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Abstract. We develop, through a governing field, genus theory for a number field K
with tame ramification in 7" and splitting in S, where 7" and S are finite disjoint sets of
primes of K. This approach extends the one initiated by the second author in the case of
the class group. We are able to express the S-T genus number of a cyclic extension L/K
of degree p in terms of the rank of a matrix constructed from the Frobenius elements of
the primes ramified in L/K, in the Galois group of the underlying governing extension.
For quadratic extensions L/Q, the matrices in question are constructed from the Legendre
symbols of the primes ramified in L/Q and the primes of S.

1. Introduction. Let K be a number field, and let S and T be two
finite and disjoint sets of places of K. We assume that T’ contains only non-
archimedean places. Let K% denote the maximal abelian extension of K, to-
tally decomposed at all places in S (or S-split), unramified outside of T, and
with at most tame ramification at the places v € T' (or T'-tamely ramified).
This is a finite extension, and the Artin map allows us to identify the Galois
group Gal(K$/K) with the S-ray class group of K modulo m := ] crv,
which we denote by le;m. For more details, see Section m

Now let L/K be an extension of number fields with ramification set X.
Genus theory provides information about the class group leLmL in terms
of X and the behavior of the S-units of K in L/K. See Theorem

The first remarkable result in genus theory dates back to Gauss, concern-
ing the 2-Sylow subgroup of the class group of quadratic extensions of Q (see
[8, Chapter 1, §1] and [4, Chapter IV, §4, Exercise 4.2.10]). The phenomenon
described by Gauss has been studied, developed, and generalized by many
authors, including Hasse [6], Leopoldt [9], Furuta [3]. For more details, see
[4, Chapter III, §4].
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The introduction of the sets 7' and S was initiated by Jaulent [7], Fed-
erer [I], and others. A very good overview of all this can be found in [7,
Chapter II, §2.4, Chapter III, §2.1].

The work presented here is inspired by [11]. We develop S-T" genus theory
via a governing extension denoted by F 75: /K, where the usual ramification
conditions are interpreted through relations between Frobenius elements. As
a consequence, and similarly to [IT, Theorem 1.3|, questions in genus theory
can be translated into questions about the behavior of Frobenius elements in
a governing field, for which the Chebotarev density theorem becomes central.

When the base field K is given and the Galois group of L/K is a fixed
abelian group, Frei, Loughran, and Newton [2] studied the asymptotic be-
havior of the genus number of L /K with respect to the discriminant of L. It
would be interesting to revisit their results in light of our work.

1.1. The context

1.1.1. Ray class groups. Let K be a number field, T' a finite set of non-
archimedean places of K, and S a finite set of places of K, disjoint from 7.
Let us denote S = Sy U Sy, where Sy contains only non-archimedean places
and S, contains archimedean places, which we assume to be contained in
the set Pl , of real places of K.

For a place v of K, let ¢, denote the embedding of K into its comple-
tion K,,.

Set

o I 7 to be the group of non-zero fractional ideals of K prime to T,

e m = [[,crv to be the ray modulus of K associated to T,

. Pf?i% to be the subgroup of principal ideals (x) of Ix 7, x = 1(m), and
to(x) > 0 for all v € PIE _ \ S,

(So) to be the subgroup of Ik 7 generated by the places in Sp,

° R%m to be the subgroup P%;(S(ﬁ of Ix 7.

Let Clﬁ’m be the S-ray class group modulo m, i.e.
CIR = Ix.7/RE -

By class field theory, Clﬁ,m is isomorphic to the Galois group of K7 /K, where

K7 /K is the maximal abelian extension K which is T-tamely ramified and
S-split, see [4, Chapter II, §5].

1.1.2. Genus fields and genus numbers. Let p be a prime number and let
L/K be a cyclic extension of degree p. Denote by X' the set of ramification of
L/K. When p = 2, regarding the infinite places, we will refer to decomposi-
tion (one place splitting into two places) versus non-decomposition (one real
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place becoming one single complex place); note that in many other contexts,
one says in the latter case that the real place ramifies.

