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Ignacio Dı́aza,b, Héctor Ramı́reza, Yann Le Gorrecb, Yongxin Wub

aDepartamento de Electrnica Universidad Tcnica Federico Santa Maria Valparaso Chile
bUniversite Marie et Louis Pasteur SUPMICROTECH CNRS institute FEMTO-ST F-25000 Besancon France

Abstract

This paper is concerned with the constructive, modular and easy to implement passivity-based rate-dependent modelling of piezo-
electric actuators (PZAs) using the port Hamiltonian (PH) framework. The proposed model incorporates hysterons to capture the
hysteresic behavior of PZAs, resulting in a causal bond-graph representation and a simplified explicit PH formulation. The proposed
model is an input-affine port-Hamiltonian system that is shown to be asymptotically stable with respect to an arbitrary equilibrium
configuration. The model is experimentally validated over a large range of operation frequencies using a commercial piezoelectric
actuator and compared to a Bouc-Wen model of the same order.
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1. Introduction

In this work, we propose a passivity-based, rate-dependent
(in the sense that the hysteresis shape depends on the shape of
the input between two extrema) model for piezoelectric actua-
tors (PZAs) using the port Hamiltonian (PH) framework. The
model incorporates hysterons to capture the hysteresic behavior
of PZAs, resulting in a causal bond-graph representation and a
simplified, explicit PH formulation.

Piezoelectric materials are characterized by their coupled
electric and mechanical response. In recent years, due to the
high resolution motion capabilities of PZAs various applica-
tions have been explored. These include applications in fuel
injectors [1], hydraulic valves [2], atomic force microscopes
[3], different medical applications and bionic actuators [4, 5].
Additionally, PZAs have found applications in computer com-
ponents [6], adaptive optics [7] and micro manipulators [8, 9].
In many of these applications, various models are used to de-
scribe the nonlinear behavior of the PZ materials. One of the
main challenges is addressing the hysteresis between the in-
put voltage and the mechanical displacement of the actuator.
This phenomenon has been modeled using a variety of meth-
ods, as presented in [10]. Most of the proposed solutions in-
volve piecewise functions such as the basic hysteresis oper-
ator from the Preisach model [10], the min and max opera-
tors in the Prandtl-Ishlinskii method [11] and in the Duhem
model [12], the absolute value function in the Bouc-Wen ap-
proach [13, 14, 15, 16], and the sign function in the Maxwell
Resistive Capacitor [17, 18]. Aforementioned hysteresis mod-
eling methods can be categorized into two main types: rate-
independent models, such as the Preisach model, the Prandtl-
Ishlinskii model, and the Maxwell Resistive Capacitor model,

Email addresses: ignacio.diazal98@gmail.com (Ignacio Dı́az),
hector.ramireze@usm.cl (Héctor Ramı́rez),
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and rate-dependent models, such as the Bouc-Wen and Duhem
models. This classification reflects whether the hysteresis re-
sponse of a system depends solely on previous extreme values
(rate-independent), or if the input path, including its rate, af-
fects the shape of the hysteresis loop (rate-dependent). The use
of PZA requires precise position control, which has been the fo-
cus of numerous techniques. Feedback-based control strategies
have been reported with satisfactory results [19], and some have
included additional anti-windup and saturation components [8].
The drawback of feedback strategies lie in their need for precise
sensors, which can be costly and bulky due to the necessary
accuracy and bandwidth. Consequently, alternative strategies
based on feedforward control in combination with feedback, or
direct feedforward control, have been investigated [20, 13, 14].
In these cases, the selection of the model used to predict the hys-
teresis from the aforementioned options greatly influences con-
trol performance, and the identification data are equally crucial
due to the frequency and temperature-dependent response of
the PZA [21, 22, 23, 24, 25, 11, 26]. In recent years, data-based
modeling has garnered attention for capturing the hysteresis be-
havior of PZAs and other structural and mechanical systems. A
comprehensive review of these methods, along with a compari-
son to traditional model-based approaches, is provided in [27].

The port-Hamiltonian System (PHS) framework is a math-
ematical formulation that allows for modeling multi-physical
systems, characterized by a precise mathematical structure [28,
29]. Several PH formulations have been used to model smart
material transducers with strong nonlinearities and hysteresis,
such as magnetic shape memory alloys and piezoelectric ma-
terials and actuators [30, 31, 32, 33, 25]. This approach con-
siders the energy conservation principle allowing for inherent
passive systems. This property can be leveraged in the design
of passivity based controllers, such as the energy shaping by
control by interconnection [34]. However, this property in hys-
teresis modeling has only been addressed in a few works on

Preprint submitted to Mathematical and Computer Modelling of Dynamical Systems July 4, 2025



rate-dependent hysteresis modeling, such as the Duhem hys-
teresis operator [35] and the Bouc-Wen hysteresis operator [36],
and these works impose some strong conditions. The first at-
tempt at PH modeling of PZA was investigated in [37] using
the Maxwell hysteresis model. However, in that work, only the
mechanical part of the PZA is in the PH formalism, while the
hysteresis modeling remains outside the PH structure due to the
causality issue raised by the Maxwell Resistive Capacitor [17].
As a consequence, the passivity of the overall model is not es-
tablished.

