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Genus theory, governing field, ramification and Frobenius

by

Roslan Ibara Ngiza Mfumu and Christian Maire

Abstract. We develop, through a governing field, genus theory for a number field K
with tame ramification in T and splitting in S, where T and S are finite disjoint sets of
primes of K. This approach extends the one initiated by the second author in the case of
the class group. We are able to express the S-T genus number of a cyclic extension L/K
of degree p in terms of the rank of a matrix constructed from the Frobenius elements of
the primes ramified in L/K, in the Galois group of the underlying governing extension.
For quadratic extensions L/Q, the matrices in question are constructed from the Legendre
symbols of the primes ramified in L/Q and the primes of S.

1. Introduction. Let K be a number field, and let S and T be two
finite and disjoint sets of places of K. We assume that T contains only non-
archimedean places. Let KS

T denote the maximal abelian extension of K, to-
tally decomposed at all places in S (or S-split), unramified outside of T , and
with at most tame ramification at the places v ∈ T (or T -tamely ramified).
This is a finite extension, and the Artin map allows us to identify the Galois
group Gal(KS

T /K) with the S-ray class group of K modulo m :=
∏

v∈T v,
which we denote by ClSK,m. For more details, see Section 1.1.1.

Now let L/K be an extension of number fields with ramification set Σ.
Genus theory provides information about the class group ClSL

L,mL
in terms

of Σ and the behavior of the S-units of K in L/K. See Theorem 2.1.
The first remarkable result in genus theory dates back to Gauss, concern-

ing the 2-Sylow subgroup of the class group of quadratic extensions of Q (see
[8, Chapter 1, §1] and [4, Chapter IV, §4, Exercise 4.2.10]). The phenomenon
described by Gauss has been studied, developed, and generalized by many
authors, including Hasse [6], Leopoldt [9], Furuta [3]. For more details, see
[4, Chapter III, §4].

2020 Mathematics Subject Classification: Primary 11R37; Secondary 11R29.
Key words and phrases: genus theory, governing field, Frobenius.
Received 10 July 2024; revised 14 April 2025.
Published online 20 October 2025.

DOI: 10.4064/aa240710-25-6 [101] © Instytut Matematyczny PAN, 2025



102 R. Ibara Ngiza Mfumu and C. Maire

The introduction of the sets T and S was initiated by Jaulent [7], Fed-
erer [1], and others. A very good overview of all this can be found in [7,
Chapter II, §2.4, Chapter III, §2.1].

The work presented here is inspired by [11]. We develop S-T genus theory
via a governing extension denoted by FS

T /K, where the usual ramification
conditions are interpreted through relations between Frobenius elements. As
a consequence, and similarly to [11, Theorem 1.3], questions in genus theory
can be translated into questions about the behavior of Frobenius elements in
a governing field, for which the Chebotarev density theorem becomes central.

When the base field K is given and the Galois group of L/K is a fixed
abelian group, Frei, Loughran, and Newton [2] studied the asymptotic be-
havior of the genus number of L/K with respect to the discriminant of L. It
would be interesting to revisit their results in light of our work.

1.1. The context

1.1.1. Ray class groups. Let K be a number field, T a finite set of non-
archimedean places of K, and S a finite set of places of K, disjoint from T .
Let us denote S = S0 ∪S∞, where S0 contains only non-archimedean places
and S∞ contains archimedean places, which we assume to be contained in
the set PlreK,∞ of real places of K.

For a place v of K, let ιv denote the embedding of K into its comple-
tion Kv.

Set

• IK,T to be the group of non-zero fractional ideals of K prime to T ,
• m =

∏
v∈T v to be the ray modulus of K associated to T ,

• PS∞
K,m to be the subgroup of principal ideals (x) of IK,T , x ≡ 1 (m), and

ιv(x) > 0 for all v ∈ PlreK,∞ \ S∞,
• ⟨S0⟩ to be the subgroup of IK,T generated by the places in S0,
• RS

K,m to be the subgroup PS∞
K,m⟨S0⟩ of IK,T .

Let ClSK,m be the S-ray class group modulo m, i.e.

ClSK,m := IK,T /R
S
K,m.

By class field theory, ClSK,m is isomorphic to the Galois group of KS
T /K, where

KS
T /K is the maximal abelian extension K which is T -tamely ramified and

S-split, see [4, Chapter II, §5].

1.1.2. Genus fields and genus numbers. Let p be a prime number and let
L/K be a cyclic extension of degree p. Denote by Σ the set of ramification of
L/K. When p = 2, regarding the infinite places, we will refer to decomposi-
tion (one place splitting into two places) versus non-decomposition (one real
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place becoming one single complex place); note that in many other contexts,
one says in the latter case that the real place ramifies.

Let TL (resp. SL) denote the places of L lying above those of T (resp.
of S), and consider mL :=

∏
w∈TL

w. Set LS
T := LSL

TL
, and ClSL,m := ClSL

L,mL
.

