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Abstract: This study presents two local approaches for discretizing linear mechanical port-
Hamiltonian systems while preserving their structure. These methods employ mixed Finite
Element Method (FEM) schemes with weakly enforced Dirichlet and Neumann boundary
conditions. The first approach is based on the Hellinger-Reissner variational principle, while the
second utilizes the modified Linked Lagrange Multiplier method. Within the framework of each
approach, we present two finite-dimensional models, each aligning with distinct representations
of the infinite-dimensional system. The results are validated and compared through simulations
using a 2D elasticity model as example.
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1. INTRODUCTION

Port-Hamiltonian systems (PHS) are passive systems that
have a structure that can be directly associated with
physics (Duindam et al., 2009). Infinite-dimensional PHS
were first defined on Stokes-Dirac structures (van der
Schaft and Maschke, 2002), but PHS have also been
defined in bundle structures and are often called port-
Lagrangian systems (PLS) (Ennsbrunner and Schlacher,
2005; Nishida and Yamakita, 2005; Schöberl and Siuka,
2014; Schöberl and Schlacher, 2015). For linear mechanical
systems, the main differences with respect to those defined
on Stokes-Dirac structures is that the system has an in-
terconnection matrix which is symplectic canonical and
the differential dependencies are in the Hamiltonian (for
more details see Schöberl and Siuka (2013)). Structure-
preserving spatial discretization methods are applied to
obtain finite-dimensional PHS that are generally used for
simulations and control design purposes. Many discretiza-
tion techniques have been reported that preserve the in-
terconnection structure and passivity, such as those based
on the finite element method (FEM) as the mixed FEM
approaches (Golo et al., 2004; Thoma and Kotyczka, 2022;
Kinon et al., 2023), partitioned FEM (Cardoso-Ribeiro
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et al., 2018; Brugnoli et al., 2020, 2022a), exterior calculus
FEM (Brugnoli et al., 2022b), and others based on pseu-
dospectral methods (Moulla et al., 2012), finite differences
(Trenchant et al., 2018) or finite volumes (Serhani et al.,
2018), among others. Regarding mixed FEM, in (Thoma
and Kotyczka, 2022) is globally applied the Hellinger-
Reissner (H-R) variational principle where Dirichlet and
Neumann boundary conditions are weakly imposed. Var-
ious other methods for weakly enforcing both Dirichlet
and Neumann boundary conditions for linear mechani-
cal systems using FEM include the Lagrange multipli-
ers methods (Babuška, 1973a), penalty method (Babuška,
1973b), Nitsche’s method (Embar et al., 2010), Linked
Lagrange Multiplier (LLM) method and its modified ver-
sion (Gerstenberger and Wall, 2010; Baiges et al., 2012),
among others. For a more comprehensive review, refer
to (Lu et al., 2019). The contributions of this article
focuses on the structure-preserving spatial discretization
of a class of linear mechanical PHS defined in (Ponce
et al., 2023) using two mixed FEM approaches to obtain
finite-dimensional port-Hamiltonian and port-Lagrangian
models. Similar to (Thoma and Kotyczka, 2022), the first
proposed approach is based on the local application of
the H-R variational principle, and the second approach
relies on the application of the modified LLM method. The
document is organized as follows: the considered class of
infinite-dimensional PHS is presented in Section 2. Section
3 introduce the discretization approaches and the finite-
dimensional models for each. Section 4 presents numerical
simulations of a 2D elasticity model using the different



approaches. Finally, Section 5 provides some conclusions
and perspectives for future work.

2. BACKGROUND

The class of infinite-dimensional PHS considered are those
presented in (Ponce et al., 2023) associated with a first
order differential operator F .

Definition 1 Let x = {ζ1, . . . , ζℓ} be a set of pair-wise
perpendicular coordinate axes, Ω ⊂ Rℓ an open set,
v(x) ∈ Rm and w(x) ∈ Rn two vector functions. The first
order differential operator F and its formal adjoint F∗ are
given by

F w(x) =P0 w(x) +
∑ℓ

k=1 Pk ∂kw(x) (1)

F∗v(x) =P⊤
0 v(x)−

∑ℓ
k=1 P

⊤
k ∂kv(x) (2)

with ∂k = ∂/∂ζk and P0, Pk ∈ Rm×n.

Lemma 1 Consider that Definition 1 holds. Let be Ω ⊂ Rℓ

an ℓ-dimensional domain, its boundary ∂Ω and Ω̄ = Ω∪∂Ω
the closure, such that x ∈ Ω and s ∈ ∂Ω. Then for any
v(x) ∈ Rm and w(x) ∈ Rn defined in Ω̄ we have that∫

Ω

v(x)⊤Fw(x)−w(x)⊤F∗v(x)dx=

∫
∂Ω

w(s)⊤P∂(s)v(s)ds (3)

with P∂(s) ∈ Rn×m a boundary valued matrix given by

P∂(s) =
∑ℓ

k=1 P
⊤
k n̂k(s) (4)

where n̂k(s) is the component of the outward unit normal
vector to the boundary projected on the axis ζk.

