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Abstract

This paper considers the general formation control problem under the port-Hamiltonian framework and proposes a method
to meet the requirements of general formation control while protecting agent privacy. First, the general formation problem is
expressed as an optimization problem whose solution satisfies the requirements of the general formation. To protect the sensitive
data of each agent, a distributed controller is designed through the desired general formation output dynamic, which still
maintains a port-Hamiltonian form, making the Hamiltonian function the natural choice for the Lyapunov function candidate.
It is then shown that the designed system converges exponentially to the global optimum of the optimization problem. Finally,
simulations on an application case, namely underactuated unmanned surface vehicles with different parameters are provided

to verify the effectiveness of the proposed method.
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1 Introduction

With the rapid development of sensors, industrial in-
ternet and other technologies, multi-agent collaborative
control [1] has become a research hotspot. As one of the
most actively studied topics of collaborative control,
formation control [2—4] has also attracted remarkable
attention in recent years.

The general formation control, which is summarized
in [5], provides a broader framework than traditional
formation control. In fact, under the framework of gen-
eral formation control, many practical control problems
in different physical domains can be described. For
example, the formation shape control of mechanical
agents [6] for mechanical systems, the speed synchro-
nization of motors [7] for electrical systems, the power
allocation of micro-grids [8] in power systems. Given the
multi physics nature of the systems under consideration,
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it is crucial to use a suitable framework that leverages
the intrinsic physical properties of these systems [9].
In this respect port-Hamiltonian (PH) system formula-
tions highlight the physical properties of the considered
systems through a well defined geometric structure and
the definition of interconnected ports [10]. It is particu-
larly well suited for control design.

There are few results about formation control of mul-
tiple PH agents. Interconnection and damping assign-
ment passivity-based control (IDA-PBC) has been suc-
cessfully applied to multi-spacecraft formation flying
under the leader-followers framework in [11]. However,
this work does not directly apply to other models or
other formation scenarios. This remark also apply to
the formation control and velocity tracking that have
been developed for nonholonomic wheeled robots in [12]
and [13].

The latest achievement in formation control of N-agent
systems under PH framework can be found in [14, 15],
where a generic methodology has been proposed for
mechanical systems. In addition, the methods proposed
in [14, 15] require that each agent exchanges and dis-
closes its state with its neighbors, which is not desired
in some practical applications [16]. To address the ur-
gent need for privacy preserving in multi-agent systems,
one may resort to homomorphic encryption [17, 18],
differential privacy [19], multi-party secure computa-
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tion [20] or many other recent advances. However, these
approaches present some thought-provoking challenges.
For instance, to achieve the privacy protection, the
differential-privacy mechanisms have to sacrifice prov-
able convergence to the exact equilibrium [21], which is
undesirable in the general formation problem. The au-
thors in [22] proposed a fully distributed algorithm that
achieves both privacy protection and guaranteed com-
putational accuracy of the equilibrium, but it does not
take into account the physical dynamics of each agent.
In addition, if these methods are directly applied to PH
systems, the structure cannot be preserved. To the au-
thors knowledge, there is currently no results with pri-
vacy protection on the general formation with privacy
protection of multi-agent systems with PH dynamics.
In this paper, a distributed controller for general for-
mation control of multi-agent systems is proposed using
the PH framework. The contributions are summarized
as follows.

(1) A distributed controller is proposed to solve the
general formation control problem for multiple
agents with PH dynamics in different physical do-
mains. In comparison with other works focussing
on specific multi-agent models, such as spacecraft
in [11,23], nonholonomic wheeled robots in [12,13],
underwater vehicles in [24], DC micro-grids in [8],
the proposed controller considers more general
cases than different systems in multi-physical do-
mains described as PH models. It considers a wider
class of applications than other works focussing on
a specific formation control problem such as the
leader-followers formation control in [11,25] and
consensus in [8,26].

(2) The designed system related to the general forma-
tion output adopts a PH form, allowing the use of
the Hamiltonian function as a candidate Lyapunov
function for stability analysis. This simplifies the
task of selecting the Lyapunov function for stabil-
ity analysis, which can be challenging in conven-
tional distributed algorithms [27-30]. In addition,
we can show that the multi-agent system under the
proposed controller achieves exponential stability
which is different from the asymptotic stability dis-
cussed in [11-15,24,31,32].

(3) The proposed controller only requires exchanging
each agent’s self-estimated values of the global av-
erage information with its neighbors, avoiding the
risk to some extent of directly exchanging explicit
states as observed in numerous prior works such

s [12, 14, 15, 31, 32], guaranteeing the privacy of
each agent.

The remainder of this paper is organized as follows. Some
preliminaries are provided in Section II and then the
general formation control problem is formulated in Sec-
tion III. Section IV designs the general formation out-
put dynamic, based on which the distributed controller
of the ith agent (i € V) is presented. In addition, the

convergence and the privacy analysis is given. An appli-
cation example and the parameter analysis are provided
in Section V. Finally, Section VI conclude this work.