Let M/K be the maximal abelian extension of K contained in LS
T :

L M LS
T

K KS
T

The field M is called the S-T genus field associated with L/K, and the
quantity (gST )

∗ = [M : L] is the S-T genus number. Set gST = [M : KS
T ]: this is

the quantity we are studying. It can be observed that it is easy to pass from
gST to (gST )

∗ as long as #ClSK,m is known, and the knowledge of gST provides
information about ClSL,m. Of course, genus theory makes sense when the field
L is not contained in KS

T , because otherwise M = KS
T . The extension M/K

being abelian, its Galois group can be approached through class field theory,
which allows expressing [M : K] in terms of the ramification in L/K and the
S-units of K, thus leading to a non-trivial lower bound for #ClSL,m.

Since L/K is cyclic of degree p, the Galois group Gal(M/KS
T ) is abelian

of exponent p (see Theorem 2.1). Thus, when p > 2, the infinite places play
no role. Consequently, we assume that S∞ = PlreK,∞ in this case.

1.1.3. Governing fields. We continue with a fixed prime number p. We
then assume that for all v ∈ T , we have Nv ≡ 1 (mod p), where Nv is the
cardinality of the residue field of the completion Kv of K at v. Note that
without this condition, the p-part contributed by the places v of T in ClSK,m

would be trivial.
Let ES

T be the group of S-units of K congruent to 1 (modm), that is,

ES
T = {x ∈ K× : x ≡ 1 (mod m), v(x) = 0 ∀v ̸∈ S}.

Observe that the dependence on T is in m. Here, we clarify the meaning of
v(x) = 0. If v ∈ S0, we identify the place v with its valuation; if v ∈ PlreK,∞,
v(x) = 0 means ιv(x) > 0; for v archimedean, v /∈ PlreK,∞, we define v(x) = 0.

Let K′ = K(ζp), where ζp is a primitive pth root of unity.
The governing field FS

T associated with the triplet (K, T, S) is defined as

FS
T := K′(

p
√

ES
T ).

We then define ΓS
T := Gal(FS

T /K
′); it is an abelian p-elementary group.

When T = ∅ and S = PlreK,∞, we see by Dirichlet’s theorem that the
p-rank of ΓS := ΓS

∅ is r1+r2−1+δK,p+#S0, where (r1, r2) is the signature
of K, and where δK,p = 1 if ζp ∈ K, and 0 otherwise.
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1.2. Our result. We will now present our main theorem (see Theo-
rem 4.1 and Corollary 4.2) in a special case as a way of illustrating its key
elements without many of the technicalities of the full result.

We assume that the set Σ does not contain any places above p; in other
words, the extension L/K is tamely ramified. To further simplify the presen-
tation, we also assume that the places in S split in L/K.

For each place v ∈ Σ, we choose a place w of K′ above v and set σv := σw,
the Frobenius element associated with w in ΓS

T := Gal(FS
T /K); of course,

this element depends on the choice of w, but we will see that the conditions
involving it are independent of this choice.

Let m = #Σ \ (S∪T ), and let {ev1 , . . . , evm} be a basis of (Fp)
m indexed

by the places v of Σ \ (S ∪ T ).
We then consider the linear map ΘS

Σ,T defined by

ΘS
Σ,T : (Fp)

m → ΓS
T , ev 7→ σv.

We have the following result (see Corollary 4.5):

Theorem 1.1. Under the previous conditions, we have

gST = #ker(ΘS
Σ,T ).

Remark 1.2. Taking T = ∅ and S = PlreK,∞ we arrive at [11, Theo-
rem 1.1].

The essence of our work is to translate the ramification conditions to
dependence relations on Frobenius elements in a governing field. Therefore,
if we ensure that the Frobenius elements associated with the places of T
form a linearly independent set in ΓS := Gal(FS/K′), then we can express
quite easily the Galois group ΓS

T .
Set HT :=

∑
v∈T Fpσv ⊂ ΓS .

Proposition 1.3. Suppose that the set {σv : v ∈ T} forms a linearly
independent family over Fp in ΓS. Then ΓS

T ≃ ΓS/HT .

The condition of linear independence has an interpretation. Indeed, ac-
cording to the Gras–Munnier theorem (see [5]) and its generalizations in
Gras’ book (see [4, Chapter V, §2, Corollary 2.4.2]), a non-trivial relation
between the Frobenius elements σv, v ∈ T , is equivalent to the existence of
a cyclic extension of degree p of K, T -ramified and S-split, and consequently
contributes “trivially” to (gST )

∗. Thus, the condition of linear independence
forces avoidance of this situation.