The considered class of infinite-dimensional linear port-
Hamiltonian systems are of the form[

ṗ
ϵ̇

]
︸︷︷︸
ẋ

=

[
0 −F∗

F 0

]
︸ ︷︷ ︸
J=−J ∗

[
ep
eϵ

]
︸︷︷︸
δxH

+

[
Bd

0

]
︸ ︷︷ ︸

G

ud

yd = G∗δxH = B∗
d(ep)

(5)

H(p, ϵ) =
1

2

∫
Ω

p⊤M−1p+ ϵ⊤Kϵ dx (6)

and the power exchange with the environment is given by

∂tH =

∫
Ω

y⊤d ud dx+

∫
∂Ω

e⊤p P∂ eϵ ds (7)

where x(x, t) ∈ Rn+m is the state variable, J =−J ∗ is the
skew-adjoint differential operator (interconnection opera-
tor), Bd is an input map operator, ud, yd are the power-
conjugated distributed input and output, respectively. The
total energy of the system (5) is given by the Hamiltonian
H(p, ϵ), where M(x) = M(x)⊤ > 0 ∈ Rn×n is the
distributed mass matrix, and K(x) = K(x)⊤ > 0 ∈ Rm×m

is the distributed stiffness matrix. The state variable is
composed by p(x, t) = M(x)ṙ(x, t) ∈ Rn which is the
generalized momentum with r(x, t) ∈ Rn the generalized
displacement field, and ϵ(x, t) = F r(x, t) ∈ Rm which
is the generalized strain field. The efforts are given by
ep(x, t) = δpH = M(x)−1 p(x, t) = ṙ(x, t) which repre-
sents the generalized velocity field, and eϵ(x, t) = δϵH =
K(x) ϵ(x, t) = K(x)F r(x, t) which represents the general-
ized stress field.

Definition 2 Consider the infinite-dimensional PHS in
(5). Assume that ∂Ω = ∂ΩD∪∂ΩN and ∂ΩD∩∂ΩN = {ϕ}
with {ϕ} the empty set, where ∂ΩD and ∂ΩN are the

portions of the boundary where Dirichlet and Neumann
boundary conditions are imposed, respectively. Then, for
a mixed boundary problem the second term in (7) can be
written equivalently as∫

∂Ω

e⊤p P∂ eϵds =

∫
∂ΩN

y⊤τ τ∂ ds+

∫
∂ΩD

v⊤∂ yv ds (8)

with
τ∂(s, t) = P∂(s)eϵ(s, t) on ∂ΩN (9)

v∂(s, t) = ep(s, t) on ∂ΩD (10)

yτ (s, t) = ep(s, t) on ∂ΩN (11)

yv(s, t) = P∂(s)eϵ(s, t) on ∂ΩD (12)

where τ∂(s, t) ∈ Rn is the imposed generalized boundary
traction, v∂(s, t) ∈ Rn is the imposed generalized bound-
ary velocity. Then, the boundary inputs of (5) are given
by u∂(s, t) = [τ∂(s, t)

⊤ v∂(s, t)
⊤]⊤, and the boundary

outputs by y∂(s, t) = [yτ (s, t)
⊤ yv(s, t)

⊤]⊤.

An alternative representation of the system (5)-(6) is
presented in (Ponce et al., 2023), where the model has
the structure of a field port-Lagrangian system defined as[

ṗ
ṙ

]
︸︷︷︸
ż

=

[
0 −1
1 0

]
︸ ︷︷ ︸
J=−J⊤

[
ep
er

]
︸︷︷︸
δzH

+

[
Bd

0

]
︸ ︷︷ ︸

G

ud

yd = G∗δzH = B∗
d(ep)

(13)

where z(x, t) = [p(x, t)⊤ r(x, t)⊤]⊤ ∈ R2n is the state vari-
able, the interconnection operator J = −J⊤ is algebraic
(canonical symplectic), and the differential part is now in
the Hamiltonian H(p, r) which is given by

H(p, r) =
1

2

∫
Ω

p⊤M−1p+ (F r)⊤K (F r) dx (14)

where er(x, t) = F∗(K(x)F r(x, t)) is the variational
derivative of the Hamiltonian H(p, r) respect to r(x, t) and
represents the generalized internal loads.