2 Notations

Throughout this paper, R™ denotes the n-dimensional
Euclidean space and I,, denotes the identity matrix in
R™ ™ 7 is the set of integer, N is the set of natural
numbers. 1,, € R™ and 0,, € R” represent the n x 1
column vector of one values and zero values, respec-
tively. The Euclidean norm is denoted by | - || while
the Kronecker product is denoted by ®. The matrix
A = (@ij)mxn means that a;; is the element of A in i
row and j column and A is a m x n matrix. ' is the
transpose of x. The set {i,i+1,--- ,j—1,j} is described
by [i:j] where 4,7 € N and ¢ < j. COl(:El, ,IN) =
o) € RY™ with »; € R™, i € [1:N]. The
vector ag = (aj;,j € S) means that ag = (a1,--- ,a,) if
the set S = {1,---,s}. diag(A\1, -, A\p) is the diagonal
matrice of elements Aq,---, A, € R. For a scalar func-
tion H(x,y) € R of vectors z € R™ and y € R", the
gradient with respect to z is denoted by V. H(z,y) =

T
(gﬁ SR 3;1) where 2 8— is the partial derivative of

H(z,y) with respect to z;. If 2(t) : R — R™ is a vector
function of ¢, then for a function ¢ (x(t)) : R™ — R", its
derivative with respect to t is (x) = V¢ (x)& where &
is the first-order derivative of x(¢).

3 Preliminaries

In this section, some essential preliminaries on graph
theory and PH framework are given.
Consider an undirected connected graph G := {V, &, A},
where V = [1:N] denotes the node set, £ denotes the edge
set, and A := (a;;) nxn denotes the adjacency matrix.
If there exists an edge (i,7) C & between two nodes
1,j € V, we say that 7 is a neighbour of j. Then, ¢ belongs
to j’s neighbour set A/(j). In an undirected graph G, if
1 is a neighbour of j, then j is a neighbour of i.
The adjacent matrix A is symmetric with a;; = a;; and
ai; = 1 when 7 is a neighbour of j, or otherwise, a;; = 0.
Moreover, for every i € V, a;; = 0. The degree matrix
D = diag(degy,- - ,degy) is a diagonal matrix, where
each element deg;, = Zjvzl a;; describes the degree of
each node. Based on the adjacency matrix and the degree
matrix, the Laplacian matrix of G is defined by L =
D — A, and the the eigenvalues of L are denoted by A\; <
- < An. If there is a path from node 7 to node j, then
node i and node j are connected. An undirected graph
whose any two nodes are connected is called a connected
graph. There is a criterion [33] that G is connected if and
only if As > 0. For the convenience of discussion, this
paper assumes that undirect connected graphs are used
for communication between multi-agent systems.
Consider N-agents communicating through an undirect



connected graph G, the dynamics of the ith agent (i €
V) is described by the following standard input-state-
output PH system ! :

where x; € R™ represents the ith agent state, u; € R”
represents the control input of the 7th agent, the smooth
function H;(z;) : R™ — R is the total energy of the
system called the Hamiltonian function, the structure
matrix J;(z;) : R™ — R™*™ is skew-symmetric, that
is Ji(x;) = —J; (x;), the dissipation matrix R;(x;) :
R™ — R™*™ is a symmetric positive-semidefinite ma-
trix, that is, R;(z;) = R/ (z;) > 0. The input mapping
gi(x;) : R™ — R™*™ depends on z;. More details about
the properties of PH systems can be found in [10].

In most of the conventional formation problems, the for-
mation objective is described by using the system state
x; directly [14,15,24]. In order to describe more general
problems within a broader range of applications, we de-
sign the general formation output of the ith agent (i € V)
as a second-order continuously differentiable function of
the form

Yi(z;) : R™ = R, 1< m. (2)

By a classification of the internal variables appearing in
(1) based on how the inputs act on the states in [34],
and motivated by [5], the ith agent (i € V) with PH
dynamics and general formation output is described as

le] _ l J{ =R} JI" —RI"

ih g _ pht gh _ ph
2 = Pi(;),

OH;
awi

0

g/ (2:)i;
" (3)

K2

where z/ € R 2! € R" with f,h € Z, f > 1and h+f =

z; € R! denotes the general formation output of agent i.

m, gif (2;) has row-full rank and

4 Problem formulation

The goal of the general formation problem [5] considered
in this paper is to design a controller such that

Zj = Z;jv Zv] € Vv (4)

lim z; —
t— o0
where the z7; € R! (i,7 € V) are predefined vectors re-

lated to the general formation problem and actual phys-
ical meanings. The desired general formation matrix Z*

! In this system, z; = a:(t),ws = wi(t),Ji(x:)) =
Ji(@i(t)), Ri(zi) = Ri(wi(t)),Hi(z:) = Hi(zi(t)),9: =
gi(zi(t)),yi = yi(t). In the following text, for simplicity of
description, t is omitted without causing ambiguity.

is defined by z* = (z;‘j)leNl. From (4), z* is skew-
symmetric and satisfies

* *
Zij = TR

Zij* :zik*+zkj*, 1,7,k €eV.

