the control law.485

Figure 18 shows the EA absorption coefficient for temperatures from −10 ◦C to 50 ◦C. Compared with486

Strategy #1, which assumes constant parameters (Fig. 17), Strategy #2 yields markedly improved passivity487

around the target frequency. Instabilities are observed primarily at −10 ◦C when targeting frequencies at488

or below the absorber’s resonance, i.e., µ2 ≤ 1.0. In all scenarios, the EA exhibits non-passive regions at489

high frequencies, likely attributable to the phase lag introduced by control-loop delay, as demonstrated by490

De Bono et al. [6], and lack of validity for the 1DOF model implemented in the control law. This type of491

non-passivity appears insensitive to updating the Thiele-Small parameters with temperature. Nevertheless,492

the observed improvement in passivity near resonance underscores the value of temperature-dependent493

parameter updates.494

6.3. Control with varying properties from the viscoelastic model495

Given that experimentally testing each EA using a thermal chamber is neither practical nor cost-effective,496

and considering that correcting the Thiele-Small parameters can improve the operational passivity of these497

devices, Strategy #3 evaluates the feasibility of obtaining these parameters from the viscoelastic model and498

subsequently using them to update the control law.499

Figure 19 presents the absorption coefficient results for cell D. Notably, the absorber remains stable500

across the entire frequency and temperature range, consistent with the results obtained for cell A under501

Strategy #2 and in contrast to the behavior observed under Strategy #1. Therefore, the viscoelastic model502

can serve as a reliable source of information for the control of the EAs.503

7. CONCLUSIONS504

This study investigates the impact of temperature variations on the mechanical properties of loudspeaker505

materials used in EAs. The results demonstrate that the system’s natural frequency exhibits a non-linear506
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Figure 18: Results for the absorption coefficient with varying temperature and control parameters for cell A using variable

Thiele-Small parameters: (a) Rat = 0.5 and µ2 = 0.2, (b) Rat = 0.5 and µ2 = 0.4, (c) Rat = 0.5 and µ2 = 1.0, (d) Rat = 0.5

and µ2 = 2.0, (e) Rat = 1.0 and µ2 = 0.2, (f) Rat = 1.0 and µ2 = 0.4, (g) Rat = 1.0 and µ2 = 1.0, (h) Rat = 1.0 and µ2 = 2.0,

(i) Rat = 2.0 and µ2 = 0.2, (j) Rat = 2.0 and µ2 = 0.4, (k) Rat = 2.0 and µ2 = 1.0, and (l) Rat = 2.0 and µ2 = 2.0 .

relationship with temperature, showing small variations of up to 8.1% at higher temperatures (50◦C) and507

significantly larger changes of up to 31.9% at lower temperatures (-10◦C) compared to the reference value508

at 20◦C.509

By identifying the Thiele-Small parameters from experimental frequency response functions, it was ob-510

served that the equivalent mass of the loudspeaker remains constant across the studied temperature range.511

In contrast, the stiffness and resistance display non-linear trends, with a noticeable transition around 20◦C.512

This non-linear behavior is consistent with the viscoelastic nature of the materials used in loudspeaker513

construction.514

To identify such material behavior, this study proposes three viscoelastic models, namely the frac-515

tional Zener, generalized Maxwell, and the generalized fractional Maxwell, to characterize the temperature-516
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Figure 19: Results for the absorption coefficient with varying temperature and control parameters for cell D using variable

Thiele-Small parameters based on the normalized viscoelastic model: (a) Rat = 0.5 and µ2 = 0.2, (b) Rat = 0.5 and µ2 = 0.4,

(c) Rat = 0.5 and µ2 = 1.0, (d) Rat = 0.5 and µ2 = 2.0, (e) Rat = 1.0 and µ2 = 0.2, (f) Rat = 1.0 and µ2 = 0.4, (g) Rat = 1.0

and µ2 = 1.0, (h) Rat = 1.0 and µ2 = 2.0, (i) Rat = 2.0 and µ2 = 0.2, (j) Rat = 2.0 and µ2 = 0.4, (k) Rat = 2.0 and µ2 = 1.0,

and (l) Rat = 2.0 and µ2 = 2.0 .

frequency dependency of the materials. These models, fitted to experimental data using optimization al-517

gorithms, demonstrate varying levels of accuracy and computational efficiency. The Generalized Maxwell,518

particularly at higher orders, provides superior flexibility in capturing the complex material behavior com-519

pared to the Fractional Zener model, and a lower computational cost when compared to the general fractional520

Maxwell model.521

A normalized viscoelastic model was developed using the average Thiele-Small parameters from three522

EAs, based on reference values at 20◦C. This model was employed to estimate the parameters of an untested523

absorber, reducing the average error in the natural frequency compared to using constant properties based on524

the parameters measured at the reference temperature. Such a model enables the prediction of the properties525

of untested electroacoustic absorbers by integrating reference values with a generalized framework derived526
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from tested materials.527

Finally, the electroacoustic absorbers were evaluated in an active configuration to assess the effect of528

temperature on their passivity. In cases where the Thiele-Small parameters were not updated with temper-529

ature variations, the absorbers lost passivity and exhibited issues in multiple frequency regions, particularly530

near resonance. Correcting the parameters using experimentally measured data or properties obtained from531

the viscoelastic model improved passivity, with the latter approach proving to be a practical method for532

evaluating multiple absorbers with limited available information.533

Future works could include analyzing the uncertainty associated with the Thiele-Small parameters to534

assess the convergence of the viscoelastic model as a function of the sample size used to construct the535

normalized model.536

Another open research possibility is the evaluation of larger temperature ranges, specially for extreme537

operational temperatures, as turbo fan engines might experience both very low temperatures at cruise flight538

and high temperatures while operating in hot weather. The experimental apparatus used in this work539

could be expanded, including the characterization of the sensitivity of the microphones with temperature540

to evaluate potential impacts on the results and the evaluation of the capacity of the viscoelastic model to541

extrapolate in large temperature ranges.542
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