3. SPATIAL DISCRETIZATION

This section presents two different two-fields based mixed
FEM approaches for discretizing the PHS in (5) with
Hamiltonian (6). The first approach is based on the local
form of the H-R variational principle, while the second
relies on the modified LLM. Since for some applications
it may be useful to have the generalized displacements as
a state variable, and/or consider it as a boundary input
instead of velocities, for each approach we present their
adapted versions. The modifications lead us to discretized
models with these characteristics and that preserve the
structure of the infinite-dimensional PLS in (13).

Remark 1 For any linear mechanical PHS in (5) with F
of dimension (m × n), a necessary condition to apply the
following two-fields based mixed FEM approaches is that
m ≥ n. (Zienkiewicz et al., 2005, Ch.10.4.3).

3.1 Based on H-R variational principle

The discretization approaches in this section are built
upon the weak form of (5) originally introduced in (Thoma
and Kotyczka, 2022) for the general linear elasticity prob-



lem. The local weak form (defined in each finite element
e) is given by

δP e
p (ep, eϵ) =

∫
Ωe

δeep · (ṗe + F∗eeϵ −Bd(u
e
d)) dx (15)

+

∫
∂Ωe

N

δeep · (P∂e
e
ϵ − τe∂) ds

δP e
ϵ (ep, eϵ) =

∫
Ωe

δeeϵ · (ϵ̇e −Feep) dx (16)

+

∫
∂Ωe

D

δeeϵ · P⊤
∂ (eep − ve∂) ds

where the superscript (·)e denotes that the variable is
locally defined in the element e.

Proposition 1 The mixed Galerkin discretization of (5)
with Neumann and Dirichlet boundary conditions (9) and
(10), respectively, based on the weak formulation (15)-
(16), using trial and test functions from the same bases

eep(x, t) = Ne
p (x) ê

e
p(t), δe

e
p(x, t) = Ne

p (x) δê
e
p(t) (17)

eeϵ(x, t) = Ne
ϵ (x) ê

e
ϵ(t), δe

e
ϵ(x, t) = Ne

ϵ (x) δê
e
ϵ(t) (18)

τe∂(s, t) = Ne
τ∂
(s) τ̂e∂(t), u

e
d(x, t) = Ne

d (x) û
e
d(t) (19)

ve∂(s, t) = Ne
v∂
(s) v̂e∂(t), (20)

leads to the finite-dimensional PHS of the form[
˙̂p(t)
˙̂ϵ(t)

]
︸ ︷︷ ︸

˙̂x(t)

=

[
0 −F̂⊤

F̂ 0

]
︸ ︷︷ ︸

J=−J⊤

[
êp(t)
êϵ(t)

]
︸ ︷︷ ︸
∇x̂Ĥ(t)

+

[
B̂d B̂τ 0

0 0 B̂v

]
︸ ︷︷ ︸

Ĝ

[
ûd(t)
τ̂∂(t)
v̂∂(t)

]
︸ ︷︷ ︸

û(t)

ŷ(t) = Ĝ⊤∇x̂Ĥ(t) =

B̂⊤
d êp(t)

B̂⊤
τ êp(t)

B̂⊤
v êϵ(t)

 =

[
ŷd(t)
ŷτ (t)
ŷv(t)

] (21)

where p̂(t) = M̂v êp(t) and ϵ̂(t) = K̂−1
ϵ êϵ(t) are the discrete

generalized momentum and strain variables, respectively.
The discrete Hamiltonian Ĥ(p̂, ϵ̂) is given by

Ĥ(p̂, ϵ̂) =
1

2
p̂(t)⊤M̂−1

v p̂(t) +
1

2
ϵ̂(t)⊤K̂ϵ ϵ̂(t) (22)

and the energy balance is given by
˙̂
H(t) = ŷd(t)

⊤ûd(t) + ŷτ (t)
⊤τ̂∂(t) + ŷv(t)

⊤v̂∂(t) (23)

The involved global matrices are obtained by assembling
and are defined as

M̂v =

Ne∑
e=1

(Le
p)

⊤
∫
Ωe

Ne
p (x)

⊤M(x)Ne
p (x) dxL

e
p (24)

K̂−1
ϵ =

Ne∑
e=1

(Le
ϵ)

⊤
∫
Ωe

Ne
ϵ (x)

⊤K(x)−1Ne
ϵ (x) dxL

e
ϵ (25)

F̂⊤ =

Ne∑
e=1

(Le
p)

⊤
(∫

Ωe

(FNe
p (x))

⊤Ne
ϵ (x) dx (26)

−
∫
∂Ωe

D

Ne
p (s)

⊤P∂(s)N
e
ϵ (s) ds

)
Le
ϵ

B̂d =

Ne∑
e=1

(Le
p)