In conventional formation control problems, the function
zi = ;(x;) of the ith agent (i € V) is simplified as z;.
For example, in [35], the multi-agent system (3) is said
to achieve formation if for any given initial state,

i£1, ()

lim (.L“i—l‘l) :dxi, 1€V,

t—o00

holds. This is a leader-followers formation problem and
the agent with index 1 is the leader while other agents
are followers. The constant vector dy, € R™ (i € V)
is the desired relative vector between agent i and agent
1. Obviously, using the general formation output z; =
¥;(x;) in the formation objective allows to describe a
wider range of practical problems than the use of the
state x; directly. In fact, if agent 1 is defined as the leader,
others are followers, then the goal (4) is equal to

tliglozi -z =2z, ,jEV,
while 2| is predefined, and z;; = z;1 + 21; can be calcu-
lated. Let ¢;(z;) = x;, 25y = dy, and 237, = 0, 4,5 € V,
then the objective of general formation control (4) de-
generates into (5). Some illustrative examples of the gen-
eral formation goal defined in (4) are given hereafter.

Example 1 Consider the example of 4 underactuated
unmanned surface vehicles (USVs) with PH dynamics
trying to form a parallelogram in the X-Y plane, as
shown in Fig. 1(a). In this case, v; = (qi,p;)| € RO
where q; = col(qxi,qyi, ¢;) € R3 includes X -awis co-
ordinate, Y -azis coordinate, and angle with respect to
the X-azis of the ith USV, while each component of
pi = col(Vsi, Vi, w;) € R3 represents the ith USV’s
momentum in X -axis, Y -axis and angular respectively.
The parallelogram formation goals can be described as
limy o0 20 — 25 = 2}, (1,5 € V), where z}; is predefined
by the desired geometry and v;(x;) = Kx; with K =
(I2x2,02x4). Furthermore, if we consider that zf; =0,
Vi, j €V, then goals (4) can be used to described a ren-
dezvous problem, or a point formation, as shown in Fig.
1(b). Hence, the considered general formation framework
includes the rendezvous problem as a special case.

Example 2 In this example we consider the synchro-
nization of rotor speed of permanent magnet synchronous
motors (PMSMs) with PH dynamics [36]. The state of
the ith agent is x; = (Laiidi, Lgiiqi, Jriw;)T € R3, where
iq; 15 the current on d-axis, i4; is the current on g-axis,
w; 15 the angular velocity of the ith agent, and Lg;, Lg;,
Jri are positive parameters of ith agent, ¢ € V. Design
Pi(z;) = (0,0, %)xl and zf; = 0 in (4), then the syn-
chronization problem is described under the framework
of the general formation control.



._U)fx\\:l\&\$ 50
/l \\ /;R
S 29\ SNk
/ \ e 34
. \
/ (1) /; \
EN()% jt :\_3[\‘50 500) .
¢ _— 20 .
S0 20
L 50 7 [ 4 =5(0)
é =0 6 =0
X X

(a) Parallelogram formation (b) Point formation
Fig. 1. Formation examples of four agents moving in the X-Y
plane: (a) Parallelogram formation and (b) Point formation.

In this paper, we consider a connected communication
topology where each agent can only exchange informa-
tion with its neighbours. Without global information,
the centralized controllers cannot be designed. Hence,
the distributed controller for the ith agent (i € V) is
considered to accomplish the formation control goals by
scholars, such as [12,14,15].

In the aforementioned approach for the PH multi-agent
system’s formation control problem, they require agents
to exchange and disclose their states explicitly to the
neighboring agents. This may bring serious privacy
concerns in many practical applications. For example,
in these cases, their initial location will be revealed to
neighbors, which may not be desirable in the rendezvous
problem [37].

With concerns on the sensitive information, the estima-
tion idea is considered. Taking into account the follow-
ing fact: if the relative values between agents are given,
then the value of each agent relative to the average value
of all agents is also determined, and vice versa. There-
fore, an average function is introduced to characterize
the average general formation output of all agents:

1 N
Rave = wave(x) = N sz(xl)7 (6)

where x = col(x1,- - ,xn). The estimation of e ()
by the ith agent (i € V) is denoted by 7);(¢) and is used
for communication with its neighbours. This means that
each agent only sends its estimation about the aver-
age general formation output to its neighbours, thus the
states of individual is not needed in the communication.
Hence, the ith agent can use its own state x; and the
information received from its neighbours namely 7;(t),
j € N(i) to update its estimation 7); and design the con-
troller. Based on the above analysis, the general forma-
tion problem of the agents is summarized as follows.

