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e In an online setting, P2/P1 ratio calculation should include proper quality control.
e Certain precautions must be taken when performing real-time ICP signal analysis.

e The benefits of conformal prediction are mostly seeable in a noisy environment.
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Abstract

Intensive care unit management of patients with traumatic brain injury or aneurysmal hemor-
rhage often requires intracranial pressure (ICP) monitoring. Although the primary goal is to
prevent adverse intracranial hypertensive events, mechanical properties of the cerebrospinal
system can also be derived from a closer analysis of the ICP signal. The morphology of the
ICP signal can be influenced by a variety of physiological components and is therefore highly
variable. In particular, on the time scale of a heartbeat, characteristic subpeaks called P1,
P2, and P3 are visible most of the time and their analysis may provide valuable insights
about cerebrospinal pressure-volume compensation. However, their automatic detection in
real time is a challenging task that requires displaying no result in situations of uncertainty to
avoid misleading the clinicians. Therefore, we applied several results from the ” Learn-then-
Test” theoretical framework to our deep learning-based delineation algorithm to identify cases
where it is appropriate to refrain from providing a result. The subpeak detection task was
performed using recurrent neural networks trained on a 59-patient dataset. Performance was
evaluated on two independent test datasets. The first one consisted of 13,086 pulses extracted
from 49 recordings and labeled by 3 independent operators. The second one, which is publicly
available, consisted of 11,172 pulses extracted from 63 recordings. The mean absolute error
on the calculated P2/P1 ratio was 0.061 for the first test dataset and 0.016 for the second
test dataset.
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1. Introduction

Intracranial pressure (ICP) monitoring is a key component of brain injury management
in intensive care units (ICUs). The main focus for the clinician is to maintain mean ICP
below a certain hypertension threshold, generally set to about 20 mmHg [1]. However, it
is broadly recognized that the full ICP signal can provide valuable information about the
physical properties of the cerebrospinal system that cannot be summed up by a simple rolling
mean [2]. In fact, the ICP signal is a complex mixture of multiple physiological components,
particularly affected by arterial and intrathoracic pressures [3]. When looking at cardiac-
induced ICP pulses at the time scale of a single cardiac cycle, three subpeaks are generally
visible (see Figure 1). These are commonly called P1, P2, and P3, in accordance with their
order of appearance. The subpeak P1 is a percussion wave caused by the systolic blood influx
into the cerebral vasculature [4]. The second one, P2, is a reflection wave that coincides with
a maximum of blood volume increase in the cerebral arteries [5]. The origin of P3 remains
unclear, but it tends to be associated with the dicrotic notch [6] and the venous outflow
[7]. The relative heights of the subpeaks have been known to reflect the volume buffering
capacity of the cerebrospinal space [8], often referred to as intracranial compliance (ICC).
Under nonpathological conditions, P1 is superior to P2, which is superior to P3. As ICC
decreases, the pulse shifts towards a triangular shape centered around P2, with P2 superior
to P1 and P3. Therefore, the P2/P1 ratio, when measurable, can be used as surrogate for
ICC. At the bedside, this information can help the clinician identify at-risk patients and
adjust the therapeutic intensity [9][10].

However, real-time monitoring of the P2/P1 ratio is challenging for several reasons.
Firstly, as with any medical recording, the ICP signal is subject to artifact pollution [11].
These artifacts are mainly due to electronic noise, coughing, and patient handling. Secondly,
due to its numerous physiological dependencies, the ICP waveform is highly variable between
patients. Finally, subpeaks P1, P2, and P3 are not always visible. For instance, a previous
study reported that up to 10% of cardiac-induced pulses show at least one missing subpeak
[12]. While several detection algorithms proposed in the literature attempted to tackle these
uncertainty factors [13][14], none of them can offer statistical guarantees on the final perfor-
mance in real-life signals. Although rarely mentioned in the literature, the interpretation of
the ICP waveform can be subtle and subject to human interpretation, since the physiological
mechanisms are not directly observable. Being able to refrain from giving a likely incorrect
information is all the more suitable since the ”alarm fatigue” in the intensive care environ-
ment is a well-documented phenomenon [15]. The display of a misleading P2/P1 ratio could
be avoided by implementing a decision rule to identify uncertainty situations. In the present
study, we introduce the version 1.0 of our signal analysis pipeline called ICP-SWAn (Selec-
tive Waveform Analysis). It integrates several results from the Learn-then-Test framework
[16] into our previously published P2/P1 ratio calculation algorithm [17] to simultaneously
control multiple risks at a user-defined level. After performing multiple hypothesis tests on
a calibration dataset, simple thresholds could be associated with each neural network output
to identify uncertainty regions where no P2/P1 value should be displayed. The final detec-
tion performance was assessed using a dataset publicly available at the following address:
https://github.com/NeuroResearchCore/trackLight /tree/master/Data.
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Figure 1: Positions of subpeaks P1, P2, and P3 in various types of intracranial pressure (ICP) pulse wave-
forms. The indication ”Tn” corresponds to the associated pulse shape derived from an intelligence-based
morphological classification presented in [18].