⊤
∫
Ωe

Ne
p (x)

⊤Bd(N
e
d (x)) dx (27)

B̂τ =

Ne∑
e=1

(Le
p)

⊤
∫
∂Ωe

N

Ne
p (s)

⊤Ne
τ∂
(s) ds (28)

B̂v =

Ne∑
e=1

(Le
ϵ)

⊤
∫
∂Ωe

D

Ne
ϵ (s)

⊤P∂(s)
⊤Ne

v∂
(s) ds (29)

with Le
p and Le

ϵ the classic global-to-local boolean location
matrices of FEM, Ne is the number of elements in the

mesh, M̂v is the discrete mass matrix, K̂ϵ is the discrete
strain-based stiffness matrix, F̂ is the discretized operator,
and B̂d, B̂τ and B̂v are the input maps of ûd(t), τ̂∂(t) and
v̂∂(t), respectively.

Proof. Using Lemma 1 in (15) it becomes

δP e
p (ep, eϵ) =

∫
Ωe

δeep · ṗe + δϵ̇e · eeϵ − δeep ·Bd(u
e
d) dx

−
∫
∂Ωe

D

δeep · P∂e
e
ϵ ds−

∫
∂Ωe

N

δeep · τe∂ ds

Then, using δϵ̇e(x, t) = F δeep(x, t) = (FNe
p (x))δê

e
p(t),

êep(t) = Le
pêp(t) with êp(t) the global vector that gathers

all êep(t) of all elements e (analogously the same to obtain
the rest of global vectors δêp(t), ûd(t), τ̂∂(t)), the global

form of (15) becomes δPp(ep, eϵ) =
∑Ne

e=1 δP
e
p (ep, eϵ) = 0

and is given by

δPp = δê⊤p [M̂v
˙̂ep + F̂⊤êϵ − B̂dûd − B̂τ τ̂∂ ] = 0 (30)

Similarly, δPϵ(ep, eϵ) =
∑Ne

e=1 δP
e
ϵ (ep, eϵ) = 0 is given by

δPϵ = δê⊤ϵ [K̂
−1
ϵ

˙̂eϵ − F̂ êp − B̂v v̂∂ ] = 0 (31)

where the constitutive relation ϵ̇e(x, t) = K(x)−1ėeϵ(x, t)
was imposed strongly. The Hamiltonian in each element
can be expressed as

He(eep, e
e
ϵ) =

1

2

∫
Ωe

(eep)
⊤M(x)eep + (eeϵ)

⊤K(x)−1eeϵ dx

then, the total energy of the system is H =
∑Ne

e=1 H
e, and

the discrete Hamiltonian is given by

Ĥ(êp, êϵ) =
1

2
ê⊤p M̂v êp +

1

2
ê⊤ϵ K̂

−1
ϵ êϵ (32)

Finally, with the definitions of the discrete generalized
momentum and strain variables, equations (30) and (31)
define the finite-dimensional PHS in (21), and (32) defines
the Hamiltonian in (22).

Corollary 1 Since ep(x, t) = ṙ(x, t), we define the discrete

generalized velocity as ˙̂r(t) = êp(t). Therefore, the PHS in
(21) can be extended to consider it explicitly in the state
vector, resulting in ˙̂p(t)

˙̂ϵ(t)
˙̂r(t)


︸ ︷︷ ︸

˙̂x(t)

=

0 −F̂⊤−I

F̂ 0 0
I 0 0


︸ ︷︷ ︸

J=−J⊤

[
êp(t)
êϵ(t)
0

]
︸ ︷︷ ︸
∇x̂Ĥ(t)

+

B̂d B̂τ 0

0 0 B̂v

0 0 0


︸ ︷︷ ︸

Ĝ

[
ûd(t)
τ̂∂(t)
v̂∂(t)

]
︸ ︷︷ ︸

û(t)

ŷ(t) = Ĝ⊤∇x̂Ĥ(t) =

B̂⊤
d êp(t)

B̂⊤
τ êp(t)

B̂⊤
v êϵ(t)

 =

[
ŷd(t)
ŷτ (t)
ŷv(t)

] (33)

where I is an identity matrix of appropriate dimensions.
The discrete Hamiltonian and the energy balance are the
same defined in (22) and (23), respectively.