Problem 3 Design a controller ; for the ith agent (i €
V) described in (3), such that its general formation output
z;(t) under the action of u; is asymptotically stable and
converges to the set

Sy ={z:12,— 2

= Z;kja Za] € V}a (7)

It should be noted that, to achieve the general formation
goal, there must exist some z(t) such that,

im0 ,(6) =y (1) = 5y LG €V, (®)

Meanwhile, based on the definition of zJ;, S.+ defined in

(7) is not empty. Otherwise, the general formation goal
is meaningless. In order to solve Problem 3, we use an
optimization point of view based on Theorem 4.

Theorem 4 Consider a network of N agents described
under PH form as in (3). If there exists a controller ;
for the ith agent (i € V) such that its general formation
output z;(t) asymptotically converges to the minimum of

1 *
‘/i(zh Za'ue) = 5”21 — Zave — 21' H27 (9)

withz} = & Zjv:l z;;, then the controller u; is a solution
of Problem 3.

PROOF. To prove this theorem, at first, we demon-
strate that if z* = col(z],--- ,2%) is a minimum point
of (9), then z* satisfies (8) and vice versa. If z* satisfies
(8), then z; satisfies

*

* * * * * .
Zp =2 =21, 5% — AN = %N, LEV.

After summation that implies that

* *

Zi — Zave

=z Qe (10)

then z* is a minimum of (9) for V;(2}, z},.) = 0. Con-

versely, if (10) is satisfied, then we have

* * =%
Zj = Zgpe = %)

JEV. (11)
Furthermore, if we make a difference between z; and z5,
Vi,j € V, then

zi =2 =7z —Z; = 2. (12)

Above all, V;(zF, z¥,.) = 0 is equivalent to z* satisfies
(8). Then we try to show that the minimum value of
Vi(2i), Zave) 18 0. If (9) cannot get 0 as its minimum
value, then for any z, we have z; — 244e — 27 # 0, that is
zi—2j # z{j,1,J € V, which is contradict to the previous
analysis that S,« should not be an empty set. Hence,
with the help of the definition of asymptotic stability
in [38], the proof is completed. O

Before designing a suitable distributed controller, we
first discuss how to find the minimum of the value func-
tion (9), and then the following lemma is given.



Lemma 5 [39] z* = col(z7, -+, z¥) is the minimum
point of (9) if and only if

vzi Vvl (Zi, Zave)

zi=zp = 0, 1€V. (13)

Under Lemma 5, our objective is to design a distributed
controller @; for the ith agent (i € V) such that the
general formation output z; of system (3) satisfies (13).

5 Main results
5.1 The general formation output dynamic design

In this subsection, the dynamic related to the general
formation output z;(¢) (i € V) and its convergence anal-
ysis is given.

Before designing the general formation output dynamic,
some maps are defined. To establish a connection be-
tween the valued function V;(z;, zave) for the ith agent
(i € V) and its estimation 7j; of the average formation
function zgye, we define

CZ(ZZ) ﬁz) = ‘/1(227 Zm;e)|z(we:ﬁia ) S V (14)

Using the definition of V;(z;, zave) in (9) and z; in (3),
with the above equation, we get

. 1
Cilzir i) = 5l = i = 2. (15)
According to the definition of Cy(z;,7%;) : R x Rl — R,
the gradients with respect to variables z; and 7; (i € V)
are defined by G;(z;,7;) : Rl x Rl — R™ and &;(z;, ;) :
R! x R! — R with the following form:

Gi(2i, 1) : = V2, Ci(z, %) = 2z — i — Z;,

o) = Vo Crlone) = (o), (10

In compact form, we have

where 77 = col(1,--- ,fn) € RY™. Under the above
definitions, the dynamic of the general formation output
z;(t) for the ith agent (i € V) is designed as:

Z = —Gilzi, i),

i = = X jeny i — 0j) — 6z, i) — kisi,  (17)
5=k (v 2 jen) (i —15) + 8i(2i, M) — ks,
where 2;(0) = ;(z;(0)), 7; is the ith agent’s (i € V)

estimation of zgye = Yave(x), the initial values s;(0)
and 7;(0) can be chosen arbitrary, the parameter v > 0,

O<ki<landky,=1-— k% are constants. The designed
dynamic (17) can be rewritten as

8I—Icli

Z; = (Jg — Rq) 57 (18)
where Z; = col(z;, s, 8;),
Y e NT(A Ay L
Hei = Cilz, M) + b Z (i = 3) " (7 — 1) + §5iTsi’

JEN(4)

the structure matrix J; and the dissipative matrix Ry
are respectively defined as

0 O 0 1®I, 0 0
Ja=10 0 —k1®I; , Ri= 0 1® I 0

0ki®I 0 0 0 ko®I
and J; = —J], Rqg = R] > 0. Let §(z,7) =
001(61(Z17ﬁ1)a"' 76N(ZNaﬁN>)7 s = 001(817"' ;SN)a

then the dynamic (18) for all agents can be rewritten in
compact form as

0H,

Z=((Jg— Ra) ® In) = 97

(19)

with Z = col(z, 7, s) and

cl_z (20, 15) 41 55 sz+gm > (=) (20)