2. Material and Methods

2.1. Data Collection

ICP signals were acquired in two separated patient cohorts admitted to a neuro-ICU
(NICU) between January 2021 and March 2024. One cohort (49 patients) was dedicated
to the training process and the other (59 patients) to the testing process. In both cases,
patients were treated according to the international guidelines for the management of acute
brain injuries [19]. ICP signals were acquired with an intraparenchymal sensor (Pressio,
Sophysa, Orsay, France) at a sampling rate of 100 Hz. In the case of the test dataset, a
synchronized 100-Hz arterial blood pressure (ABP) signal was also acquired using an invasive
arterial catheter. Inclusion criteria were as follows: age between 18 and 80 years and sedation
under mechanical ventilation. Exclusion criteria included major hemodynamic failure and
decompressive craniectomy. In addition, we used a public dataset to perform a second test
process. This dataset, associated with a comparative study on the automated detection
of ICP subpeaks [20], comprised 11,172 valid pulses extracted from 64 patient recordings
acquired with an intraparenchymal sensor with a minimum 240 Hz resolution. The final
data partitioning is shown in Figure 2. The use of two different test datasets is a way
of highlighting the performance variations that can be induced by the evaluation context.
Although the content of the public dataset is excellent for assessing the detection performance
of P2/P1 in a vacuum, our custom dataset was designed to cover most of the difficulties
that can occur in a real-time setting by including segments with artifacts (see in Table 1).



Regarding the composition of the test cohort, the SAH patient population was 40% male
with a mean age of 56.4 years. The TBI population was 88% male with a mean age of
44.6 years, peaking between 30 and 40 years. In both cases, these proportions are generally
representative of the epidemiology observed in western Europe [21][22], although with a slight
overrepresentation of male patients in the TBI population.
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Figure 2: Data Partitioning

2.2. Annotation Process

The researchers in charge of the labeling process used a custom-made Python annotating
tool and had access to the entire ICP recordings. In the case of the test dataset, they also
had access to a synchronized auxiliary ABP signal as an interpretation aid. To build the
training set, one 600-second segment was manually extracted from each of the 59 recordings
included in the training test. To build the test set, two 100-second segments were manually
extracted from each of the 49 included records, with a minimum delay of 24 hours, creating
a total of 98 ICP segments. This extraction process was applied to cover a wide range of
waveforms based on three criteria: (i) mean ICP values, (ii) P2/P1 ratio, and (iii) the overall
waveform morphology as assessed by an Al-based classification [18]; see Table 1. For each
individual pulse in these segments, P1 and P2 were manually annotated when identifiable.
Otherwise, the pulse was classified either as non-interpretable or as an artifact. The training
dataset was entirely annotated by the first author (DL). In contrast, the annotation process
for the test dataset was designed as follows: (i) 94 ICP segments were evenly distributed
among three annotators (VG, GP, or AK), with each segment assigned to a single author.
(ii) The remaining 4 samples (accounting for 514 pulses) were labeled by each of the three
annotators to validate the inter-annotator agreement. Independently of this procedure, 10
recordings were reported as particularly noisy and difficult to interpret during the annotation
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process. Consequently, these records were re-labeled by each of the three annotators in order

to adopt the majority verdict.

Demographic data

Training dataset

Custom test dataset

Public test dataset

n 59 49 64

Age 53, std = 17 49, std = 12 -

Sex 19 (F) / 40 (M) 21 (F) / 28 (M) -

TBI 42 28 -

SAH 11 15 -

Other pathology 6 6 -

ICP segment statistics

Mean ICP (mmHg) 11.90, std = 9.7 8.88, std = 8.11 3.46, std = 7.28
Mean P2/P1 ratio 1.22, std = 0.59 1.44, std = 0.58 1.25, std = 0.34

Full dataset statistics

Valid Pulses
Non-Interpretable Pulses

49,380 (86.4%)

10,835 (82.7%)

11,172 (100%)

3,988 (6.9%) 838 (6.4%) -

Artifacts 3,889 (6.7%) 1,413 (10.8%) -
Pulse Shape Class
T1 - Normal 15,655 (27.7%) 2,151 (16.4% 1,486 (13.3%)

T2 - Possibly Pathological
T3 - Likely Pathological

17,041 (30.2%)

(
5,994 (53.7%)
9,554 (16.9%) (

(

3,232 (24.7%
( 2,811 (25.2%)
(

)
)
4,392 (33.6%)
)
)

T4 - Pathological 5,507 (9.74%) 1,692 (12.9% 514 (4.6%)
A+E - Artifacts / Errors 8,758 (15.5%) 1,619 (12.4% 367 (3.3%)
Total 57.257 13,086 11,172

Table 1: Dataset composition. The pulse shape class corresponds to the output of a deep-learning based
pulse waveform classification and is only used here as an indicator of the waveform diversity. The ”"A+E”
class includes more cases than the artifacts which where manually labeled, which explains the differences
between the two percentages. n — number of patients, std — standard deviation, TBI — traumatic brain
injury, SAH — subarachnoidal hemorrhage, ICP — intracranial pressure

2.3. Preprocessing

Prior to analyses, a fourth-order low-pass Butterworth filter with a cutoff set to 20 Hz was
applied to all of the recordings to remove high frequency noise. Cardiac pulses were isolated
using the modified Scholkmann algorithm [23]. Each pulse extracted from the filtered ICP
signals was preprocessed as follows:

1. A third-degree polynomial interpolation was applied to set the pulse length to 180
points and remove differences in pulse duration stemming from changes in heart rate.

2. The straight line passing through the pulse onset point and the pulse end point was
subtracted from the 180-point vector to remove the vertical misalignment of the pulse
stemming from the respiratory component of ICP.

3. The pulse height was normalized between 0 and 1 to remove differences in pulse am-
plitude.

Pulses extracted from the training cohort were randomly divided into three subsets: (i)
The first one (90%) was used to perform the actual training loop. (ii) The second one (5%)
was used as a validation subset. (iii) The last one (5%), also called the calibration dataset,
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was dedicated to the multiple risk control procedure. This separation was done so that all the
pulses collected from a given patient were exclusively dedicated to either the actual training
loop or the validation/calibration steps.