Let Ty, (resp. S1,) denote the places of L lying above those of T' (resp.
of S), and consider my, := [[, ez, w. Set L = L%, and le’m = CIPL

L,myg, -
Let M/K be the maximal abelian extension of K contained in L%:
L M L3
K—K3

The field M is called the S-T' genus field associated with L/K, and the
quantity (g7)* = [M : L] is the S-T' genus number. Set g5. = [M : KJ]: this is
the quantity we are studying. It can be observed that it is easy to pass from
g7 to (g7)* as long as #Cl%m is known, and the knowledge of g7 provides
information about Clim. Of course, genus theory makes sense when the field
L is not contained in K7, because otherwise M = K3.. The extension M/K
being abelian, its Galois group can be approached through class field theory,
which allows expressing [M : K] in terms of the ramification in L/K and the
S-units of K, thus leading to a non-trivial lower bound for #le’m.

Since L/K is cyclic of degree p, the Galois group Gal(M/K%) is abelian
of exponent p (see Theorem . Thus, when p > 2, the infinite places play
no role. Consequently, we assume that S = PIg ., in this case.

1.1.3. Gowverning fields. We continue with a fixed prime number p. We
then assume that for all v € T', we have N, = 1 (mod p), where N, is the
cardinality of the residue field of the completion K, of K at v. Note that
without this condition, the p-part contributed by the places v of T in Cli%m
would be trivial.

Let E2 be the group of S-units of K congruent to 1 (modm), that is,

Ef ={zcK*:z=1 (modm),v(z)=0VYv ¢S}
Observe that the dependence on T is in m. Here, we clarify the meaning of
v(x) = 0. If v € Sp, we identify the place v with its valuation; if v € PI¢ ,
v(x) = 0 means t,(x) > 0; for v archimedean, v ¢ Pl ., we define v(z) = 0.
Let K" = K((p), where ¢, is a primitive pth root of unity.
The governing field F*% associated with the triplet (K, T, S) is defined as

F2 .= K'(VE).
We then define I’y := Gal(F5/K'); it is an abelian p-elementary group.
When T' = () and S = PI¢ ,,, we see by Dirichlet’s theorem that the

p-rank of 'Y := F@q is 71 +72 — 140K p +#S0, where (71,72) is the signature
of K, and where 0k, = 1 if ¢, € K, and 0 otherwise.
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1.2. Our result. We will now present our main theorem (see Theo-
rem and Corollary in a special case as a way of illustrating its key
elements without many of the technicalities of the full result.

We assume that the set Y does not contain any places above p; in other
words, the extension L/K is tamely ramified. To further simplify the presen-
tation, we also assume that the places in S split in L/K.

For each place v € X, we choose a place w of K’ above v and set o, := oy,
the Frobenius element associated with w in FQS = Gal(F% /K); of course,
this element depends on the choice of w, but we will see that the conditions
involving it are independent of this choice.

Let m = #X\ (SUT), and let {e,,, ..., ey, } be a basis of (F,)™ indexed
by the places v of X'\ (SUT).

We then consider the linear map 9§7T defined by

@%T C(Fp)™ — IZ, ey o0,
We have the following result (see Corollary :

THEOREM 1.1. Under the previous conditions, we have
g7 = #ker(03, 7).

REMARK 1.2. Taking 7' = () and S = Pl we arrive at [IT, Theo-
rem 1.1].

The essence of our work is to translate the ramification conditions to
dependence relations on Frobenius elements in a governing field. Therefore,
if we ensure that the Frobenius elements associated with the places of T
form a linearly independent set in I' := Gal(F¥/K’), then we can express
quite easily the Galois group I’ Tg .

Set Hp := 3 crFpo, C Is.

PROPOSITION 1.3. Suppose that the set {o, : v € T} forms a linearly
independent family over F), in I'S. Then Ff’: ~ I'S/Hy.