JEN(3)

The total Hamiltonian H.; including three parts:

e The first term represents the energy injected by the
valued function. By (15), we have Zf\il Ci(z,1;) =01if
and only if for every 1 6 V, z; — 1) = Z} is satisfied.

e The term S

grator errors.

e The last term 7 Zf\il i Zje/\/(i)(ﬁi —17j;) represents
the difference between the estimation of agents and its
neighbours. It is equal to 0 if and only if all agents have
the same estimation of 24, i.€.7; = 1;, Vi, j € V. Hence,
taking O as the minimum value of H. means 7 = 2.,
that is V;(2F, 2%,.) = Ci(zF, %) = 0 which satisfies the

1 ~ave

general formation objective. The control scheme for the

L1 35i s; is designed to eliminate inte-
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Fig. 2. The control scheme for the ith agent.



ith agent is shown in Fig.2 and the designed dynamic
(17) consists of 4 parts described below:

e In the first equation, the term G;(z;,7);) is an ex-
pected state changing injection of the value function (9).

e The estimation #; of the ith agent (i € V) is influ-
enced by the error between his own estimation 7; and
his neighbor’s estimation 7;, j € N (¢). In addition, all
agents’ estimated values will eventually converge to the
accurate average general formation output:

tlggo 0i(t) = Zave(t), 1€ V.

e The third one is designed as an integrator to improve
the convergence characteristics of the algorithm.

e Parameters v , k1 and ky are predefined constants
which may influences the convergence speed. More anal-
ysis of parameters will be mentioned in next section.

5.2 The distributed controller design

In this subsection, a distributed controller is proposed
to solve Problem 3.

By the designed dynamic (19), we obtain the general for-
mation output z}(t) (i € V). Motivated by [40], if there
exists a partition of z; = col(z},z2), where z} € R!
and 22 € R™~L, and a correspondlng immersion m; =
col(wz,wz), where 7} : RE — RY, 72 : RY — R™! such
that =} = 7} (2), then we can calculate 2? by the cou-
pling relationship between different state components in
actual physical systems. In fact, the mapping =; is easy
to find following physical and system theoretic consid-
erations.

Based on z(t), the controller 4; is obtained by

ai:gg‘(x:(t))*(r;‘f(t)7<J3‘fRZ>Zf} o
i 21
- -5,

where gf( *(t))T is the pseudo-inverse of g ( *(t)). By
using controller (21), the trajectory of system (3) is con-
sistent with the desired state trajectory x}(t) = m;(2}).

5.8 Convergence analysis

To analyze the convergence of the designed dynamic sys-
tem (19) of the general formation output z(¢), the fol-
lowing theorem is given.

Theorem 6 The the designed dynamic system (19) of
the general formation output z(t) is exponential stable.

PROOF. Choosing H. in (20) as Lyapunov function,

1
Ly (2, 8) = 1NC(,i) + 55T s+ 20T (L@ D). (22)

Taking the following orthogonal transformation,

N m

n=1.

2

where r = ﬁlm r'R= 0}71, R"R=1Iy_1,RR" =

In — £1n1%, 71 € R and 7, € RW=DI With the
orthogonal transformation,

TT®IZ
RT®1I

7,

(RR" @ I))(L® L,)(RR" @ I,)#

AL L)h=7"
; (RTLR® I)j,.

(23)
Inserting (23) to (22), Ly (2,7, s) converts to

1
}C’(z,n)—l— s s+ 7o (RTLR ®1;)72.(24)

Ly(27ﬁ,8): 2 2

Considering that

7VZNCN(ZN777N))7

VZC(ZaTA]) = COI(Vzlcl(Zh’fh)a T
i s VinCOn (2, 11N)),

Vf]C(Z, ) = COl(vﬁ1 01(2’1, ﬁl)a e

we are going to show that Ly < 0. The dynamic system
(19) can be rewritten as follows

= —G(z,1),
ﬁ = —8(2,9) — WLR @ L)ils — kus,
iy =—(R" @ I)5(z,9) — v(RT LR ® I,)i} (25)
—ki1(RT ® I))s,
§ = k‘l(é(z,ﬁ) + ’y(LR ® Il)ﬁg) — kos.

With the definition (16), by derivating (24) and inserting
(19) and (25), we have

Ly =—=G(z,7)"G(z,9) - 6(z,7) " 6(z, 1)
V(RTLR® I)i) " (RTLR® I)7l, (26
—25(2,7) TY(LR @ I)ijy — kas ' s.

From the definition of G;(z;,%;) and d;(z;, 7;) in (16),
N

P TR (27)

i=1

|G (z,))]1* = |6(z,9)|1* =

Hence, (26) implies

L?J < 725(23 ’f])T(S(Z, 77) - kQST‘S
Y ((RTLR® I)iiz) "(RTLR @ I})ity (28)
—26(2, %) "y(LR ® I})iis.