2.4. Data Augmentation

Synthetic examples were generated to increase the variability of the subset dedicated
to the training process. The data enhancement procedure consisted of adding multivariate
Gaussian noise to the first principal components of locally average pulses. More formally,
the procedure was as follows:

1. A principal component analysis (PCA) was performed on the real-world dataset de-
scribed earlier.

2. For each example z;, the n nearest neighbors according to the Euclidean distance
calculated on the p first principal components are identified. A p X p covariance matrix
> is calculated based on these n + 1 selected examples.

3. The barycenter of the n + 1 selected examples is calculated. A multivariate Gaussian
noise is added to it. The parameters of the associated distribution are the following:
The mean is set to 0 and the covariance matrix is set to ¥ multiplied by an inflation
factor k.

4. The generated point in the principal-component space is transformed back to the initial
space. This synthetic pulse is preprocessed as described in Section 2.3.

5. The generated pulse is assigned to the same class as x;. Where applicable, P1 and P2
are identified as the maxima of curvature that are the closest to the original P1 and
P2 marked on z;.

In practice, an entire new dataset was first generated. The parameters (n,p, k) were set
to (5, 10, 10). A more targeted augmentation was then performed to increase the presence
of artifacts in the training dataset. For this second procedure, the parameters (n, p, k) were
set to (5, 10, 50). In the end, the augmented training dataset consisted in 178,930 pulses,
among which 119,306 were valid pulses, 8000 were non-interpretable pulses, and 51,624 were
artifacts. This procedure did not affect the validation dataset or the test datasets.

2.5. Subpeak Detection Pipeline

Certain modifications were introduced to the initial pipeline developed by the authors [17]
to integrate methods of the Learn-then-Test framework. As described in the original paper,
two neural networks successively process the input data. The first one is a LSTM-based
classifier meant to eliminate artifacts and pulses without a calculable P2/P1 ratio. The
second one is a Long Short-Term Memory (LSTM)-based subpeak detector designed to output
a prediction interval for P1 and P2. Models were implemented using Pytorch 2.0 on Python
3.11.3. Experiments were run on a Windows 10 machine powered by WSL2 Ubuntu 20.04.5,
equipped with a 12th Gen Intel(R) Core(TM) i7-12850HX 2.10 GHz 16 CPU, an Nvidia RTX
A3000 12GB Laptop GPU, and 16 GB of RAM.

2.5.1. Pulse Selection

Firstly, preprocessed pulses are separated into three classes: (i) valid pulses, (ii) pulses
without a calculable P2/P1 ratio, and (iii) artifacts (see in Figure 3). Although only the valid
pulses are sent further to the detection step, we chose to distinguish three cases to facilitate
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Figure 3: Examples of the three pulse classes considered in the P2/P1 calculation pipeline. Both signals were
acquired with a sampling frequency of 100 Hz. ICP — intracranial pressure. ABP — arterial blood pressure.
I — 7valid pulse”. II — "non-interpretable pulse”. III — "artifact”.

the annotation process and to improve the neural network convergence. In the experiments,
we used a bidirectional LSTM network associated with a cross-entropy loss. The training
process was carried out over 100 epochs with a batch size of 512.

2.5.2. P1 and P2 Designation

On valid pulses, a quantile regression is performed by a second neural network to output
two prediction intervals around the positions of P1 and P2, respectively denoted as xp; and
xpy. More formally, for a pulse x, the neural network outputs the following four-component
vector: (Lp1 (), upi(x), Cpe(z), upa(x)). A prediction interval for zp; is given by [(y(x),
up1 ()], whereas a prediction interval for xpy is given by [pa(x), up(x)]. Afterwards, we
calculate the candidate set I' = (9;)!; that corresponds to the n positive local maxima of
the vector k(—1000%z), with x(s) = s”/(1+5")%?2 and where s’ and s” designate the first and
second discrete derivatives of a pulse s, respectively. The function x is generally called the
signed curvature of a signal. The candidate selection procedure is inspired from the original
MOCAIP algorithm [13]. Finally, xp; and zps are estimated as follows:

Tp1 = arg miﬂn[(% — L (2))” + (5 — up (2))]
ie[ln

and
Tpy = argmin(y; — Lpa(2))? + (7; — upa(2))?].
JjE[P1,n]

The final Zp; and Tpy are not necessarily included in their associated prediction intervals,
as in the example in Figure 4. The aim of calculating prediction intervals is to obtain a
bandwidth that can be used as an indicator of the model’s uncertainty. In the experiments,
we used a bidirectional LSTM network associated with two opposed 25%-pinball losses (i.e.
two asymetric L1-losses), designed to output a 50%-prediction interval. The training process
was carried out over 300 epochs with a batch size of 512.
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Figure 4: P1 and P2 designation process. The candidate subpeaks correspond to the positive local maxima
of the curvature function. P1 and P2 prediction intervals are calculated by the dedicated neural network
model. As described in this example, the chosen candidate may fall outside the prediction interval. The
detected P1 and P2 are identical to those annotated by the expert.

2.6. Conformal Risk Control
2.6.1. Risk Control Procedure

In this step, we seek to guarantee several statistical properties of the pipeline’s perfor-
mance. The risk control procedure is designed to identify unreliable predictions in order to
remove them from the final output. Three criteria are used to quantify the uncertainty of the
neural network. Firstly, the classifier outputs the probability f of having no P2/P1 ratio to
compute (i.e., due to missing subpeaks or the presence of artifacts). Secondly, the subpeak
detector outputs two research intervals, i.e. [(p1(x), upi ()] and [€p1(x), upi()]. In the follow-
ing, their respective widths are denoted as w; and w,. Consequently, thresholds on f, wy and
w9 can be used to reject predictions that are too uncertain and achieve statistical guarantees
on the final pipeline performance. More formally, let A = [Ag, A1, A2] € [0, 1] x [0, 180] x [0, 180]
be a triplet of parameters. The final decision function F, is defined as follows:

Fa(a) -1, if F(z) > Ao or Wi(z) > A; or Wa(z) > Ao
S ﬁ2(w)/131(:1:), otherwise.