The condition of linear independence has an interpretation. Indeed, ac-
cording to the Gras-Munnier theorem (see [5]) and its generalizations in
Gras’ book (see [4, Chapter V, §2, Corollary 2.4.2]), a non-trivial relation
between the Frobenius elements o,, v € T, is equivalent to the existence of
a cyclic extension of degree p of K, T-ramified and S-split, and consequently
contributes “trivially” to (g2)*. Thus, the condition of linear independence
forces avoidance of this situation.

Theorem [I.1] becomes interesting when we have a good understanding of
the governing field F¥, especially when we know the units of the base field.
Typically, this occurs for K = Q, but also, as noted in [I1}, §3.5.3], for p =3
and for the base field K = Q((3).



Genus theory, governing field, ramification and Frobenius 105

By introducing the S-places, the role of the ordinary unit group is now
played by the S-unit group, and when the field K is principal, the governing
field is relatively easy to describe. A remarkable situation arises when p = 2
and L/Q is a quadratic extension. The quantity gg then corresponds to the
kernel of a matrix constructed using Legendre symbols.

We explore a specific situation. Let L/Q be real quadratic extension with
set of ramification X' = {p1,...,pm}. We take T'= (. Let Sy = {l1,...,ls,}
be a set of primes of Q such that XN ({Sp} U {2}) = 0. We assume that Sy
contains the unique infinite place v, and set £5 = —1. Set S = Sy U S
and s := #5. In particular, s = sg + 1. Observe that in this case le is the
Sp-class group of L (in the ordinary sense).

Here, to simplify, we suppose that the places v in Sy split in L/Q.

Let A = (ai;) be the s x m matrix defined by

S (&1)
,] p] )

where (—) € Fy is the additive Legendre symbol.

Observe that FS = Q(v/=1,V/71,...,/ls,) and that ' := Gal(F°/Q)
~ (F,)®. Hence, the map © : (F,)™ — (F,)°® of Theorem is represented
by the matrix A with the respect to the obvious bases.

COROLLARY 1.4. Under the previous conditions, we have,
g@g = F#ker(A).

ExaMmpPLE 1.5. Take K = Q, and L = Q(\/p1p2p3), where p1,p2, p3 are
three distinct primes such that p1paps = 1 (mod 4). Take S = {voo FU{l1, (2}
such that the primes ¢; split in L/Q. One has (recall that ¢y = —1)

() G) G
=1 G) G G)
) ) G)

where (f) € T, is the additive Legendre symbol, and gg = #ker(A).
As we shall see, assuming S, = () actually corresponds to omitting the
first row of A.

The rest of our work consists of four sections. In Section [2| we introduce
and develop the elements of genus theory that are useful for our results.
Section [3] is dedicated to the governing field. It is also in that section that
we prove Proposition Section [4] focuses on our result and its proof. In
the final Section [5| we focus on the quadratic case.
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2. Elements of genus theory

2.1. S-T genus formula. For this part, we refer, for example, to [4,
Chapter IV, §4|, [7, Chapter III, §2]|, or [10].

We consider the framework of Section [[L1l Let T and S be two finite
disjoint sets of places of K, non-archimedean for T" and arbitrary for S =
So U Swo. Let L/K be a cylic extension of degree p.

We denote by E% NN, sk the elements of E% that are locally norms
everywhere in L/K.

The following theorem can be formulated in a more general context (see
[4, Chapter IV]), but we will focus on cyclic extensions of degree p.

THEOREM 2.1. Let L/K be a cyclic extension of degree p with ramification
set 3. Then Gal(M/K%) s an abelian group of exponent p. In particular, gqu
s a power of p, and

log, (97) = #5™ + #X\ (SUT) — log,(E7 : B NN x),
where S™ denotes the set of places in S that are not split in L/K.

Thus, the study of g? is closely related to the quantity E% NN, /K- We will
use the governing field F% to get an explicit understanding of the size of the
units in E% which are locally norms everywhere. To achieve this, Proposition
2.4 below is central.