Theorem 1.1 becomes interesting when we have a good understanding of
the governing field FS , especially when we know the units of the base field.
Typically, this occurs for K = Q, but also, as noted in [11, §3.5.3], for p = 3
and for the base field K = Q(ζ3).
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By introducing the S-places, the role of the ordinary unit group is now
played by the S-unit group, and when the field K is principal, the governing
field is relatively easy to describe. A remarkable situation arises when p = 2
and L/Q is a quadratic extension. The quantity gST then corresponds to the
kernel of a matrix constructed using Legendre symbols.

We explore a specific situation. Let L/Q be real quadratic extension with
set of ramification Σ = {p1, . . . , pm}. We take T = ∅. Let S0 = {ℓ1, . . . , ℓs0}
be a set of primes of Q such that Σ ∩ ({S0} ∪ {2}) = ∅. We assume that S∞
contains the unique infinite place v∞, and set ℓ0 = −1. Set S = S0 ∪ S∞
and s := #S. In particular, s = s0 + 1. Observe that in this case ClSL is the
S0-class group of L (in the ordinary sense).

Here, to simplify, we suppose that the places v in S0 split in L/Q.
Let A = (ai,j) be the s×m matrix defined by

ai,j =

(
ℓi−1

pj

)
,

where
( ·
·
)
∈ F2 is the additive Legendre symbol.

Observe that FS = Q(
√
−1,

√
ℓ1, . . . ,

√
ℓs0) and that ΓS := Gal(FS/Q)

≃ (Fp)
s. Hence, the map Θ : (Fp)

m → (Fp)
s of Theorem 1.1 is represented

by the matrix A with the respect to the obvious bases.

Corollary 1.4. Under the previous conditions, we have,

gS∅ = #ker(A).

Example 1.5. Take K = Q, and L = Q(
√
p1p2p3), where p1, p2, p3 are

three distinct primes such that p1p2p3 ≡ 1 (mod 4). Take S = {v∞}∪{ℓ1, ℓ2}
such that the primes ℓi split in L/Q. One has (recall that ℓ0 = −1)

A =



(
−1

p1

) (
−1

p2

) (
−1

p3

)
(
ℓ1
p1

) (
ℓ1
p2

) (
ℓ1
p3

)
(
ℓ2
p1

) (
ℓ2
p2

) (
ℓ2
p3

)


,

where
( ·
·
)
∈ F2 is the additive Legendre symbol, and gS∅ = #ker(A).

As we shall see, assuming S∞ = ∅ actually corresponds to omitting the
first row of A.

The rest of our work consists of four sections. In Section 2 we introduce
and develop the elements of genus theory that are useful for our results.
Section 3 is dedicated to the governing field. It is also in that section that
we prove Proposition 1.3. Section 4 focuses on our result and its proof. In
the final Section 5 we focus on the quadratic case.
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2. Elements of genus theory

2.1. S-T genus formula. For this part, we refer, for example, to [4,
Chapter IV, §4], [7, Chapter III, §2], or [10].

We consider the framework of Section 1.1. Let T and S be two finite
disjoint sets of places of K, non-archimedean for T and arbitrary for S =
S0 ∪ S∞. Let L/K be a cylic extension of degree p.

We denote by ES
T ∩ NL/K the elements of ES

T that are locally norms
everywhere in L/K.

The following theorem can be formulated in a more general context (see
[4, Chapter IV]), but we will focus on cyclic extensions of degree p.

Theorem 2.1. Let L/K be a cyclic extension of degree p with ramification
set Σ. Then Gal(M/KS

T ) is an abelian group of exponent p. In particular, gST
is a power of p, and

logp(g
S
T ) = #Sns +#Σ \ (S ∪ T )− logp(E

S
T : ES

T ∩NL/K),

where Sns denotes the set of places in S that are not split in L/K.

Thus, the study of gST is closely related to the quantity ES
T ∩NL/K. We will

use the governing field FS
T to get an explicit understanding of the size of the

units in ES
T which are locally norms everywhere. To achieve this, Proposition

2.4 below is central.
Set Σ′ := Σ \ (S ∪ T ).

2.2. Genus fields and ray class fields. Let L/K be a cyclic extension
of degree p. For v ∈ PlK, we denote by Dv := Dv(L/K) its decomposition
group in L/K and by Iv := Iv(L/K) its inertia group. It is worth mentioning
that for an archimedean place v, we do not speak of ramification but rather
of non-decomposition.

We now make the choice of a place w | v, and we set Lv := Lw.
Thus:

• For places v ∈ Σ′ := Σ \ (S ∪ T ), the local reciprocity map induces a
surjective morphism from Uv to Iv, with kernel Wv := NLv/Kv

ULv .
• For places v ∈ S, the local reciprocity map induces a surjective morphism

from K×
v to Dv, with kernel Wv := NLv/Kv

L×
v . Note that Wv = K×

v if and
only if v splits in L/K.