With the inequality ab < iaQ + %bQ, ¢ > 0, we have

N 3 .
20(z,m) V(LR ® L)z < S [16(2, )]

2 .
+ 2P IRTLR @ 1)l
Inserting (29) into (28), one can get

L <_1 ) ~ 2_l2 ~ Q_k 2
v < =510z = Flln2l” — k=[ls]

2k 2 -
= 13 C(i) = S8 s = el (30)
2
< —min{1,2k2,§}Ly.

Hence, the proof is completed with v > 0 and ky > 0.0J

Next, we are going to illustrate the relationship between
the minimum point z* of the valued function designed
in Problem 3 and the equilibrium point (z*,7%*,s*) of
system (19).

Theorem 7 If (2*,7",s*) is an equilibrium of system
(19), then z* is a minimum of V; defined in (9).

PROOF. According to the properties of the PH sys-
tem, the total Hamiltonian is chosen as candidate Lya-
punov function (22) in the proof of Theorem 6. Recalling
the Lasalle Invariance Principle, system (19) converges
to the maximum invariance set S = {Z*|6Lé’,7(zz*) =0},
because of Rg > 0.

Then we are going to analysis elements belong to the set
S. With the definition of L, in (22), Z* € S is equivalent
to (z*,1*, s*) satisfies

G(z"7") =0, (31a)
YL@ I +6(z%,7") =0, (31b)
s* = 0. (31c)

For an undirected connected graph G, its Laplacian ma-
trix L has and only one zero eigenvalue, corresponding
to an eigenvector of 1y, that is 1, L = 0. With (16), we
find G;(zi, ;) = —0;(z,1;). Hence, by (31a) and (31b),
we have y(L®I;)i* = 0 which implies i} = 9 (i,5 € V)
with v > 0. Since G;(zf,7}) = z2* —n* —z* = 0 by
(31a), and le\il z" = Zfil = % Zfil Zjvzl zj =
0, by the predefined zy = 7 — 2z = —zj, we get
A= &SN 2r = 22, (i € V). With the definition of
Ci(z,m;) in (15), when ) = 2% ., we have V;(2F, 2% ) =
Ci(zF,mF) =0 (i € V). The gradient of V;(z;, Zqve) With
respect to z; in 2] is

vzi V;(Z“ Za'ue)

E—

2t —E) =0,i € V.

According to the Lemma 5, z* is a minimum point of
Vi(zis zave) (1 € V) in (9). O

From Theorem 6 and Theorem 7, the designed dynamic
(17) of the ith agent (i € V) converges to the minimum
z¥ of (9) which achieves the desired general formation.

5.4 Privacy analysis

In this paper, two types of adversaries are consid-
ered as in [41]: an honest-but-curious adversary is an
internal adversary follows the communication topol-
ogy who is curious and collects received data in an
attempt to learn some information about other partic-
ipating agents, we define the information accessible to
the honest-but-curious agent j at time t in this paper
as Ej(t) = {z;(t),0;(t),s;(t), Z;, ik (t), k € N(4)}; an
eavesdropper is an external attacker who knows the
communication topology, and is able to wiretap com-
munication links and access exchanged messages, the
information wiretapped by the eavesdropper in this pa-
per is E(t) = {0:(t),i € V}.

It should be noted that if an honest-but-curious agent
connected to another honest-but-curious agent, they
may collude, i.e. exchange their state directly to each
other and estimate other agents’ privacy together. And
in this case, an eavesdropper will obtain the state of
these two honest-but-curious agents.

In the problem considered in this paper, the general
formation output z;(t) often contains the important
information of the ith agent (i € V). For example, in
Ezample 1, z;(t) denotes the position of the ith USV. In
actual military missions, position exposure may result in
operational failure. Hence, z;(t) is sensitive information
of the ith agent (i € V). Based on this, the definition of
privacy used throughout this paper is defined as follows.

Definition 8 The general formation output z;(t) of the
ith agent (i € V) is defined as its privacy. The privacy of
the ith agent is preserved if an adversary cannot obtain
the exactly value of z;(t) at any t > 0.

Definition 8 requires that an adversary cannot find z;(?)
and thus is more stringent than the privacy preservation
definition considered in [42], which defines privacy of
each agent as the initial value z;(0). Motivated by [41]
and [42], the following theorem is given.

Theorem 9 The privacy of any agent i € V, whose
general formation output satisfies the designed dynamic
(17), is preserved even all of its neighbours are honest-
but-curious adversaries and they are colluded.

PROOF. Inserting G;(z;,7;) and 6;(z;,7;) defined in



(16), the system (17) of the ith agent (i € V) becomes

Zi=—z + 1 + 7,
==Y jen( i — ;) +2—Ni—z —kis;, (32)
si=k1(y Zjej\/(i)(ﬁi—ﬁj)—zri—ﬁri-i;‘)—kgsi.