Set X=X\ (SUT).

2.2. Genus fields and ray class fields. Let L/K be a cyclic extension
of degree p. For v € Plk, we denote by D, := D,(L/K) its decomposition
group in L/K and by I, := I,,(L/K) its inertia group. It is worth mentioning
that for an archimedean place v, we do not speak of ramification but rather
of non-decomposition.

We now make the choice of a place w | v, and we set Ly, := Ly,.

Thus:

e For places v € X' := X'\ (SUT), the local reciprocity map induces a
surjective morphism from U, to I,, with kernel W, := Ny, /i UL,.

e For places v € S, the local reciprocity map induces a surjective morphism
from K7 to Dy, with kernel W, := Ny, /i L, . Note that W, = K7 if and
only if v splits in L/K.

Here, U, C K (resp. Uy, ) denotes the group of local units of K, (resp. L),

and Np, g, denotes the norm map of the local extension L,/K,. For a real

infinite place v, we adopt the convention U, = (R*)2, and for a complex
place v we let U, = C*.

Set
W = H W, = HWUHWU.

ve(SUX)\(TNX) veX’ veS
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REMARK 2.2. For any place v € X' U S we have
(B3N (KX)P) € W,,.

DEFINITION 2.3. We denote by Kx g7 the abelian extension of K corre-
sponding, via the global reciprocity map, to the idéle subgroup V:

view( T e)(ITe) = (T w)( I o)(ITee)

vg X'USUT vgX'USUT veT

Here, U} is the subgroup of principal units of U,,.
The following proposition is central.

PROPOSITION 2.4. Let M/K be the mazimal abelian extension of K con-
tained in Lg. Then M = Ky 5. Moreover,

UR s
Gal(K K3) ~ ——2
a ( E,S,T/ T) V(E%)W
where Ufg s = [ oes Ko [oesy Uv, and where v E% — Ug s 15 the diag-
onal embedding.

Proof. Let us note that

e a finite place v ¢ X' U SUT of K is unramified in M/K,
e a place v € T is tamely ramified in M/K.

Therefore, the global reciprocity map for the extension M /K is trivial on

1))
vgX'USUT veT
Now we consider W.

For v € S, since v splits totally in L% /L and thus in M/L, we see that
M, = L,. Consequently, every element e of W, is also a norm in M, /K,. In
other words, the local symbol at v in the extension M/K vanishes on W,,.

For v € X', let ¢ € W,,. Then, by definition of W, there exists z € Uy,
such that e = Ny, /k, (2). But since the extension M, /K, is unramified at v,
the element z is a norm in M, /L,, and thus € is a norm in M, /K,. In other
words, here too, the local symbol at v in the extension M /K vanishes on W,,.

In conclusion, the global reciprocity map for the extension M /K is trivial
on V. Therefore, by maximality of Kx g7, we have M C Kx g 7.

Let us show the reverse inclusion. For that, observe that Ky ¢7/L is an
abelian extension such that

e every place v € T' is tamely ramified (possibly unramified);
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e for every place v € S, we have the commutative diagram
Ky /Wy — Dy(Kx,5,7/K)
D,(L/K)
showing that D,(Kyx g7/L) is trivial, hence Ky g7/L is decomposed at

every place v € S;
e similarly, every place v € X’ is unramified in Ky g7/L.

Thus, Ky s is contained in Lg, and by maximality of M, we deduce that
Ky s C M. Consequently, M = Ky 5.