Here, Uv ⊂ K×
v (resp. ULv) denotes the group of local units of Kv (resp. Lv),

and NLv/Kv
denotes the norm map of the local extension Lv/Kv. For a real

infinite place v, we adopt the convention Uv = (R×)2, and for a complex
place v we let Uv = C×.

Set
W =

∏
v∈(S∪Σ)\(T∩Σ)

Wv =
∏
v∈Σ′

Wv

∏
v∈S

Wv.
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Remark 2.2. For any place v ∈ Σ′ ∪ S we have

ιv(E
S
T ∩ (K×)p) ⊂ Wv.

Definition 2.3. We denote by KΣ,S,T the abelian extension of K corre-
sponding, via the global reciprocity map, to the idèle subgroup V :

V := W
( ∏
v/∈Σ′∪S∪T

Uv

)(∏
v∈T

U1
v

)
=

( ∏
v∈Σ′∪S

Wv

)( ∏
v/∈Σ′∪S∪T

Uv

)(∏
v∈T

U1
v

)
.

Here, U1
v is the subgroup of principal units of Uv.

The following proposition is central.

Proposition 2.4. Let M/K be the maximal abelian extension of K con-
tained in LT

S . Then M = KΣ,S,T . Moreover,

Gal(KΣ,S,T /K
S
T ) ≃

US
K,Σ′

ν(ES
T )W

,

where US
K,Σ′ =

∏
v∈S K×

v

∏
v∈Σ′ Uv, and where ν : ES

T → US
K,Σ′ is the diag-

onal embedding.

Proof. Let us note that

• a finite place v /∈ Σ′ ∪ S ∪ T of K is unramified in M/K,
• a place v ∈ T is tamely ramified in M/K.

Therefore, the global reciprocity map for the extension M/K is trivial on( ∏
v/∈Σ′∪S∪T

Uv

)(∏
v∈T

U1
v

)
.

Now we consider W .
For v ∈ S, since v splits totally in LT

S/L and thus in M/L, we see that
Mv = Lv. Consequently, every element ε of Wv is also a norm in Mv/Kv. In
other words, the local symbol at v in the extension M/K vanishes on Wv.

For v ∈ Σ′, let ε ∈ Wv. Then, by definition of Wv, there exists z ∈ ULv

such that ε = NLv/Kv
(z). But since the extension Mv/Kv is unramified at v,

the element z is a norm in Mv/Lv, and thus ε is a norm in Mv/Kv. In other
words, here too, the local symbol at v in the extension M/K vanishes on Wv.

In conclusion, the global reciprocity map for the extension M/K is trivial
on V . Therefore, by maximality of KΣ,S,T , we have M ⊂ KΣ,S,T .

Let us show the reverse inclusion. For that, observe that KΣ,S,T /L is an
abelian extension such that

• every place v ∈ T is tamely ramified (possibly unramified);
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• for every place v ∈ S, we have the commutative diagram

K×
v /Wv

// //

≃

''

Dv(KΣ,S,T /K)

����

Dv(L/K)

showing that Dv(KΣ,S,T /L) is trivial, hence KΣ,S,T /L is decomposed at
every place v ∈ S;

• similarly, every place v ∈ Σ′ is unramified in KΣ,S,T /L.

Thus, KΣ,S,T is contained in LT
S , and by maximality of M, we deduce that

KΣ,S,T ⊂ M. Consequently, M = KΣ,S,T .
In summary, if we denote by JK the idèle group of K, and by US

K,T the
idèle subgroup given by

US
K,T :=

∏
v∈S

K×
v

∏
v∈T

U1
v

∏
v/∈T∪S

Uv,

we have

Gal(KΣ,S,T /K) ≃ JK/VK× and Gal(KS
T /K) ≃ JK/US

K,TK
×.

Therefore,

Gal(KΣ,S,T /K
S
T ) ≃ US

K,TK
×/VK× ≃ US

K,T /
(
VK×) ∩ US

K,T ≃ US
K,T /V ES

T .

We conclude by noticing that US
K,T /V ≃ US

K,Σ′/W .

3. Governing fields. Set K′ = K(µp). We fix a generator ζp of µp. If B
is an Fp-module, let B∨ := Hom(B,µp).

By Kummer duality, recall that for a subgroup of A of K′×, one has
A(K′×)p/(K′×)p ≃ Gal(K′( p

√
A)/K′)∨. Moreover, if A ⊂ K×, then

Gal(K′(
p
√
A)/K′)∨ ≃ A(K′×)p/(K′×)p ≃ A/A ∩ (K′×)p

≃ A/A ∩ (K×)p ≃ A(K×)p/(K×)p,

because [K′ : K] is coprime to p.