We seek to simultaneously control both of the following risks:

Ro(A) = P(FA(X;) = —1]Y; # —1)



and

Ri(\) = (HLMIINIR(X@-)%%),

where || - || is the Euclidean norm. The probability R, corresponds to a valid pulse being
rejected at any step of the detection pipeline. R; corresponds to the probability that the
relative error on a displayed P2/P1 ratio will exceed a user-defined tolerance threshold e,
set to 10% in the present experiments. A P2/P1 ratio value displayed for a pulse without
recognizable P1 and/or P2 (i.e., not belonging to the valid pulse class) is automatically
considered as a failure. We seek to ensure that P(Ry < o) > 1 — § and that P(R; < ay) >
1 — 6. To do so, we look for a triplet A that allows the rejection of both following null
hypotheses:
HS - Ro()\) > ap and Hj, : Bi(N) > ay.

Under H} and H3, Ry and R; can be estimated using a calibration set of n pulses including
the subset M of the pulses with a calculable ratio (i.e. with Y # —1):

and

~ 1 < Y, — ]—“A( )
Fua) =13 |1 (17 > ¢) - a6 = -]
where |M| stands for the cardinal of the subset M and 1(-) denotes the indicator function.

Having defined a confidence level §, we can compute the p-values p% and pj, asso-
ciated with H$ and H}, respectively. A controlling-risk triplet A\ satisfies the criterion
pr = max(p},pi) < 8. Regarding the p-value computation, Ry can be modeled as the
mean of a sequence of iid Bernoulli variables. Consequently, p{ can be computed on the
calibration set such that p} = B (ﬁo,null()\)); where B denotes the cumulative distribution
function (CDF) of a binomial distribution B(|M|, ag). In contrast, p} has to be calculated
using the more conservative Hoeffding-Bentkus inequality p-value [24] due to its conditional
component.

2.6.2. Search for Valid Thresholds

In practice, we limit our triplet A research to the Cartesian product A = [0.01,0.02, ..., 0.99] x
[0.1,0.2, ..., 3]?, leaving more than 80,000 null hypotheses to be tested at a confidence level
1—4. To alleviate the risk of rejecting a null hypothesis by error, the Learn-then-Test frame-
work applies a family-wise error rate-(FWER) controlling algorithm to achieve the multiple
hypothesis test. We opted for a fixed-sequence test procedure [25], which consists of sequen-
tially testing a series of null hypotheses until one of them is accepted, i.e. its associated
p-value is superior to §. Afterwards, the set A* of the thresholds associated with a rejected
null hypothesis is considered as valid to achieve the desired risk control. The fixed-sequence
test procedure implies that the most unlikely null hypotheses appear first in the test sequence.
As in the case of three-dimensional thresholds, defining such a test sequence is not obvious,
we relied on the split-sequence test procedure [16] to identify a hypothesis sequence to test.
In a nutshell, this method involves randomly splitting the calibration dataset into two equal
parts, identifying some of the most promising triplets in the first part, and then evaluating
a testing path that prioritizes them in the second part



2.7. Baseline Comparison

We built several variants of the analysis pipeline described above. In each of these, the
LSTM-based networks were replaced by other machine learning algorithms. As with the
original pipeline, the classification task was taught to a first model, while a second was used
to perform a quantile regression. The chosen algorithms are the following:

e K-Neighbors (KNN): Let p be a pulse to analyze. For both classification and regression,
the output of KNN is estimated by interpolating the labels of the k-nearest neighbors
of p in the training set. Its extension to quantile regression can be done easily without
a dedicated training step.

e Extreme Gradient Boosting (XGB): This algorithm is a L2-regularized version of the
gradient boosted trees [26]. During the training step, a linear combination of decision
trees is built iteratively to minimize a loss function. As any gradient descent-based
algorithm, a quantile regression can be performed by using a pinball loss for the training
step.

e Random Forests (RF): Its decision function relies on the combination of a big number
of decision trees fitted on features randomly chosen during the training set. As RF
do not rely on a gradient descent, the modifications necessary to perform a quantile
regression are made at the evaluation step [26].

e Multi-Layer Perceptron (MLP): It corresponds to a simple neural network model where
several fully-connected layer are stacked linearly. A 10%-dropout was applied before the
output layer. As for the LSTM-based networks, the quantile regression was performed
using a pinball loss during the training step.

For each algorithm, the main parameters were chosen using a 5-fold cross-validation on the
training cohort as described in Table 2. Non-mentioned parameters were left by default.

Algorithm Classification Regression Implementation
KNN neighbors: 10, neighbors: 5, Scikit-learn,
distance-weighted: yes | distance-weighted: no | sklearn-quantiles
RF trees: 50 trees: 50 Sc1k1t—1earn',
sklearn-quantiles
max depth: 6, maximum depth: 6,
XGB L2-reg: 1.0 L2-reg: 0.0 XGBoost
layer width: 16, layer width: 16,
MLP hidden layers: 7 hidden layers: 3 PyTorch

Table 2: Implementation details of the machine learning models used in the analysis pipeline

The detailed experiments are available at the following address: https://github.com/donatien-
lege /ICP-SWAn-baseline
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3. Results

3.1. Definition of the Rejection Thresholds

3.1.1. Raw Performance in the Validation Dataset

Raw metrics were first calculated on both parts of the pipeline (i.e., the pulse classification
part and the subpeak detection part) using the validation dataset. The goal was to choose
appropriate risk levels g and «; for the calibration step. The results obtained with the
classifier on the validation dataset (n = 2,862 pulses) are presented as a binary classification
task. As the goal was to assess the ability of detecting pulses with a calculable P2/P1 ratio
against the rest, classes 1 (non-interpretable pulses) and 2 (artifacts) have been merged.
The receiver-operating characteristic (ROC) curve is presented in Figure 5A. Regarding the
subpeak detector performance, the distribution of the relative errors in the P2/P1 ratio is
presented in Figure 5B.
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Figure 5: Raw performance of the P2/P1 calculation pipeline on the validation dataset. A: Receiver-
Operating Characteristic Curve of the pulse selector. Metrics are calculated for a binary classification task
where the positive class corresponds to the pulses with a calculable P2/P1 ratio and the negative class to
non-interpretable pulses and artifacts combined. AUC — area under the curve. B: Distribution of the mean
relative errors of the P2/P1 ratio detected by the subpeak designator.