In summary, if we denote by Jk the idéle group of K, and by L{fg o the
idéle subgroup given by 7

wir=11xT1ve 11 Ve

veSs veT vgTUS

we have
Gal(Kz,s7/K) ~ Jx/VK* and  Gal(K7/K) ~ Jk/Ug 7K*.
Therefore,
S\ ~ 75 X X 745 X S~ 71/S S
Gal(Ky,57/K7) ~ Uz 7K* /VK* ~UR +/ (VK*) NUR 7 ~ U 7/V E3.
We conclude by noticing that Z/{%T JV o~ Ufz s /W. m

3. Governing fields. Set K’ = K(u,). We fix a generator ¢, of p,. If B
is an Fp-module, let BY := Hom(B, ).

By Kummer duality, recall that for a subgroup of A of K'*, one has
A(K™)P/(K™)P ~ Gal(K'(¥/A)/K")Y. Moreover, if A ¢ KX, then

Gal (K ({/A) [K')¥ = A(K™ )P /(K ~ AJA( (K%
~ AJAN (KX)P = AK)P/(KX)P,
because [K’ : K] is coprime to p.
3.1. Frobenius. For any place v of K, let us define
S%U ={ec Ef:ecec (KP}.
This group of S-units fits into the exact sequence
1= &7, (K*)P/(K¥)P — BR(K")P/(KX)P = iy(BF) = 1,
where i, : B — KX/(K})? is induced by the embedding ¢, of K into K,.
Observe that for v € X,
w(ER)ULUY =~ iy(E7) = 1, (E2) (K3 /(K)P.
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By Kummer duality we have
i(B})Y = (BE(KX)P/EF ,(KX)P)Y =~ Gal(K'(V EF) /K (VER,)).

This last Galois group is easy to interpret:
LemMa 3.1. Gal(K'(VEP) /K (VER,)) = Du(F7/K).

(We will see later that this does not depend on the choice of a place w | v
of K'.)

Proof of Lemma . Let us denote by N the subfield of F% /K’ corre-
sponding, via Galois theory, to D,(F3/K’). Clearly, K'(¥ E{Fg’v) C N. For
the reverse inclusion, note that if there exists an intermediate subfield N’ of
degree p over K/(VEZ ), then, as Gal(K’(VET?)/K’(Vp £2,)) is an abelian
p-elementary group, N’ arises from the compositum with a cyclic extension
No/K’ of degree p: there exists = € E3 such that Ng = K'({/z). Now, since
v splits in N/K', it follows that = € (K/)?, hence z € K% because [K] : K,]
is coprime to p; thus Ny C K’ (@Eﬁv), which leads to a contradiction. m

When v is unramified in F7./K’, the Galois group of K'(V E2) /K/(V/ E%v)
is generated by the Frobenius element associated to the choice of a place w | v
of K. From now on, we fix w | v and set ¢, := o4, where o, is the Frobenius

at w in Gal(K'(VEZ)/K'.
Next, let D, be the decomposition group of v in the extension F% JK'.
Let

@, : (BF(K)P/EF,(K*)P)" - Cal(FE/K (VER,)) = Dy
be the isomorphism arising from Kummer duality. Recall how @, is defined:

for y € (E%(Kx)p/é'%v(KX)p)v, we associate the element g, := ®,(x) de-
fined by
gx(¥/e) = x(e) - Ve
for any € € E*Tq
For v € XU S, consider the local map ¢, also derived from Kummer
duality:
oo i (A/Wo)Y — (Ay/AD)Y — iv(Eg)v = Dy,

where A, = U, (resp. A, = K) for v € X’ (resp. v € 5).

When (A,/W,)" is non-trivial, it is generated by a certain character
Xv = Xw- Now observe that if we choose another place w'|v of K’, then
w' = hw for some h € Gal(K'/K). Let Xuw' = Xaw := Xw(h71(+)); this is a
non-trivial character of (A /Wy)".
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LEMMA 3.2. Set gy = puw(Xw) and gy = @u (Xuw')- Then (guw) = (Gu’)-

Proof. This is a consequence of Kummer theory where we have g,/ = g%,
for some a € F\ (see, for example, [4, Chapter I, §6, Theorem 6.2]). m

Thus, all the subsequent results do not depend on the choice of w |v.

Let us define g, := ¢, (xv). We will now describe ¢,, more precisely.