3.1. Frobenius. For any place v of K, let us define

ES
T,v = {ε ∈ ES

T : ε ∈ (K×
v )

p}.
This group of S-units fits into the exact sequence

1 → ES
T,v(K

×)p/(K×)p → ES
T (K

×)p/(K×)p → iv(E
S
T ) → 1,

where iv : ES
T → K×

v /(K
×
v )

p is induced by the embedding ιv of K into Kv.
Observe that for v ∈ Σ′,

ιv(E
S
T )U

p
v /U

p
v ≃ iv(E

S
T ) := ιv(E

S
T )(K

×
v )

p/(K×
v )

p.



Genus theory, governing field, ramification and Frobenius 109

By Kummer duality we have

iv(E
S
T )

∨ ≃ (ES
T (K

×)p/ES
T,v(K

×)p)∨ ≃ Gal(K′(
p
√
ES

T )/K
′(

p
√
ES
T,v)).

This last Galois group is easy to interpret:

Lemma 3.1. Gal(K′(
p
√

ES
T )/K

′(
p
√

ES
T,v)) = Dv(F

S
T /K

′).

(We will see later that this does not depend on the choice of a place w | v
of K′.)

Proof of Lemma 3.1. Let us denote by N the subfield of FS
T /K

′ corre-
sponding, via Galois theory, to Dv(F

S
T /K

′). Clearly, K′(
p
√
ES
T,v) ⊂ N. For

the reverse inclusion, note that if there exists an intermediate subfield N′ of
degree p over K′(

p
√
ES
T,v), then, as Gal(K′(

p
√
ES

T )/K
′(

p
√
ES
T,v)) is an abelian

p-elementary group, N′ arises from the compositum with a cyclic extension
N0/K

′ of degree p: there exists x ∈ ES
T such that N0 = K′( p

√
x). Now, since

v splits in N/K′, it follows that x ∈ (K′
v)

p, hence x ∈ Kp
v because [K′

v : Kv]

is coprime to p; thus N0 ⊂ K′(
p
√
ES
T,v), which leads to a contradiction.

When v is unramified in FS
T /K

′, the Galois group of K′(
p
√
ES

T )/K
′(

p
√
ES
T,v)

is generated by the Frobenius element associated to the choice of a place w | v
of K′. From now on, we fix w | v and set σv := σw, where σw is the Frobenius
at w in Gal(K′(

p
√
ES

T )/K
′.

Next, let Dv be the decomposition group of v in the extension FS
T /K

′.
Let

Φv :
(
ES

T (K
×)p/ES

T,v(K
×)p

)∨ → Gal(FS
T /K

′(
p
√
ES
T,v)) = Dv

be the isomorphism arising from Kummer duality. Recall how Φv is defined:
for χ ∈ (ES

T (K
×)p/ES

T,v(K
×)p)∨, we associate the element gχ := Φv(χ) de-

fined by
gχ(

p
√
ε) = χ(ε) · p

√
ε

for any ε ∈ ES
T .

For v ∈ Σ′ ∪ S, consider the local map φv also derived from Kummer
duality:

φv : (Av/Wv)
∨ ↪→ (Av/A

p
v)

∨ ↠ iv(E
S
T )

∨ ≃→ Dv,

where Av = Uv (resp. Av = K×
v ) for v ∈ Σ′ (resp. v ∈ S).

When (Av/Wv)
∨ is non-trivial, it is generated by a certain character

χv = χw. Now observe that if we choose another place w′|v of K′, then
w′ = hw for some h ∈ Gal(K′/K). Let χw′ := χhw := χw(h

−1(·)); this is a
non-trivial character of (Aw′/Ww′)∨.
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Lemma 3.2. Set gw := φw(χw) and gw′ := φw′(χw′). Then ⟨gw⟩ = ⟨gw′⟩.
Proof. This is a consequence of Kummer theory where we have gw′ = gaw

for some a ∈ F×
p (see, for example, [4, Chapter I, §6, Theorem 6.2]).

Thus, all the subsequent results do not depend on the choice of w | v.
Let us define gv := φv(χv). We will now describe φv more precisely.
(i) This is the most important case. Let v ∈ Σ′. Recall that Uv/Wv ≃

Z/p, hence Up
v ⊂ Wv. There exists a non-trivial element χv of (Uv/Wv)

∨

such that
⟨χv⟩ = (Uv/Wv)

∨ ↪→ (Uv/U
p
v )

∨ .

Then φv(χv) is an element gv := gχv of Dv, defined by

gv(
p
√
ε) = χv(ιv(ε)) · p

√
ε

for all ε ∈ ES
T .

Let PlK,p = {v ∈ PlK : v | p} be the set of p-adic places of K.
Observe that if v /∈ PlK,p ∪ S0, then v is unramified in FS

T /K
′, and

Up
v = Wv. In particular, Dv is a cylic group generated by the Frobenius

σv at v. Thus,
φv : ⟨χv⟩ ↠ ⟨σv⟩.

Replacing χv by a suitable power, we obtain φv(χv) = σv.
(ii) Let v ∈ S0 \Σ. Then v is unramified in L/K.
First, note that if v splits in L/K, then Wv = K×

v and thus φv is the
trivial map.