A first naive threshold for the classifier can be chosen by maximizing the difference be-
tween the true positive rate and the false positive rate on the validation dataset. Using the
ROC curve shown above, such a threshold was set to 0.81. Without additional criteria on
w; and ws, the corresponding triplet was defined as A" = (0.81,180,180). Ro(A™*) and
Ry (A1) were estimated as 1.3% and 16.6%, respectively.

3.1.2. Threshold Calculation

For a given data distribution, it is in general not possible to control any risk at any level
a. Therefore, the performance obtained in the validation dataset is used as an aid to choose
realistic levels of risk control. We chose our tolerance levels by rounding up to the nearest
5% the Ry and R, estimated with the validation dataset. Hence, the tolerance levels ag and
ay were set to 5% and 15%, respectively. A further calibration was also performed for less
restrictive thresholds, i.e. oy = 10% and o = 20%. The aim was to ensure that risk control

could be achieved for each model, but also to gain insight into the impact of the choice of
threshold.

11



For each calibration, the confidence level § was set to 0.05. The calibration dataset was
split into two equal parts C', and C5. A sequence of 200 hypotheses was built from C; to
perform a fixed-sequence testing procedure performed on C5. Among the threshold triplets
that allowed the rejection of both null hypotheses, we chose the triplet that appeared last
before the null hypotheses were accepted.

3.2. Model Comparison

Several performance indicators are compared between the two test datasets. In addition to
the estimated risks Ry and R used in the calibration procedure, (i) the mean absolute error of
the P2/P1 ratio (M AEpy/p1), (ii) the proportion of pulses where the absolute delay between
the actual P1 and the predicted P1 exceeded 10ms (AP1s10ms), and (iii) the proportion of
pulses where the absolute delay between the actual P2 and the predicted P2 exceeded 10ms
(AP2-10ms). To assess the impact of the data augmentation step, we also trained a full
LSTM-based pipeline, denoted LSTM*, without data augmentation.

3.2.1. Public Test Dataset

As seen in Table 3 the naive Ry and R; are already far below the user-defined tolerance
levels for most models. The calibration step was slightly detrimental for the neural-network
based models (i.e., MLP and LSTM) by increasing the R, without real improvements on
the other metrics. In contrast, it helped stabilize the decision rules of the tree-based models
by lowering Ry below 1%. Naive thresholds chosen for LSTM* and KNN were clearly too
restrictive with Ry exceeding 15%. Interestingly, the two LSTM-based pipelines achieved the
subpeak detection with the best precision on P1 (AP1.9ms < 5%) and the worst precision
on P2 (AP2-10 ms > 14%).

Further analysis can be done by grouping the metrics by pulse shape to identify the main
error sources. The detailed errors are presented in Table 4 to compare the performances
of the LSTM-based network before and after the calibration to ay = 5% and o; = 15%.
The calibration step mostly impacts the pipeline’s outputs for the pulses of shapes "T1”
and "A+E” for which the false rejects are more frequent. In particular, the Ry for the class
"A+E” goes from 8.17% to 17.98%.

3.2.2. Custom Test Dataset

In order to validate the inter-annotator agreement, 4 ICP recordings accounting for 514
pulses were independently labeled by three annotators (VG, GP, AK). The classification was
unanimous in 94.9% of the cases. For 481 pulses (91.9%), at least two out of three P2/P1
ratios were calculated. The average absolute difference between the P2/P1 ratios was 0.02
(std = 0.07). The results are presented in Table 5.

In this cohort, it is clear that the risk control could not be achieved for ay = 5% and
ay = 15%. Indeed, with the exception of the LSTM, all the pipelines exceeded the thresh-
olds chosen for Ry and R,. However, the calibration procedure helped homogenize the per-
formances across the different pipelines, especially in the cases of KNN and RF for which
the naive ROC-based thresholds were associated with high false negative rate (55.31% and
19.37%, respectively). As for the public test dataset, the different metrics grouped by pulse
shape are presented in Table 6.

In this more challenging cohort, the calibration step still had a cost on the false rejects
(the Ry passed from 1.68% to 4.94%) but also improved all the other metrics. As in the public
dataset, the shape "A+E” is the most impacted with a Ry going from 23.11% to 34.75%).
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Calibration || Ro (%) B (%) APlotoms (%) AP21oms (%) MAEpym
Croc 39.20  1.86 5.77 6.92 0.015
KNN Cs_15 032  3.24 9.62 13.05 0.024
Cho20 1.92 208 9.36 12.59 0.023
Croc 6.15 299 8.02 1111 0.02
RF Cs 15 072  3.62 9.76 12.40 0.023
Cho—20 246  2.85 9.51 11.53 0.019
Croc 266  3.01 9.44 11.61 0.02
XGB Cs_15 0.21 3.44 9.88 12.27 0.022
Cho—20 0.91 3.23 9.79 11.98 0.021
Croc 097 289 9.40 12.94 0.02
MLP Cs_15 8.41 2.93 8.85 12.04 0.020
Cho—20 030  2.99 9.57 13.06 0.021
Croc 0.36 1.89 3.70 14.94 0.016
LSTM Cs_15 3.52 1.88 3.71 14.70 0.016
Cho-20 7.38 1.88 3.71 14.43 0.016
Croc 1744 486 414 18.90 0.043
LSTM* |  Cs_15 711 4.92 4.64 18.23 0.043
Cho-20 9.83  5.06 4.72 18.58 0.044