Define 0;(t) = z;(t) —
(32) becomes

k;si(t), and by noting ko = 1 — k7,

{9¢:—k29i+ﬁi+53+k% (v 22 e i1+ +2F) (33)

i == jene (i — 0y) + 6 — 0 — 2, i€V

Let 6 = col(fq, - - -

then we rewrite (33) in compact form as

{é = —kof + 1)+ Z* + kiy(L © L)) + 1) + 27, (34)
=L@ L)+ 67— 2"

Without loss of generality, we prove the 1th agent’s pri-
vacy can be preserved even all neighbour j € A/ (1) are
honest-but-curious adversaries and they are colluded,
we show that any arbitrary variation of zq(¢), t > 0 is
indistinguishable to its any neighbour agent j € N(1)
if the 1th agent choosing the initial value of auxiliary
variables 71 (0) and s;(0) properly.

Recalling the information F;(t) accessible to any
agent j € N(1) under the initial values z;1(0),
11(0), 51(0), 2n(0), 7n(0), sn(0), h € V/{1} is
Ej(t) = {z(t),9;(t),s;(t), 2, M(t),k € N(j)}. Simi-
larly, with the fixed initial values z(0), 75 (0), s,(0),
h € V/{1}, the information accessible to agent 7 € N(1)
under 21(0), 71(0), s1(0) is denoted by E}(t). Then we
are going to show that for any z/(t) # 21 (¢), the infor-
mation accessible set of agent j € N(1) is exactly the
same, i.e., E}(t) = E;(t).

More specially, when 2z;(0) varying to z1(0), we set
i#(0) = i (0), and

Then we have ¢'(0) = 6(0) and 7/(0) = 7(0). Hence,
7i(t) = 7/(t), where 7(t) and n '(t) are the solutions of
(34) with 6(0), /(0) and 6’(0), 7' (0), respectively. Hence,
7/ (t) = 7(t) hold, which imphes that E}(t) = En(t),
t > 0 with the fixed initial values zp(0), 7,(0), s,(0),
heV/{1}.

When all neighbours are colluded, they will share all
information they obtained. It means that for any j €
N (1), the information accessible set becomes E(t) =
Ujen ) Ej(t). Since Ei(t) = Ej(t), we have E(t) =
E'(t) = Ujen ) Ej(t), t > 0, ie., the variation from
z1(t) is distinguishable to its neighbours, which implies
that the privacy of the 1th agent is preserved even all
neighbours are colluded.

,0n) and recalling /) = col(fy, - -+ , N,

Theorem 10 The privacy of any agent i € V, whose
general formation output satisfies the designed dynamic
(17), is preserved against an eavesdropper.

PROOF. Following the line of reasoning in Theorem 9,
we can obtain that any change in z;(¢) can be completely
compensated by changes in s;(t) that are invisible to
the eavesdropper. Therefore, the accessible information
E(t) = {n;,i € V} to the eavesdropper is exactly the
same even when z;(t) were changed arbitrarily and hence
the eavesdropper cannot infer z;(t) based on accessible
information.

6 Simulation example

In this section, an example on underactuated unmanned
surface vehicles (USVs) is given.

6.1 The hexagonal shape formation of USVs

We consider the formation control of a fleet of USVs, and
the structure diagram of each USV is given as Fig. 3.

Fig. 3. The structure diagram and the communication topol-
ogy diagram of USVs.

The system state 2; = col(g;,p;) € RS of the ith USV
(i € V) is designed as in Example 1, and its PH dynamic
is described as follows [43]:

rnf2] (e
i 0H;/0p; I

where the structure matrix J; and the dissipation matrix

R; are
0 O
0-D;|’

respectively, with the damping matrix D; and the trans-
formation matrix K;(q;) defined by

Ki(q:)

0
Ji = , Ry=
_KiT(Qi) 0

—din 0 py cos ¢; —sing; 0
Di=| 0 —djo —p1i| .Ki(q:) = |sing; cosp; 0
—p2i p1i —di3 0 0 1



Table 1
Parameters of hexagonal formation

M; di1 | diz | dis | 2:i(0) zZ;
1| diag(25,26,2.5) | 12 | 17 [0.5|(7,5)T |  (2,0)"
2 | diag(26,25,2.7) | 14 | 16 | 0.8 (6,3)T | (1,v3)T
3| diag(24,27,3.0) | 12 [ 18 |0.4|(1,8)T | (=1,v/3)7
4 | diag(23,24,2.2) | 15 | 17 |0.7((3,4)T | (=2,0)T
5 | diag(28,26,2.7) | 12 [ 13 [ 0.6 | (7,0)T | (=1, —/3) T
6 | diag(30,28,3.2) | 16 | 17| 0.6](0,4)T | (1,—v3)7

where d;; > 0, (j € [1:3]) denote the hydrody-
namic damping coefficients in conditions of surge,
sway and yaw. The Hamiltonian of the system (35) is
H; = 1pl'(M;) 'p;, with M; = diag(m;1, mso, mi3),
where m;; > 0 (j € [1:3]) represent the inertia coeffi-
cients of the ith USV (i € [1:6]).

