

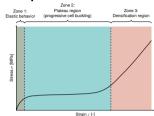
Understanding deformation mechanisms of cork under compression loading using Digital Image Correlation

International Conference on Cork Science and Applications, Lisbon (Portugal), 13-14 October 2025

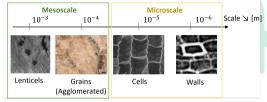
<u>François Villette</u>¹, Massimiliano Gerometta^{1,2}, Xavier Gabrion¹, Thomas Jeannin¹, Aurélie Lagorce², Sébastien Thibaud¹, Thomas Karbowiak²

¹Université Marie et Louis Pasteur, SUPMICROTECH, CNRS, institut FEMTO-ST, France

²Université Bourgogne Europe, Institut Agro, INRAE, UMR PAM, France



Scientific context


Compressive behavior of cork materials

Assumption of homogeneous medium.

 \Rightarrow no microstructure consideration.

Multiscale structure of cork materials

The microstructure of cork is at the root of its properties.

... How does the microstructure evolve during cork compression?

Problematic

Understanding links between macroscale mechanical behavior and microstructure evolution.

Approach

Multiscale experimental approach:

⇒ mechanical tests + Digital Image Correlation (DIC) and X-ray tomography.

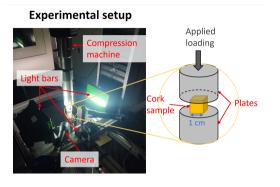
Outline

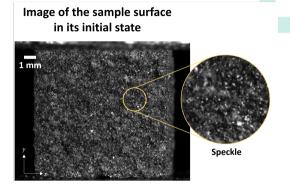
Scientific context

Mesoscale analysis

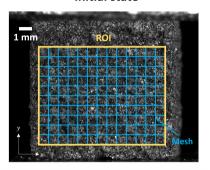
Materials and methods
Strain localization in natural cork
Strain localization in micro-agglomerated cork

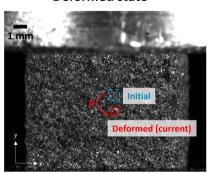
Microscale analysis


Materials and methods Wall buckling & Porosity profile


Conclusions and perspectives

Mesoscale analysis / Compression tests + DIC setup


- Compression tests with DIC setup,
- Speckled samples ⇒ generate patterns and enhance contrast.

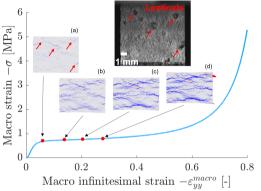


Mesoscale analysis / DIC principle

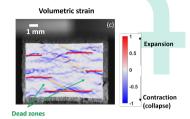
Initial state

Deformed state

- ▶ Displacement field measurement by mean of pattern tracking on a mesh defined in a Region of Interest (ROI), leads to deformation gradient tensor *F* for each element of the mesh.
- lacksquare Hencky strain : $arepsilon_h = rac{1}{2} \mathrm{ln}(m{F}^ op m{F}) = arepsilon_h^{vol} + arepsilon_h^{dev}$

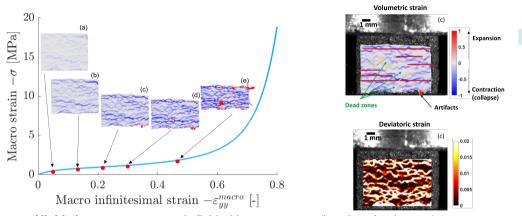

 ε_h^{vol} : Volumetric strain \Rightarrow "volume change"

 $arepsilon_h^{ extit{dev}}$: Deviatoric strain \Rightarrow "shape change"



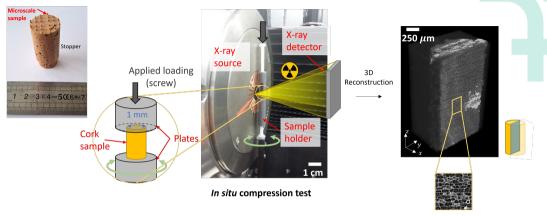
Mesoscale analysis / Strain localization in natural cork under compression

- Highly heterogeneous strain field,
- Strain localization starts close to lenticels,
- Propagation in transverse and oblique bands,
- Presence of "dead zones" which do not participate to strain,
- Volume and shape change of (very) strained zones.