(i) This is the most important case. Let v € X'. Recall that U,/W,, ~
Z/p, hence U} C W,. There exists a non-trivial element y, of (U,/W,)"
such that

(xo) = (Un/Wo)" = (U,/UD)” .

Then ¢, (xv) is an element g, := gy, of D,, defined by

gv(%) = X’U(L’U(E)) : %
for all € € E;

Let Plg ), = {v € Pl : v|p} be the set of p-adic places of K.

Observe that if v ¢ Plk, U Sp, then v is unramified in F3/K’, and
UY = W,. In particular, D, is a cylic group generated by the Frobenius
oy, at v. Thus,

Pu  (Xv) = (00).
Replacing x, by a suitable power, we obtain ¢, (xy) = 0y.

(ii) Let v € Sp \ 2. Then v is unramified in L/K.

First, note that if v splits in L/K, then W, = K and thus ¢, is the
trivial map.

Now, suppose v is inert in L/K. Then W, = U, (%) and thus

K /Wy = K7 /Uy () = (m) / (7).
Let x, be the generator of ((m,)/(x5))" defined by x,(7?) = ¢, Then g, :=
©u(xo) satisfies: for all € € B3,

gv({)/g) = Xo(tw(€)) - {;/g
Thus, Xxv(ty(e)) = 1 if and only if the valuation v(e) of ¢ is zero modulo p.
(iii) Let v € Sp N X. This is analogous to (i) if we note that 4, = K;’.
(iv) Here p = 2 and v is a real place in S. As in (ii), if v splits in L/K,
then W, = K5 and ¢, is the trivial map. Otherwise, for € € E%,
g0(Ve) = sign(ty(e)) - Ve,

where sign(i,(€)) is the sign of the embedding ¢, (g) of € in K,.

3.2. A restriction. Let T'= {v1,..., v}, and fori = 1,...,t, let o, be
the Frobenius at v; in I'%; set Hy := (0, : v € T).

PROPOSITION 3.3. Suppose that the set {oy,,...,00,} forms a linearly
independent family over F,, in I'S. Then

Iy = Gal(F$/K') ~ 'S /Hyp-
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Proof. We proceed by induction on the cardinality of 7. Recall that for
v € T one has N, =1 (mod p).

e Suppose T" = {v}. Let Ef{gv} ={ee€ EY:e=1 (v)}. Define &5 =
{e € ES : ¢ € (KX)P}. By Hensel’s lemma, we have Effv} C &7. Moreover,
ES/E?;} — ), where F, is the residue field at v. Thus, ES/E{SU} is cyclic.
Since Efv} C £9, it follows that
ES(KX)P BSOS (KX)P

B7 (KX R

(1) Z/pZ —

By Lemma |3.1] we have

<ES(KX)p>v = (o,) C I'%.

EF(KX)P
Now, since o, # 0 by assumption, it follows that
ES(K*)P
——— ~7/pZ.
E5(Kx)P
Thus, from we have
S X\p
Eé: (K X) — (0,)",
By ()

or equivalently Gal(F*/F3) = (0,). This concludes this case.

e Suppose 1" = Ty U {v}, and that the proposition is true for Tp. Define
5750’1) ={e€E%:e=1 ), v €Ty, e €U} By Hensel’s lemma, we have
EP C 5’1%,1)‘ As before, E%O/ EZ — F), implying that E% JE3 is cyclic, so
B () B ()

ER(Kx)pp & (KX)P

<m>v = (Tu),

(2) Z/pZ —

Then we define

where @, is the restriction of the Frobenius o, € I'S to F%). By the induction

hypothesis,
< ES(K*)P
S
E7 (K*)P
But 7, = 1 would imply o, € (0, : v' € Tp), which contradicts the assump-

tion. Therefore, the surjections in ([2)) are isomorphisms, and Gal(F®/F5.) is
generated by the Frobenius elements o, and o/, v' € T. =

v
) = (o, v €Tp).