Table 3: Model comparison on the public test dataset. M AEpy,p; — Mean Absolute Error on the calculated

P2/P1 ratio. E) — proportion of the pulses with a calculable P2/P1 ratio rejected by error. ]/%\1 — fraction
of the accepted pulses without a P2/P1 ratio or whose mean relative error on the P2/P1 ratio is greater than
10%. APls19 ms — Proportion of the valid pulses whose P1 detection delay exceeds 10 ms. AP2<19 ms —
Proportion of the valid pulses whose P2 detection delay exceeds 10 ms. KNN — K-Nearest Neighbors, RF
— Random Forests, XGB — eXtreme Gradient Boosting, MLP — MultiLayer Perceptron, LSTM — Long
Short-Term Memory, LSTM* — LSTM-based detection pipeline trained without data augmentation. Croc
— Naive calibration. C5_15 — Calibration performed with ag = 5% and a7 = 15%. Cig_29 — Calibration
performed with ap = 10% and a1 = 20%.

Naive thresholds (Croc) Calibrated thresholds (Cs_15)

Shape RQ(%) R1 (%) AP1>10 ms AP2>10 ms I\’IAEpg/pl RO(%) R1 (%) AP1>10 ms AP2>10 ms I\’IAEPQ/PL
T1 0.34 2.36 0.41 14.11 0.010 9.96 2.24 0.37 15.17 0.010
T2 0.03 0.60 3.46 13.84 0.008 2.65 0.58 3.43 13.33 0.008
T3 0.11 0.71 1.99 10.76 0.014 0.71 0.72 2.01 10.46 0.013
T4 0.0 18.09 21.98 34.05 0.013 0.00 18.09 21.98 34.05 0.134

A+E 8.17 7.72 8.90 43.92 0.029 17.98 8.64 8.31 45.18 0.029
all 0.36 1.89 3.70 14.94 0.016 3.52 1.88 3.71 14.70 0.016

Table 4: Comparison of the performance metrics of the LSTM-based P2/P1 calculation pipeline using the
naive and calibrated thresholds in the public test dataset. MAEp; p; — Mean Absolute Error on the
calculated P2/P1 ratio. ]/%\0 — proportion of the pulses with a calculable P2/P1 ratio rejected by error. ]/%\1
— fraction of the accepted pulses without a P2/P1 ratio or whose mean relative error on the P2/P1 ratio
is greater than 10%. APls19ms — Proportion of the valid pulses whose P1 detection delay exceeds 10
ms. AP2<10 ms — Proportion of the valid pulses whose P2 detection delay exceeds 10 ms. Croc — Naive
calibration. C5_15 — Calibration performed with ag = 5% and a7 = 15%.

In the other pulse shapes, the calibration had a homogeneous effect, increasing the accuracy
of subpeak detection at the cost of a slightly higher rate of erroneous rejects.
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Calibration || Ro (%) B (%) APlotoms (%) AP21oms (%) MAEpym
Croc 55.31  9.18 17.43 21.38 0.042
KNN Cs_15 0.93  19.89 20.44 26.91 0.087
Clo-20 3.90  18.59 20.22 26.28 0.085
Croc 19.37  14.08 19.72 27.960 0.061
RF Cs 15 1.62 2051 21.01 30.24 0.085
Clo-20 4.44  18.83 20.33 29.04 0.079
Croc 557  19.21 21.81 30.64 0.094
XGB Cs_15 038  22.33 22.50 31.52 0.101
Clo-20 1.93  21.26 22.20 31.06 0.100
Croc 6.28  17.02 20.48 25.61 0.076
MLP Cs 15 10.73  15.38 20.12 24.49 0.067
Clo-20 0.90  20.43 21.09 26.97 0.088
Croc 1.68 1451 7.32 14.39 0.063
LSTM Cs 15 494  13.52 6.74 13.87 0.061
Clo-20 10.68  12.85 6.60 12.900 0.060
Croc 704  17.23 9.49 15.09 0.081
LSTM* |  Cs_15 467  17.96 9.77 15.53 0.09
Clo-20 537 17.73 9.59 15.35 0.088

Table 5: Comparison of the performance metrics of the P2/P1 calculation pipeline using the naive and
calibrated thresholds in the public test dataset. MAEpy,p; — Mean Absolute Error on the calculated

P2/P1 ratio. E) — proportion of the pulses with a calculable P2/P1 ratio rejected by error. ]/%\1 — fraction
of the accepted pulses without a P2/P1 ratio or whose mean relative error on the P2/P1 ratio is greater than
10%. AP1s19 ms — Proportion of the valid pulses whose P1 detection delay exceeds 10 ms. AP2<19 ms —
Proportion of the valid pulses whose P2 detection delay exceeds 10 ms. Croc — Naive calibration. C5_15
— Calibration performed with ag = 5% and a; = 15%.