Now, suppose v is inert in L/K. Then Wv = Uv⟨πp
v⟩ and thus

K×
v /Wv ≃ K×

v /Uv⟨πp
v⟩ ≃ ⟨πv⟩/⟨πp

v⟩.
Let χv be the generator of (⟨πv⟩/⟨πp

v⟩)∨ defined by χv(π
i
v) = ζip. Then gv :=

φv(χv) satisfies: for all ε ∈ ES
T ,

gv(
p
√
ε) = χv(ιv(ε)) · p

√
ε.

Thus, χv(ιv(ε)) = 1 if and only if the valuation v(ε) of ε is zero modulo p.
(iii) Let v ∈ S0 ∩Σ. This is analogous to (i) if we note that Av = K×

v .
(iv) Here p = 2 and v is a real place in S. As in (ii), if v splits in L/K,

then Wv = K×
v and φv is the trivial map. Otherwise, for ε ∈ ES

T ,

gv(
√
ε) = sign(ιv(ε)) ·

√
ε,

where sign(ιv(ε)) is the sign of the embedding ιv(ε) of ε in Kv.

3.2. A restriction. Let T = {v1, . . . , vt}, and for i = 1, . . . , t, let σvi be
the Frobenius at vi in ΓS ; set HT := ⟨σv : v ∈ T ⟩.

Proposition 3.3. Suppose that the set {σv1 , . . . , σvt} forms a linearly
independent family over Fp in ΓS. Then

ΓS
T := Gal(FS

T /K
′) ≃ ΓS/HT ·
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Proof. We proceed by induction on the cardinality of T . Recall that for
v ∈ T one has Nv ≡ 1 (mod p).

• Suppose T = {v}. Let ES
{v} = {ε ∈ ES : ε ≡ 1 (v)}. Define ES

v =

{ε ∈ ES : ε ∈ (K×
v )

p}. By Hensel’s lemma, we have ES
{v} ⊂ ES

v . Moreover,
ES/ES

{v} ↪→ F×
v , where Fv is the residue field at v. Thus, ES/ES

{v} is cyclic.
Since ES

{v} ⊂ ES
v , it follows that

(1) Z/pZ ↠
ES(K×)p

ES
{v}(K

×)p
↠

ES(K×)p

ES
v (K

×)p
.

By Lemma 3.1, we have(
ES(K×)p

ES
v (K

×)p

)∨

= ⟨σv⟩ ⊂ ΓS .

Now, since σv ̸= 0 by assumption, it follows that
ES(K×)p

ES
v (K

×)p
≃ Z/pZ.

Thus, from (1) we have

ES(K×)p

ES
{v}(K

×)p
= ⟨σv⟩∨,

or equivalently Gal(FS/FS
T ) = ⟨σv⟩. This concludes this case.

• Suppose T = T0 ∪ {v}, and that the proposition is true for T0. Define
ES
T0,v

= {ε ∈ ES : ε ≡ 1 (v′), v′ ∈ T0, ε ∈ Up
v }. By Hensel’s lemma, we have

ES
T ⊂ ES

T0,v
. As before, ES

T0
/ES

T ↪→ F×
v , implying that ES

T0
/ES

T is cyclic, so

(2) Z/pZ ↠
ES

T0
(K×)p

ES
T (K

×)p
↠

ES
T0
(K×)p

ES
T0,v

(K×)p
.

Then we define (
ES

T0
(K×)p

ES
T0,v

(K×)p

)∨
= ⟨σv⟩,

where σv is the restriction of the Frobenius σv ∈ ΓS to FS
T0

. By the induction
hypothesis, (

ES(K×)p

ES
T0
(K×)p

)∨
= ⟨σv′ : v′ ∈ T0⟩.

But σv = 1 would imply σv ∈ ⟨σv′ : v′ ∈ T0⟩, which contradicts the assump-
tion. Therefore, the surjections in (2) are isomorphisms, and Gal(FS/FS

T ) is
generated by the Frobenius elements σv and σv′ , v′ ∈ T0.

Remark 3.4. The Galois group Gal(FS/FS
{v}) may not be generated by

the Frobenius at v. Let us give an example.
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Take K = Q and p = 2. Choose T = {ℓ}, where ℓ ≡ 1 (mod 4) is a prime
number.

Let S = S∞ = {v∞}. We have ES = ⟨±1⟩ and ES
{ℓ} = ⟨1⟩. Thus,

FS = Q(
√
ES) = Q(

√
−1) and FS

{ℓ} = Q(
√
ES

{ℓ}) = Q.

However, since ℓ splits in Q(
√
−1)/Q, it follows that σℓ = 1. Consequently,

Gal(Q(
√
−1)/Q) is not generated by the Frobenius at ℓ.