REMARK 3.4. The Galois group Gal(FS/F‘{gU}) may not be generated by
the Frobenius at v. Let us give an example.
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Take K = Q and p = 2. Choose T' = {/¢}, where £ =1 (mod 4) is a prime
number.

Let S = Se = {Uoo}. We have ES = (£1) and Ej{gg} = (1). Thus,

F¥=Q(VES) =Q(V-1) and F{, =QVE],) =Q.

However, since £ splits in Q(v/—1)/Q, it follows that o, = 1. Consequently,
Gal(Q(v/—1)/Q) is not generated by the Frobenius at /.
When p = 2, we can handle the archimedean places in the same way. Set

S =S UuUP K.oo- Observe that ES is the group of Sp-units in the ordinary
sense (with no sign condition).

PROPOSITION 3.5. Take p = 2. Set Hg, = (0, : v € PIZ  \ o) C rs
and identify Hg_ with its restriction to Fj?. Then

I = Gal(K(VES)/K) ~ I'f /Hg_.
Moreover, if the set {o, : v € T} forms a linearly independent family in Fg,
then _
Gal(K(V Ef)/K) ~ '/ (Hs., + Hr).

Proof. As in Lemma we can show that K(V E2) corresponds, by
Galois theory, to the subgroup Hg_ of Ffﬁ .

As for the “moreover” part, from Proposition we know that Ffﬁ ~
I'S/Hp, which implies the desired result. m

4. Main result. We keep the notations from the previous sections. In
particular, X' = X'\ (SUT).

For v € X' U S, let us consider the elements g, := p,(xy) € I :*ﬁ defined
in (i)—(iv) of Section

Let @gyT be the linear map

S . Ufgyz/ Y S S _
@E,T : — FT defined by QE,T(XU) = Ggv-

w
THEOREM 4.1. The Artin map induces the isomorphism
ker(@%}T) ~ Gal(Ks 57/K7)".
Proof. Let v : E:‘? — Ufz s» be the diagonal embedding.
First, by Remark [2.2] we observe that
v(EZ 0 (KX)P) = 1.
It follows that v factors through EZ N (K*)P. Now, consider the exact se-
quence obtained from Proposition 2.4}
1= v(BP/EF 0 (K¥)P) = UL 5 /W — Gal(Kz,57/K7) — 1.
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By Kummer duality, we have
1— Gal(Ksus/K§)Y — (UL 5 /W)Y — (W(BZ/EF 0 (K*)P)) — 1
If 2 — (BF(K¥)P /(K*)P)

Now,

OR /W)Y = ] U/ W)Y [T /W)Y

vel’ veS
Then it suffices to observe that the induced map from (U y,/W)V to I'f
corresponds to (9; 7. Therefore, we finally obtain

Gal(Ky,s7/K7)" = ker((U 5 /W)" O, ry).
Hence the result. =
COROLLARY 4.2. We have g3 = #ker(O ET)
Proof. This is a consequence of Theorem [£.1| and Proposition [2.4 =

If v € S splits in L/K, then the component at v in UK 50 /W is trivial.

Set S = S5 U ", where S is the set of places in S that split in L/K,
and S™ = S\ S*P.

Let s™ = #8" and m := #X \ (SUT).

Then (Ug y.,/W)V is isomorphic to (Z/p)*™+™.

COROLLARY 4.3. We have m + s" — rT < logp(gs) < m+ s"™, where r%
is the p-rank of E%

Proof. 1t suffices to observe that dim I's = dim E2(K*)?/(K*)P < 75. u

REMARK 4.4. We have dim Ff: <rs,, where rg, =11 4+ 12 + |So| — Ik -

When the Frobenius elements of the places v € T are linearly independent
in ', we also have dim I’y = dim IS —|T'| < rg, —|T| (see Proposition.