Naive thresholds (Croc) Calibrated thresholds (Cs-15)

Shape || Ro(%) Ri(%) APlsigms AP2510ms MAEP2/P1 Ro(%) Ri(%) APlsigms AP2510ms MAEP2/P1
T1 0.54 18.48 2.42 28.17 0.037 4.76 18.16 2.08 28.02 0.034
T2 0.71 9.42 7.29 13.93 0.031 4.51 8.74 6.54 13.22 0.028
T3 0.43 3.98 4.04 5.77 0.028 2.25 3.16 3.60 5.61 0.026
T4 0.54 35.20 20.16 18.44 0.25 2.49 34.96 20.16 18.17 0.253

A+E 23.11  43.04 23.32 30.77 0.18 34.75  40.64 20.96 28.89 0.167
all 1.68 14.51 7.32 14.39 0.063 4.94 13.52 6.74 13.87 0.061

Table 6: Comparison of the performance metrics of the LSTM-based P2/P1 calculation pipeline using the
naive and calibrated thresholds in the custom test dataset. MAFEpy/py — Mean Absolute Error on the

calculated P2/P1 ratio. ]/%B — proportion of the pulses with a calculable P2/P1 ratio rejected by error. ]/%\1
— fraction of the accepted pulses without a P2/P1 ratio or whose mean relative error on the P2/P1 ratio
is greater than 10%. APls19ms — Proportion of the valid pulses whose P1 detection delay exceeds 10
ms. AP2<19 ms — Proportion of the valid pulses whose P2 detection delay exceeds 10 ms. Croc — Naive
calibration. Cs_15 — Calibration performed with ag = 5% and a; = 15%.

3.3. Continuous P2/P1 evaluation

To produce real-world examples of continuous P2/P1 calculation with the trained models,
ICP-SWAn was retrospectively run over the two first days of ICP monitoring in the testing
cohort. The training cohort was left aside for two reasons: (i) about a half of the recordings
only lasted a few hours, (ii) the proportion of missing values could be underestimated on
signals used to train the models. In parallel to the P2/P1 ratio, we also calculated the pulse

14



amplitude (AMP) and the pulse shape index (PSI) based on the automated morphological
classification. The PSI correspond to average class of the cardiac pulses included in a 5-
min average window with a 10-second shift. For sake of simplicity, we applied the same
moving average to the P2/P1 ratio and to the amplitude. The mean value of the window
was calculated only if it contained less than 50% of missing values. An example of such a
retrospective monitoring is given in Figure 6.
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Figure 6: Example of a 2-day retrospective intracranial compliance monitoring

In practice, the P2/P1 monitoring can be discontinuous if too many pulses are rejected.
As shown in Figure 7 A, the amount of time without P2/P1 can vary a lot between different
patients. Among the 49 investigated monitorings, the proportion of missing P2/P1 values
exceeded 10% in a dozen of cases. Only one highly noisy monitoring contained more than
50% of missing values. Interestingly, AMP was weakly correlated with PSI (0.15) and P2/P1
ratio (0.22) (see Figure 7 B).

Regarding the feasibility in a real-time setting, an on-boarded version of ICP-SWAn was
implemented on a 600-MHz i.MX6 microprocessor without a graphics card. The ICP signal
was analyzed by 1-min ICP batches. The average time of analyzing a batch was 2.32 sec (max:
5.5 sec). In comparison, on a regular laptop equipped with a GPU (The exact specifications
are given in Section 2.5), the average time for processing a batch was 0.028 sec (max: 0.040
sec).

4. Discussion

With ICP-SWAnR, we proposed a P1 and P2 subpeak detection approach for the ICP
signal that incorporates selective regression to assess the confidence of predictions and exclude
uncertain cases from the final output. The main goal is to avoid displaying results that are
likely to be erroneous in an environment that is already saturated with information, such
as [CUs. In practice, our ICP waveform analysis pipeline is designed to isolate individual
pulses from the input univariate ICP signal and return the associated P2/P1 ratio values
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Figure 7: A: Proportion of missing P2/P1 values among 49 2-day monitorings. B: Correlation map between
the proportion of missing values (NaN) and three indicators of intracranial compliance.

when the confidence is high enough. To do this, a calibration procedure was performed
on a dedicated pulse subset to simultaneously control two risks at a confidence level of
95%. The expectations for both risks were determined based on the performances of the
non-calibrated pipeline on a validation subset. Firstly, we wanted to guarantee that the
probability Ry of rejecting a pulse with a calculable P2/P1 ratio wass less than 5%. Secondly,
we wanted to guarantee that the probability R, of returning a highly erroneous P2/P1 ratio
(i.e., associated with a relative error > 10% or calculated on an invalid pulse) was less
than 15%. As the calibration procedure is model-agnostic, we also compared our LSTM-
based pipeline with four other machine learning (ML) algorithms able to perform a quantile
regression. The quantile estimation can either be performed directly at the evaluation phase
(such as for KNN or RF) or by using an asymmetric loss during the training phase (XGB,
LSTM and MLP). Since the risk control cannot be achieved for any ML algorithm at any
threshold, we also compared the performances of the algorithm on a less restrictive calibration
to ensure that the full calibration procedure could be run adequately on each ML algorithm
(seeking to guarantee that RO < 10 % and R1 < 20 %). Performances were evaluated
on two distinct datasets, comprised of a total of 113 patients admitted to the NICU. The
first dataset was a 11,172-pulse public dataset, whereas the second one, consisting of 13,086
pulses, was selected to represent an important proportion of the difficulties encountered in
real-time monitoring scenarios and included 10.8% of artifacts and 6.4% of pulses without
a calculable P2/P1 ratio. A reference Al-based morphological classification [18] was used
to assess the waveform diversity in both datasets. As presented in Table 1, the public
dataset exhibited comparatively lower ICP levels (3.46 mmHg vs 8.88 mmHg, on average),
lower P2/P1 ratios (1.25 vs 1.44, on average), and a higher proportion of pulses of type
T2 - 7possibly pathological” with clearly visible P1 but elevated P2 (53.7% vs 24.7%). We
considered that the influence of the sampling rate in the acquisition of the different ICP
signals were negligible on the pipeline performances for two reasons: (i) all the signals were
acquired with a sampling rate superior to 50Hz [27] and (ii) the pulses were interpolated to
180 points at the preprocessing step.