Consider 6-USVs communicating through an undirected
graph depicted in Fig. 3. The control objective for the 6
USVs is to form a hexagonal shape starting from their
initial positions. Noticing that only the positions ¢x;
and gy are required to achieve this formation. we design
zi = Yi(x;) = Pz, i € V with Py = (Izx2,02x2,02x2).
Then the valued function of the ith agent (i € V) of the
optimization function (9) is defined as

1 1Y
‘/i(zivzave) = 5”21 - N sz - _;k||2' (36)
j=1

The predefined Z7, initial position z;(0) and other pa-
rameters of 6 USVs are given in Table 1. Choosing
7:(0) = (0,0)T. Then the trajectory z;(¢) of the ith
agent (¢ € [1:6]) is obtained by (17).

Then we are going to solve the distributed controller ;.
With (35), the ith USV system (i € [1:6]) is rewritten as

(X = Vs COS @ — Uy SIN Py,
Qyi = Vsi SN @i + Vui COS P,
(rbi = Wi,

M 'p; = D;M;  p; + ;.

(37)

Since the formation output of the ith USV (i € [1:6])
is defined as z; = Px; = col(¢lx, ¢}y ), by designing
2! = col(giy.qly) = T(z) = 2, we have wl*(t) =
z¥(t) and the remaining state components are denoted
as x2(t) = col(¢y,pi). The angular momentum w; can

be calculated by [44],

Gvidxi — Gyidxi

w; = M3 ) )
Ot v

) (38)

where ¢x; = ¢y; = 0 holds only at the initial point
and the equilibrium. After that, ¢; is obtained by the
integration of w;. Furthermore, v;, v,,; can be obtained

by (37) with ¢%,(¢) and ¢}, (t). With p; = M;q;, we have
@i (t) = M 'p; — D;M; 'p;. (39)

With the distributed controller (39), the evolution of
the system states are shown in Fig. 4 - Fig. 5. Fig.

—agent 1 agent 3 ——agent 5

[—agent 2 —agent 4 agent 6|

Time (s) Time (s)

Fig. 4. The evolutions of gx; and ¢y; under algorithm (17).

—agent 1

’g ——agent 2|
= 5 agent 3
& —agent 4,
——agent 5

agent 6

5
N Gy (m)
Time (s) 20 0 Xi

Fig. 5. The system trajectory under algorithm (17).

4 represents the evolution of ¢x; and gqy;. Fig. 5 pro-
vides a three-dimensional diagram that shows the evo-
lution of ¢x; and gy; over time. By Fig. 5, we find that
the multi-agent system converges to an hexagon (green
dotted line) from the initial points, satisfying the shape
formation objective. Hence, by designing an appropri-
ate valued function, the required formation mission of 6
USVs is accomplished and the control input is obtained.

6.2 Parameters analysis

In this subsection, the influence of the parameters in the
designed dynamic (17) of general formation output z;(t)
of the ith agent (i € V) are analyzed, and different pa-
rameters are given in Table 2.

Without loss of generality, we will use the 6 USVs sys-
tem in (35) as an example for simulation explanation.
Fig. 6(a) show that for the three different sets of param-
eters, 6 USVs are able to achieve the desired hexagonal
formation. As shown in Fig. 6(b), the convergence speed
I>IT and IIT>IT means that the increase of v and k;
speeds up the convergence of the designed dynamic (17),
respectively. That is because in (17), «y is the coefficient
of the difference between estimates 7; and 7;. When ~
increases, it accelerates the agents’ achievement of con-
sensus. And k; is the coefficient of the negative term of
s;, which accelerates the convergence speed when k; in-
creases.



Table 2
Different parameters in Fig. 6

Parameter 1 11 111
(v, k1) |(1,0.99) (1, 0.1) [ (10, 0.1)
8 Fo— 200
\ ’/:’a

6 150

Parameters 11T ~

Parameter I11

=° 100

50

0 2 4 6 8 0 0.5 1 1.5 2
Time (s) (b) Time (s) (a)

Fig. 6. (a) The evolutions of gx; under different parameters.
(b) The evolutions of H.; under different parameters.

7 Conclusion

This paper considers the general formation control of
multi-agent systems within the PH framework. We
first express the dynamics of multi-agents interacting
through a connected graph as a PH system. We then
propose a distributed controller allowing to drive the
overall formation to a desired configuration. The main
feature of the controller is that it operates without direct
state exchange, which help to reduce the risk of leak-
age of sensitive information (such as position, velocity,
value function...). From this, we show the exponential
stability of it. Finally, simulations related to the control
of a formation of USVs demonstrate the effectiveness of
the proposed approach.
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