Now, we present the adapted version of the H-R variational
principle to include generalized displacements as states
and as boundary inputs (r∂(s, t) = r(s, t) on ∂ΩD). The
adapted local weak form of the system (5) is given by

δW e
p (r, eϵ) =

∫
Ωe

δre · (ṗe + F∗eeϵ −Bd(u
e
d)) dx (34)

+

∫
∂Ωe

N

δre · (P∂e
e
ϵ − τe∂) ds



δW e
ϵ (r, eϵ) =

∫
Ωe

δeeϵ · (ϵe −Fre) dx (35)

+

∫
∂Ωe

D

δeeϵ · P⊤
∂ (re − re∂) ds

The only difference between (15) and (34) is the pre-
multiplied test function. Regarding (16) and (35), the
compatibility equation (ϵe − Fre) replaces the second
dynamic equation of (5) and the boundary contribution
is expressed in terms of generalized displacements.

Proposition 2 The mixed Galerkin discretization of (5)
with Neumann boundary condition in (9) and Dirichlet
boundary condition r∂(s, t) = r(s, t) on ∂ΩD, based on the
weak formulation (34)-(35), using trial and test functions
(18), (19) and

re(x, t) = Ne
p (x) r̂

e(t), δre(x, t) = Ne
p (x) δr̂

e(t) (36)

re∂(s, t) = Ne
v∂
(s) r̂e∂(t), (37)

leads to the finite-dimensional PLS of the form[
˙̂p(t)
˙̂r(t)

]
︸ ︷︷ ︸

˙̄z(t)

=

[
0 −I
I 0

]
︸ ︷︷ ︸
J=−J⊤

[
êp(t)
êr(t)

]
︸ ︷︷ ︸
∇z̄H̄(t)

+

[
B̂d B̂τ B̂r

0 0 0

]
︸ ︷︷ ︸

Ḡ

[
ûd(t)
τ̂∂(t)
r̂∂(t)

]
︸ ︷︷ ︸

ū(t)

ȳ(t) = Ḡ⊤∇z̄H̄(t) =

B̂⊤
d êp(t)

B̂⊤
τ êp(t)

B̂⊤
r êp(t)

 =

[
ŷd(t)
ŷτ (t)
ŷr(t)

] (38)

with discrete Hamiltonian H̄(p̂, r̂) given by

H̄(p̂, r̂) =
1

2
p̂(t)⊤M̂−1

v p̂(t) +
1

2
r̂(t)⊤K̂r r̂(t) (39)

and energy balance ˙̄H given by

˙̄H = ŷd(t)
⊤ûd(t) + ŷτ (t)

⊤τ̂∂(t) + ŷr(t)
⊤r̂∂(t) (40)

where K̂r = F̂⊤K̂ϵF̂ is the discrete displacement-based
stiffness matrix, B̂r = −F̂⊤K̂ϵB̂v is the input map of r̂∂(t),
I is an identity matrix, and the rest of global matrices are
the same previously defined in Proposition 1.

Proof. Analogously to the proof of Proposition 1 we have

δWp(r, eϵ) = δr̂⊤[M̂v
˙̂ep+F̂⊤êϵ−B̂dûd−B̂τ τ̂∂ ]=0 (41)

δWϵ(r, eϵ) = δê⊤ϵ [K̂
−1
ϵ êϵ − F̂ r̂ − B̂v r̂∂ ] = 0 (42)

From (42) we obtain

êϵ = K̂ϵ(F̂ r̂ + B̂v r̂∂) ≡ K̂ϵ ϵ̄ (43)

Replacing (43) and êp(t) = M̂−1
v p̂(t) in (32) we obtain

Ĥ(p̂, r̂)=
1

2
p̂⊤M̂−1

v p̂+
1

2

[
r̂
r̂∂

]⊤[
K̂r −B̂r

−B̂r V̂∂

][
r̂
r̂∂

]
(44)

where V̂∂ = B̂⊤
v K̂ϵB̂v. Then, replacing (43) in (41), and

considering that ˙̂r(t) = êp(t) we obtain the following model[
˙̂p(t)
˙̂r(t)

]
=

[
0 −I
I 0

] [
êp(t)
ēr(t)

]
+

[
B̂d B̂τ

0 0

] [
ûd(t)
τ̂∂(t)

]
(45)

where êp(t) = M̂−1
v p̂(t) and ēr(t) = K̂r r̂(t) − B̂r r̂∂(t).

Finally, with H̄(p̂, r̂) defined in (39) the model (45) can be

equivalently rewritten as (38) with êr(t) = K̂r r̂(t).