On the public test dataset, the calibration step tended to homogenize the performances of
all the pipelines, although neural network-based ones exhibited slightly higher false negative
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rates (Ry = 3.52%). The MAE on the P2/P1 comprised between 0.016 (LSTM) and 0.023
(KNN and RF). In the specific case of the LSTM-based pipeline, the calibration procedure
had little to no effect on detection performances, but increased by 3.12% ‘the percentage of
excluded pulses. The results can be explained by the baseline values of Ry and R; in this
dataset that were already far below the defined tolerance thresholds. If all of the detection
pipelines met the statistical expectations, it is noticeable that the data augmentation step
exhibited clear benefits on the performances of the calibrated LSTM-based pipeline, with Ry
passing from 7.11% to 3.52% and R; passing from 4.92% to 1.88%.

In contrast, our custom test dataset appeared to be more difficult to process. In this
setup, Ro and R1 were estimated as 4. 92% and 13.52%, respectively, which appeared to be
the best compromise between Ro and R1 across all the trained pipelines. Retrospectively, the
expected risk control was only achieved for the LSTM pipeline. Relaxing the two thresholds
to 10% and 20%, respectively, allowed us to run the calibration procedure adequately on each
pipeline, by building an appropriate testing path with contrasted p-values among the tested
triplets. However, for all the ML algorithms, it appeared that maintaining the R; below 15%
could only be achieved with a significant cost on the negative rate. Overall, errors were mainly
concentrated in the pulse shape classes T1 ("normal”), T4 (”likely pathological”) and A+E
("artifacts or errors”). T1 corresponds to the pulses associated with the highest ICC, where
P1 is dominant and P2 is often less pronounced. In contrast, T4 corresponds to triangular
waveforms in which the exact position of P1 can be difficult to locate. Finally, pulses of type
A+E are close to the rejection boundary, and are therefore often difficult to interpret. As a
result, for both data sets, the calibration process first increased the proportion of false rejects
in the A+E class. In contrast, all the other metrics improved evenly across the remaining
classes. In this sense, calibrating mainly helped to identify a few outlying prediction. In
addition, false rejections mostly occur when the human decision itself is uncertain.

A major difficulty in this study was presented by the annotation process. Marking sub-
peaks in the ICP signal may seem easy enough and largely independent of the operator,
especially when synchronized with the ABP signal that facilitates the positioning of P1.
Unfortunately, some cases remain difficult to interpret and there is no way to assess the
underlying physiological mechanisms; even though all the annotators have reported the diffi-
culty in labeling some of the ICP segments (10 out of 98 were even re-labeled independently
by all the annotators), the overall level of human confidence is not easy to quantify. In prac-
tice, these difficult cases are not distributed evenly among the ICP recordings. Since changes
in the ICP waveform morphology are generally slow and progressive (at the scale of hours),
uninterpretable waveforms tend to occur in a limited subset of patients, but for a significant
period of time, compromising the use of this information in these situations.

Learn-then-Test methods were added to the pipeline to identify unreliable predictions. In
other words, we tried to find an optimal trade-off between the risk of excessive abstention from
subpeak detection and the risk of misleading P2/P1 results. In the context of intensive care,
we believe that a decision that leans toward the former risk is more acceptable. In addition,
as the ICP waveform is generally averaged over several minutes [28], isolated erroneous pulse
deletions have little to no effect on the information given to the clinician. Throughout our
P2/P1 ratio calculation pipeline, three quality checks are performed to ensure the validity
of a prediction. The first one corresponds to the classifier output, whereas the second and
the third criteria rely on the widths of the respective prediction intervals for P1 and P2. In
the future, more complex criteria can be defined and integrated into the calibration step in
the same way. Furthermore, it would be possible to define additional risks to be controlled.
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We chose to focus on a proportion of misleading values (i.e., those with an elevated relative
P2/P1 error or corresponding to non-identifiable P1 and P2) to account for the occurrence
of artifacts, but other criteria could be chosen, for example, based on the MAE of the P2/P1
ratio. The decision to control a relative error is driven by the clinical interpretation of
the P2/P1 ratio: more tolerance can be shown with higher values since the waveform is
characteristic of an impaired ICC anyway. Overall, calibration becomes more interesting
when dealing with results close to predefined statistical limits. Due to its effect on the false-
negative rate, its use is mainly suitable in a real-time setup where out-of-distribution cases
may occur without the possibility of human correction.

Our experiments on continuous ICP monitorings show that purely morphological indices
such as PSI and P2/P1 ratio only weakly correlate with AMP. Over 49 2-day recordings, the
correlation did not exceed 0.22 between the mean P2/P1 ratio and the mean AMP, which
confirm that these indices do not exactly reflect the same biomechanical properties of the
brain [29]. In contrast, mean PSI and mean P2/P1 ratio showed a good agreement with
a Pearson correlation of 0.79. However, as shown in Figure 6, the P2/P1 ratio can show
more " physiological” variations along the monitoring due to its continuous nature. Further
investigations are needed to assess the clinical relevance of these subtle modifications in the
ICP waveform.

5. Conclusion

We have developed the ICP-SWAn pipeline to calculate the P2/P1 ratio on univariate
ICP signals in real time. Three quality checks are performed on each prediction to identify
uncertain situations where no result should be displayed to the clinician. The algorithm’s
performance was assessed both on a 64-patient public benchmark dataset and on a 49-patient
custom dataset, where artifacts and pulses with missing peaks were over-represented com-
pared to raw ICP recordings. Errors occurred primarily in ICP waveforms associated with
both ends of the intracranial compliance spectrum. Overall performance was consistent with
the a priori statistical expectations.
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