When p = 2, we can handle the archimedean places in the same way. Set
S := S0 ∪ PlreK,∞. Observe that ES is the group of S0-units in the ordinary
sense (with no sign condition).

Proposition 3.5. Take p = 2. Set HS∞ = ⟨σv : v ∈ PlreK,∞ \ S∞⟩ ⊂ ΓS

and identify HS∞ with its restriction to ΓS
T . Then

ΓS
T := Gal(K(

√
ES

T )/K) ≃ ΓS
T /HS∞ .

Moreover, if the set {σv : v ∈ T} forms a linearly independent family in ΓS,
then

Gal(K(
√
ES

T )/K) ≃ ΓS/ (HS∞ +HT ) .

Proof. As in Lemma 3.1, we can show that K(
√
ES

T ) corresponds, by
Galois theory, to the subgroup HS∞ of ΓS

T .
As for the “moreover” part, from Proposition 3.3 we know that ΓS

T ≃
ΓS/HT , which implies the desired result.

4. Main result. We keep the notations from the previous sections. In
particular, Σ′ = Σ \ (S ∪ T ).

For v ∈ Σ′ ∪ S, let us consider the elements gv := φv(χv) ∈ ΓS
T defined

in (i)–(iv) of Section 3.1.
Let ΘS

Σ,T be the linear map

ΘS
Σ,T :

(
US
K,Σ′

W

)∨
→ ΓS

T defined by ΘS
Σ,T (χv) = gv.

Theorem 4.1. The Artin map induces the isomorphism

ker(ΘS
Σ,T ) ≃ Gal(KΣ,S,T /K

S
T )

∨.

Proof. Let ν : ES
T → US

K,Σ′ be the diagonal embedding.
First, by Remark 2.2 we observe that

ν(ES
T ∩ (K×)p) = 1.

It follows that ν factors through ES
T ∩ (K×)p. Now, consider the exact se-

quence obtained from Proposition 2.4:
1 → ν(ES

T /E
S
T ∩ (K×)p) → US

K,Σ′/W → Gal(KΣ,S,T /K
S
T ) → 1.
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By Kummer duality, we have

1 // Gal(KΣ∪S/K
S
T )

∨ // (US
K,Σ′/W )∨

��

//
(
ν(ES

T /E
S
T ∩ (K×)p)

)∨
� _

��

// 1

ΓS
T (ES

T (K
×)p/(K×)p)∨

Ψ
≃

oo

Now,
(US

K,Σ′/W )∨ ≃
∏
v∈Σ′

(Uv/Wv)
∨
∏
v∈S

(K×
v /Wv)

∨.

Then it suffices to observe that the induced map from (US
K,Σ′/W )∨ to ΓS

T

corresponds to ΘS
Σ,T . Therefore, we finally obtain

Gal(KΣ,S,T /K
S
T )

∨ ≃ ker((US
K,Σ′/W )∨

ΘS
Σ,T−−−→ ΓS

T ).

Hence the result.

Corollary 4.2. We have gST = #ker(ΘS
Σ,T ).

Proof. This is a consequence of Theorem 4.1 and Proposition 2.4.

If v ∈ S splits in L/K, then the component at v in US
K,Σ′/W is trivial.

Set S = Ssp ∪ Sns, where Ssp is the set of places in S that split in L/K,
and Sns = S \ Ssp.

Let sns = #Sns and m := #Σ \ (S ∪ T ).
Then (US

K,Σ′/W )∨ is isomorphic to (Z/p)sns+m.

Corollary 4.3. We have m+ sns − rST ≤ logp(g
T
S ) ≤ m+ sns, where rST

is the p-rank of ES
T .

Proof. It suffices to observe that dimΓS
T = dimES

T (K
×)p/(K×)p ≤ rST .

Remark 4.4. We have dimΓS
T ≤ rS0 , where rS0 = r1 + r2 + |S0| − δK,p.

When the Frobenius elements of the places v ∈ T are linearly independent
in ΓS , we also have dimΓS

T = dimΓS−|T | ≤ rS0 −|T | (see Proposition 3.3).

Corollary 4.5 (Theorem 1.1). If Sns=Σ ∩PlK,p=∅, let {ev1 , . . . , evm}
be a basis of (Fp)

m indexed by the places v in Σ \ (S ∪ T ), and let Θ be the
linear map defined by

Θ : (Fp)
m → ΓS

T , ev 7→ σv.

Then gTS = #ker(Θ).

Proof. In this case, gv = σv.

5. Quadratic extensions. We now take p = 2 and K = Q.
Let L/Q be a quadratic extension; let Σ = {p1, . . . , pm} be its set of

ramification.
In the spirit of Proposition 3.3, we assume T = ∅.
Let S0 = {ℓ1, . . . , ℓs0} be a set of primes. We assume that Σ ∩ S = ∅.
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We write ℓ∞ for the infinite place; then S∞ = {ℓ∞} or S∞ = ∅. Set
S = S∞ ∪ S0.