3.2 Based on modified LLM

The modified LLM (Baiges et al., 2012) is a strategy of
imposing non-homogeneous Dirichlet boundary conditions

which, similarly to the H-R variational principle, uses
the generalized stress field as Lagrange multiplier. To
ensure symmetry, an additional term is added to link
the generalized stress and displacement fields near to the
Dirichlet boundary (in ΩD) in a least square sense, where
ΩD ⊂ Ω is called the Dirichlet domain and represents the
set of all finite elements with at least one node in contact
with ∂ΩD. Considering the above, the local weak form of
(5) is given by

δP e
p (ṙ, eϵ) =

∫
Ωe

δṙe · (ṗe + F∗eeϵ −Bd(u
e
d)) dx (46)

+

∫
∂Ωe

N

δṙe · (P∂e
e
ϵ − τe∂) ds+

1

β

∫
Ωe

D

δϵ̇e · (eϵ −Kϵ) dx

δP e
ϵ (ṙ, eϵ) =

1

β

∫
Ωe

D

δeeϵ · (ϵ̇e −F ṙe) dx (47)

+

∫
∂Ωe

D

δeeϵ · P⊤
∂ (ṙe − ve∂) ds

and the Hamiltonian is written as

He(ṙ, r, eϵ) = He(ṙ, r) +
1

β
[Ue(eϵ)− Ue(r)]ΩD

(48)

where Ue(eϵ) and Ue(r) represent the elastic potential
energy in ΩD expressed in terms of eϵ and r, respectively.

Remark 2 The modified LLM method has been proved to
be stable for any β > 1 when the interpolation spaces pairs
are: (a) equal order interpolation, and (b) the displacement
and stress fields being piecewise linear and piecewise
constant, respectively (Lu et al., 2019).

Proposition 3 The mixed Galerkin discretization of (5)
with Neumann boundary condition in (9) and Dirichlet
boundary condition v∂(s, t) = ṙ(s, t) on ∂ΩD, based on the
weak formulation (46)-(47) and Hamiltonian (48), using
trial and test functions (18), (19), (20), (36), leads to the
finite-dimensional PHS of the form ˙̂p(t)
˙̃ϵD(t)
˙̂r(t)


︸ ︷︷ ︸

˙̃x(t)

=

 0 −F̃⊤
D
−I

F̃D 0 0
I 0 0


︸ ︷︷ ︸

J=−J⊤

[
êp(t)
ẽϵD(t)
ẽr(t)

]
︸ ︷︷ ︸
∇x̃H̃(t)

+

B̂d B̂τ 0

0 0 B̃v

0 0 0


︸ ︷︷ ︸

G̃

[
ûd(t)
τ̂∂(t)
v̂∂(t)

]
︸ ︷︷ ︸

û(t)

ỹ(t) = G̃⊤∇x̃H̃(t) =

 B̂⊤
d êp(t)

B̂⊤
τ êp(t)

B̃⊤
v ẽϵD(t)

 =

[
ŷd(t)
ŷτ (t)
ỹv(t)

] (49)

where p̂(t) = M̂v êp(t) = M̂v
˙̂r(t) is the discrete generalized

momentum, and ϵ̃D(t) = K̃−1
ϵD ẽϵD(t) is the discrete general-

ized strain defined only on ΩD. The discrete Hamiltonian
H̃(p̂, ϵ̃D, r̂) is given by

H̃(p̂, ϵ̃D, r̂) =
1

2
p̂(t)⊤M̂−1

v p̂(t) +
1

2
ϵ̃D(t)

⊤K̃ϵD ϵ̃D(t) (50)

+
1

2
r̂(t)⊤(K̃r − K̃D) r̂(t)

and the energy balance is given by
˙̃H(t) = ŷd(t)

⊤ûd(t) + ŷτ (t)
⊤τ̂∂(t) + ỹv(t)

⊤v̂∂(t) (51)

Some of the involved global matrices are the same defined
in Proposition 1, and the rest are defined as

K̃−1
ϵD =

ND
e∑

e=1

(Le
ϵD)

⊤ 1

β

∫
Ωe

D

Ne
ϵ (x)

⊤K(x)−1Ne
ϵ (x) dxL

e
ϵD (52)

K̃D =

Ne∑
e=1

(Le
p)

⊤ 1

β

∫
Ωe

D

(FNe
p (x))

⊤K(x)(FNe
p (x)) dxL

e
p (53)



F̃⊤
D

=

ND
e∑

e=1

(Le
p)

⊤ 1

β

(∫
Ωe

D

(FNe
p (x))

⊤Ne
ϵ (x) dx (54)

−
∫
∂Ωe

D

Ne
p (s)

⊤P∂(s)N
e
ϵ (s) ds

)
Le
ϵD

K̃r =

Ne∑
e=1

(Le
p)

⊤
∫
Ωe

(FNe
p (x))

⊤K(x)(FNe
p (x)) dxL

e
p (55)

B̃v =

ND
e∑

e=1

(Le
ϵD)

⊤
∫
∂Ωe

D

Ne
ϵ (s)

⊤P∂(s)
⊤Ne

v∂
(s) ds (56)

with Le
ϵD the global-to-local boolean location matrix that

assemble only in the nodes on ΩD, ND

e is the number of

elements in the mesh on ΩD, K̃ϵD is the discrete strain-

based stiffness matrix on ΩD, F̃D is the discretized operator
on ΩD, K̃D is the displacement-based linked stiffness
matrix, K̃r is the displacement-based stiffness matrix, and
B̃v is the input map of v̂∂(t) defined on ΩD.