COROLLARY 4.5 (Theorem [L1). If " =X NPlk =0, let {ey,, ..., €0, }
be a basis of (F,)™ indexed by the places v in X'\ (SUT), and let © be the
linear map defined by

O: (F)™ = I2, ey 0y

Then g% = #tker(O).

Proof. In this case, g, = 0. =

5. Quadratic extensions. We now take p =2 and K = Q.

Let L/Q be a quadratic extension; let X' = {pi1,...,pm} be its set of
ramification.

In the spirit of Proposition we assume T = ().

Let So = {¢1,...,ls,} be a set of primes. We assume that X' NS = 0.
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We write /s for the infinite place; then Sy = {lo} or So = 0. Set
S = 55 U Sp.

Let B9 be the group of S-units of Q. We write ES = ({g,...,£,), with
lp = —1 or 1 depending on whether So, = {lo} or S is empty.

In this context, the governing field is written as F$ = Q(VES) =

Q(V, ... +/lsy)- Its Galois group I' := Gal(F°/Q) is isomorphic to
Hj: Gal(Q(/4;)/Q). Note that Gal(Q(+/%y)/Q) may be trivial.

Let us revisit the element g, defined in Section [3.I] and consider its re-
striction to Q(4/¢;); its value is in {0,1}. For what follows, the quadratic
residue symbol is viewed additively, meaning it takes values in Fs.

LEMMA 5.1. The elements gy take the following values:

(a) For{ € X' and { odd, the restriction of go = o¢ to Q(\/0;) equals (%)

(b) For t e S§°\ X, the restriction of gy to Q(\/Kj) 18 trivial if and only if
CF# Y.

(¢) For { = ls, the restriction of go.. to Q(\/;) is trivial unless {; = by =
—1 and L is imaginary.

Proof. (a) is (i) of Section [3.1] (b) is (ii) and (c) is (iv). =

It remains to describe go when 2 is ramified in L/Q. So, suppose 2 € X.
We identify go with its restriction to Gal(Q(v/4;)/Q). We have the following
extensions:

Recall that Ay = Uy (resp. Ay = Q) if 2 ¢ S (resp. 2 € S). The de-
sired element go is the image of the restriction of x in Gal(Qa(v/¥4;)/Qz) <
Gal(Q(v/?;)/Q). Therefore, go (restricted) is trivial if and only if ¢; € Wy
modulo (A3)2.

In general, everything relies on determining W5, which is the conductor
at 2 of L/K; see [4, Chapter II, §1, Exercise 1.6.5] for calculations.

For example, suppose d = —1 (mod 8). Then Wy = (5). Hence, ga re-
stricted to Gal(Q(v/4;)/Q) is trivial if and only if ; =1 (mod 4).



Genus theory, governing field, ramification and Frobenius 115

A particularly noteworthy situation arises when we are only dealing with
the cases of Lemmal5.1]and L/Q is unramified at 2. We detail this situation.

We take Soo = {{x}, and S = Sy U S

Let S§° C Sp be the set of primes of Sy that do not split in L/Q. Set
n = #53°. After renumbering the primes in Sy, we may assume that Sg° =
{l1,..., 00}

e Suppose first that L/Q is imaginary. In this case S™ = {{o} U S§®.

Let the canonical basis B := {€py, .-, €ps €l €tys---,ep, } of Fytnt
be indexed by the places of X U S™S.

The map O := OF, on the basis 3, taking values in | Gal(Q(,/¢;)/Q),
is defined by

B l e 1 ifi =y,
9(%1)\@(\/@) - <Pz>’ @(e&)\ﬁ@(\/@) =% = {O otherwise.

The matrix A of O, of size (sp+ 1 +n), is then written as follows:

G ) @) e
BRCENCETE.
el ) E e (E) e
<€’;;1> <€’;;> (z;) 00 .0
B) () (&) ov s

e If L/Q is a real quadratic extension, then to obtain the matrix, we
simply remove the (m + 1)st column of the above matrix A.

Observe that if we take Sy, = (), then we simply remove the first row and
the (m + 1)st column of A.
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