Let ES be the group of S-units of Q. We write ES = ⟨ℓ0, . . . , ℓs⟩, with
ℓ0 = −1 or 1 depending on whether S∞ = {ℓ∞} or S∞ is empty.

In this context, the governing field is written as FS = Q(
√
ES) =

Q(
√
ℓ0, . . . ,

√
ℓs0). Its Galois group ΓS := Gal(FS/Q) is isomorphic to∏s0

j=0Gal(Q(
√

ℓj)/Q). Note that Gal(Q(
√
ℓ0)/Q) may be trivial.

Let us revisit the element gℓ defined in Section 3.1 and consider its re-
striction to Q(

√
ℓj); its value is in {0, 1}. For what follows, the quadratic

residue symbol is viewed additively, meaning it takes values in F2.

Lemma 5.1. The elements gℓ take the following values:

(a) For ℓ ∈ Σ′ and ℓ odd, the restriction of gℓ = σℓ to Q(
√
ℓj) equals

( ℓj
ℓ

)
.

(b) For ℓ ∈ Sns
0 \Σ, the restriction of gℓ to Q(

√
ℓj) is trivial if and only if

ℓ ̸= ℓj.
(c) For ℓ = ℓ∞, the restriction of gℓ∞ to Q(

√
ℓj) is trivial unless ℓj = ℓ0 =

−1 and L is imaginary.

Proof. (a) is (i) of Section 3.1, (b) is (ii) and (c) is (iv).

It remains to describe g2 when 2 is ramified in L/Q. So, suppose 2 ∈ Σ.
We identify g2 with its restriction to Gal(Q(

√
ℓi)/Q). We have the following

extensions:
Q2(

√
A2)

Q2(
√
W2)

⟨x⟩

Q2(
√
ℓi)

k2

Q2

Recall that A2 = U2 (resp. A2 = Q×
2 ) if 2 /∈ S (resp. 2 ∈ S). The de-

sired element g2 is the image of the restriction of x in Gal(Q2(
√
ℓi)/Q2) ↪→

Gal(Q(
√
ℓi)/Q). Therefore, g2 (restricted) is trivial if and only if ℓi ∈ W2

modulo (A2)
2.

In general, everything relies on determining W2, which is the conductor
at 2 of L/K; see [4, Chapter II, §1, Exercise 1.6.5] for calculations.

For example, suppose d ≡ −1 (mod 8). Then W2 = ⟨5⟩. Hence, g2 re-
stricted to Gal(Q(

√
ℓi)/Q) is trivial if and only if ℓi ≡ 1 (mod 4).



Genus theory, governing field, ramification and Frobenius 115

A particularly noteworthy situation arises when we are only dealing with
the cases of Lemma 5.1 and L/Q is unramified at 2. We detail this situation.

We take S∞ = {ℓ∞}, and S = S0 ∪ S∞.
Let Sns

0 ⊂ S0 be the set of primes of S0 that do not split in L/Q. Set
n = #Sns

0 . After renumbering the primes in S0, we may assume that Sns
0 =

{ℓ1, . . . , ℓn}.
• Suppose first that L/Q is imaginary. In this case Sns = {ℓ∞} ∪ Sns

0 .
Let the canonical basis B := {ep1 , . . . , epm , eℓ∞ , eℓ1 , . . . , eℓn} of Fm+n+1

2

be indexed by the places of Σ ∪ Sns.
The map Θ := ΘS

Σ on the basis B, taking values in
∏s0

j=0Gal(Q(
√

ℓj)/Q),
is defined by

Θ(epi)|Q(
√

ℓj)
=

(
ℓj
pi

)
, Θ(eℓi)|Q(

√
ℓj)

= δi,j =

{
1 if i = j,

0 otherwise.

The matrix A of Θ, of size (s0 +1)× (m+ n), is then written as follows:

A =



(
−1

p1

) (
−1

p2

)
. . .

(
−1

pm

)
1 0 . . . 0(

ℓ1
p1

) (
ℓ1
p2

)
. . .

(
ℓ1
pm

)
0 1 . . . 0

...
...

. . .
...

...
...

. . .
...(

ℓn
p1

) (
ℓn
p2

)
. . .

(
ℓn
pm

)
0 0 . . . 1(

ℓn+1

p1

) (
ℓn+1

p2

)
. . .

(
ℓn+1

pm

)
0 0 . . . 0

...
...

. . .
...

...
...

. . .
...(

ℓs0
p1

) (
ℓs0
p2

)
. . .

(
ℓs0
pm

)
0 0 . . . 0



.

• If L/Q is a real quadratic extension, then to obtain the matrix, we
simply remove the (m+ 1)st column of the above matrix A.

Observe that if we take S∞ = ∅, then we simply remove the first row and
the (m+ 1)st column of A.
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