Proof. Using Lemma 1 in (46) it becomes

δP e
p (ṙ, eϵ) =

∫
Ωe

δṙe · ṗe + δϵ̇e · eeϵ − δṙe ·Bd(u
e
d) dx

−
∫
∂Ωe

D

δṙe · P∂e
e
ϵ ds−

∫
∂Ωe

N

δṙe · τe∂ ds+
1

β

∫
Ωe

D

δϵ̇e · (eϵ −Kϵ) dx

Using ϵ̇e(x, t) = FNe
p (x)

˙̂re(t), eeϵ(x, t) = K(x)FNe
p (x)r̂

e(t),
and assembling with the location matrices the global form

of (46) becomes δPp(ṙ, eϵ) =
∑Ne

e=1 δP
e
p (ṙ, eϵ) = 0 and is

given by

δPp=δ ˙̂r⊤[M̂v
¨̂r+(K̃r−K̃D)r̂+F̃⊤

D
ẽϵD−B̂dûd−B̂τ τ̂∂ ]=0 (57)

Similarly, δPϵ(ṙ, eϵ) =
∑ND

e
e=1 δP

e
ϵ (ṙ, eϵ) = 0 is given by

δPϵ = δẽ⊤ϵD [K̃
−1
ϵD

˙̃eϵD − F̃Dêp − B̃v v̂∂ ] = 0 (58)

where the constitutive relation ϵ̇e(x, t) = K(x)−1ėeϵ(x, t)
was imposed strongly. The Hamiltonian can be expressed
according to (48) as

H̃( ˙̂r, ẽϵD , r̂)=
1

2
˙̂r⊤M̂v

˙̂r+
1

2
ẽ⊤ϵDK̃

−1
ϵD ẽϵD+

1

2
r̂⊤(K̃r−K̃D)r̂ (59)

Finally, with the definitions of the discrete generalized
momentum and strain variables, equations (57) and (58)

together with ˙̂r(t) = êp(t) define the finite-dimensional
PHS in (49), and (59) defines the Hamiltonian in (50).

Now, similarly to (34) and (35), the adapted local weak
form based on the modified LLM is given by

δW e
p (r, eϵ) =

∫
Ωe

δre · (ṗe + F∗eeϵ −Bd(u
e
d)) dx (60)

+

∫
∂Ωe

N

δre · (P∂e
e
ϵ − τe∂) ds+

1

β

∫
Ωe

D

δϵe · (eϵ −Kϵ) dx

δW e
ϵ (r, eϵ) =

1

β

∫
Ωe

D

δeeϵ · (ϵe −Fre) dx (61)

+

∫
∂Ωe

D

δeeϵ · P⊤
∂ (re − re∂) ds

Proposition 4 The mixed Galerkin discretization of (5)
with Neumann boundary condition in (9) and Dirichlet
boundary condition r∂(s, t) = r(s, t) on ∂ΩD, based on the
weak formulation (60)-(61) and Hamiltonian (48), using
trial and test functions from the same bases (18), (19),
(36), (37), leads to the finite-dimensional PLS of the form

[
˙̂p(t)
˙̂r(t)

]
︸ ︷︷ ︸

˙̌z(t)

=

[
0 −I
I 0

]
︸ ︷︷ ︸
J=−J⊤

[
êp(t)
ěr(t)

]
︸ ︷︷ ︸
∇žȞ(t)

+

[
B̂d B̂τ B̌r

0 0 0

]
︸ ︷︷ ︸

Ǧ

[
ûd(t)
τ̂∂(t)
r̂∂(t)

]
︸ ︷︷ ︸

ū(t)

y̌(t) = Ǧ⊤∇žȞ(t) =

B̂⊤
d êp(t)

B̂⊤
τ êp(t)

B̌⊤
r êp(t)

 =

[
ŷd(t)
ŷτ (t)
y̌r(t)

] (62)

with discrete Hamiltonian Ȟ(p̂, r̂) given by

Ȟ(p̂, r̂) =
1

2
p̂(t)⊤M̂−1

v p̂(t) +
1

2
r̂(t)⊤Ǩr r̂(t) (63)

and energy balance ˙̌H given by

˙̌H = ŷd(t)
⊤ûd(t) + ŷτ (t)

⊤τ̂∂(t) + y̌r(t)
⊤r̂∂(t) (64)

where Ǩr=(K̃r−K̃D + F̃⊤
D
K̃ϵD F̃D) is the discrete displace-

ment based stiffness matrix, B̌r = −F̃⊤
D
K̃ϵDB̃v is the input

map of r̂∂(t), I is an identity matrix, and the rest of global
matrices are the same previously defined in Proposition 3.