Based on the experiments in:

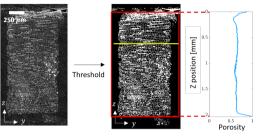
Gerometta et al. (2023) "Towards better understanding of the strain-stress curve of cork", *Material & Design*

Mesoscale analysis / Strain localization in micro-agglo. cork under compression

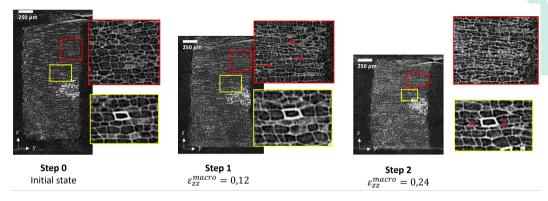


- ► Highly heterogeneous strain field with same pattern (bands + dead zones),
- Larger number of compression bands

Microscale analysis / in situ micro-compression tests in X-ray tomograph

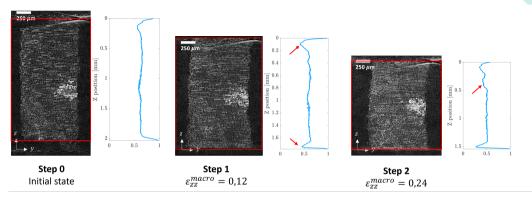

- Extraction of 1 mm wide cylindrical sample of natural cork using micromilling,
- ► In-situ compression tests with X-ray tomography.
- ⇒ Inner cork structure (cell scale) and its evolution during compression.

Microscale analysis / Porosity profile



- Porosity : $\rho = 1 \frac{V_W}{V_{det}}$ with V_w : Volume of cell walls (white voxels) and V_{tot} the total volume,
 - $\begin{array}{l} \blacktriangleright & \rho = 0 \Rightarrow \text{fully dense material,} \\ \blacktriangleright & \rho = 1 \Rightarrow \text{fully void material.} \end{array}$
- Evolution of porosity along z-axis.
 - ⇒ Porosity profile.

Microscale analysis / Progressive buckling of cell walls



- Direct observation of cell wall buckling,
- ▶ Localized buckling : Zones fully collapsed and zones with limited (or no) buckling,
- Onset of buckling at different levels of deformation depending on the area.

Microscale analysis / Porosity profile evolution under compression

- Densification starts at top and bottom of the sample,
- Probably due to creation of weak zones during micromilling,
- ▶ New densification zones appears as well as loading increases.

Conclusions and perspectives

Key points

- At mesoscale, micro-agglo. and natural cork samples exhibit:
 - highly heterogeneous strain field,
 - transverse and obliques compression bands,
 - dead zones with very little deformation.
- For natural cork, localization starts close to lenticels,
- At microscale, cell wall buckling starts at the top and bottom of the sample, new densification zones then after appears with increasing load.
- \Rightarrow The heterogeneity of strain field is probably driven by weak points that are naturally present or introduced during the manufacturing process.

Outlook

- Which microstructural parameter(s) determines the onset and propagation of compression bands?
- How does the manufacturing process influence deformation mechanisms?
- What is the impact of the strain heterogeneity on the diffusion properties of the stopper?

Thank you for your attention!

Acknowledgments

- Regional council of Bourgogne Franche-Comté
- ► Graduate Schools EIPHI (ANR-17-EURE-0002) & TRANSBIO
- ► FEMTO-ST plateforms AMETISTE & MIFHySTO

Understanding deformation mechanisms of cork under compression loading using Digital Image Correlation

International Conference on Cork Science and Applications, Lisbon (Portugal), 13-14 October 2025

<u>François Villette</u>¹, Massimiliano Gerometta^{1,2}, Xavier Gabrion¹, Thomas Jeannin¹, Aurélie Lagorce², Sébastien Thibaud¹, Thomas Karbowiak²

¹Université Marie et Louis Pasteur, SUPMICROTECH, CNRS, institut FEMTO-ST, France

²Université Bourgogne Europe, Institut Agro, INRAE, UMR PAM, France