Proof. Analogously following the proof of Proposition 2
but using the weak form (60) and (61).

4. NUMERICAL EXAMPLE

The infinite-dimensional PHS for the 2D general elasticity
problem is given by (Ponce et al., 2023, Appendix D.2)

ṗ1(x, t)
ṗ2(x, t)
ϵ̇1(x, t)
ϵ̇2(x, t)
ϵ̇3(x, t)

 =


0 0 ∂1 0 ∂2
0 0 0 ∂2 ∂1
∂1 0 0 0 0
0 ∂2 0 0 0
∂2 ∂1 0 0 0



ep1

(x, t)
ep2

(x, t)
eϵ1(x, t)
eϵ2(x, t)
eϵ3(x, t)

 (65)

with Hamiltonian as (6) whose matrices are given by

M =

[
ρh 0
0 ρh

]
, K =

Eh

1− ν2

1 ν 0
ν 1 0
0 0 1−ν

2

 (66)

where ρ, E, ν are physical properties of the material
and h is the thickness. The displacement field is given

by r(x, t) = [u1(x, t) u2(x, t)]
⊤

where each component
represent the displacement of a point x ∈ Ω ⊂ R2 in
the direction of the Cartesian coordinate axes ζ1 and ζ2,
respectively. For the example we consider a rectangular
domain Ω = [0, Lh]× [0, Lv] with Lh = 0.25 [m], Lv = 0.02
[m], h = 0.05 [m], ρ = 5130 [kg/m3], E = 29.3 [MPa],
ν = 0.35 [-], and the penalty like parameter β = 10 [-].
The considered second-order triangular mesh is shown in
Figure 1, where ΩD, ∂ΩD and ∂ΩN are highlighted in blue,
green and red, respectively.

0 0.05 0.1 0.15 0.2 0.25
0

0.01

0.02∂ΩD

∂ΩNΩDζ2

ζ1

Fig. 1. Dirichlet domain ΩD, boundary portions ∂ΩD, ∂ΩN

To verify that the discretization approaches capture the
dynamics of the infinite-dimensional system, the natural
frequencies (imaginary part of the eigenvalues) are calcu-
lated for each approach and compared with the results
delivered by the software Autodesk Inventor, which is
considered as reference. For both approaches the interpola-
tion spaces are chosen equal using Lagrange polynomials.
Results are shown in Table 1.



Mode 1 2 3 4 5

Freq.

[Hz]

Software 3.91 23.80 63.78 75.85 118.16
H-R models 3.89 23.67 63.52 75.65 117.83
LLM models 3.89 23.69 63.60 75.68 118.01

Table 1. Comparison: Software and models.

To validate the effectiveness of the methods to impose
boundary conditions on velocity and displacement, the
following boundary inputs are applied in ∂ΩD for the
corresponding models.

r∂(s, t) =

[
0

0.01 e−50(t−1)2

]
, v∂(s, t) = ṙ∂(s, t) (67)

Figure 2 shows the vertical displacement u1(x, t) of the
upper right point of the domain Ω when simulating the
finite-dimensional models in Proposition 2 and 4 with
boundary input r∂(s, t), and models in Proposition 1 and 3
with boundary input v∂(s, t). The same artificial damping
was added to all simulations.
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Fig. 2. Comparison: Dirichlet boundary conditions.

From Figure 2 it can be seen that all models exhibit
practically the same dynamic response whether applying
the Dirichlet boundary input in displacement or velocity.
Choosing one model or another will depend on what
purposes it is used for. It is worth mentioning that when
a first-order triangular mesh is used the results of the
H-R based models are more accurate than the LLM
based models. It is known that discretization based on
displacements are more sensitive to locking. Since the
modified LLM approach calculates the elastic potential
energy using the generalized displacement field, these
discrepancies when using first-order finite elements are
likely due to locking issues.

5. CONCLUSION

Two structure-preserving mixed FEM approaches were
presented from which four finite-dimensional models were
formulated. The approaches are based on the local form of
the Hellinger-Reissner variational principle and the Linked
Lagrange Multiplier method. Simulations demonstrated
nearly identical dynamic responses when displacement or
velocity are used as boundary inputs, and also good con-
vergence of the eigenfrequencies compared to the software
Autodesk Inventor. Future work includes further investi-
gation regarding of locking in LLM-based models and the
extension of these approaches to nonlinear systems.
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