In this paper, we aim to propose a rate-dependent PH model
for a class of PZAs, which allows for the description of the hys-
teresis phenomenon within these actuators. Additionally, we
can easily demonstrate the passivity of the proposed model.
This model consists of a mechanical subsystem, formed as a
mass-spring damper, interconnected with an electrical subsys-
tem, that takes into account the hysteresis of the PZA. To present
the hysteresis phenomenon, an elemental hysteresis operator
called “hysteron” is used which is composed by a nonlinear ad-
mittance and an energy accumulating component [38]. This ap-
proach has been used to develop classes of thermo-mechanical
models for PZA in [25]. In this paper we develop in a system-
atic manner a mechanical PH model which takes into account
the hysteresis of the actuator which is comparable to classi-
cal hysteresis models, such as the Bouc-Wen model. One of
the main benefits of the proposed PH model is that it is pas-
sive and asymptotically stable with respect to a non-zero equi-
librium configuration. The PH model is derived using Bond-
Graphs, hence it is direct to evaluate other possible model con-
figurations, which are also discussed. The proposed formula-
tion is used to model a commercial PZA, namely PB4VB2S
from Thorlabs [39], and it is experimentally validated and com-
pared with a Bouc-Wen model of the same actuator over a wide
range of frequencies.

The paper is organized as follows: Section 2 derives a model
of a class of PZA using Bond-Graph and PHS. Section 3 exper-
imentally validates the proposed model and compares it with
a Bouc-Wen model. Finally, Section 4 summarizes the results
and outlines future work.

2. Port-Hamiltonian System Formulation

The class of PZA under study is the piezoelectric benders
(PZB). These actuators consist of one or more layers of piezo-
electric material connected to electrodes. When a voltage is ap-
plied, it creates an electric field within the piezoelectric material
inducing a mechanical deformation as shown in Figure 1. Like
other PZA, the PZB exhibits hysteresis between the input volt-
age Vin and the mechanical deformation q [10]. Furthermore
the PZB does not present an unique equilibrium point for an in-
put voltage, but rather a set of equilibrium points, hence control
is usually needed [40]. Due to its passive properties, The PHS
is beneficial for the stability analysis and control design. There-
fore, the PH formulation of PZA appears promising when con-
sidering nonlinear control design, especially passivity-based con-
trol [34].
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Figure 1: Piezoelectric Bender Diagram.
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Figure 2: RC parallel hysteron.

2.1. Hysteresis Modeling
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Figure 3: HRC hysteresis block.

In this paper an approach based on hysterons [38] is used for
modeling the hysteresis behavior of the actuator. The approach
consists in using a nonlinear resistive element paired with an
energy storage element to emulate the hysteresis of the system.
The advantage of the hysteron is that it corresponds to a pas-
sive subsystem. Therefore, when the hysteron is interconnected
with a passive system, the overall system remains passive [38].
For the PZB under consideration, hysteresis is included in the
electrical domain to simplify the mechanical domain for a pos-
terior identification process. For the proposed model, a non-
linear resistance is connected to a linear capacitor in a paral-
lel circuit configuration as presented in Figure 2. As discussed
in [38, 25], it is possible to incorporate multiple hysterons to
generate more complex hysteresis curves. The hysteresis block
obtained by interconnecting n parallel RC hysterons will be de-
noted as Hysteron RC (HRC) block as shown in Figure 3.

When the charges Qi in the capacitors are taken as the state
variables of the HRC block system, and using the constitutive
equations for the components, the dynamic equations that rule
the HRC block are the following

Q̇i = ih − h−1
i (Qi/Ci), (1)

for every hysteron i, where the nonlinear damping function h−1
i (·)

maps R+ → R+0 and R− → R−0 to avoid a negative entropy gen-
eration and hence a violation of the second law of Thermody-
namics. This definition permits the existence of multiple zeros
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in the damping function, which in turn allows the modeling of
the equilibrium point set. Additionally, it is important to un-
derline that all the points where the damping function h−1

i is
identically zero are in a neighborhood of (0, 0), implying that
the equilibrium points of the system belong to a connected set.

An example of h−1
i is constructed considering the nonlinear

resistive function

-75 -50 -25 0 25 50 75
-10

-5

0

5

10

Figure 4: Example of a nonlinear damping function.

h−1
i (x) =



ϱ−1
i · (x + di/2), x <

−di

2

0 ,
−di

2
≤ x ≤

di

2

ϱ−1
i · (x − di/2), x >

di

2

(2)

whose response with arbitrary values is shown in Figure 4.

2.2. Actuator Model
The complete PZA model comprises of a possible linear

mass-spring-damper model interconnected with a nonlinear elec-
tric dynamic system through an ideal transductor element as
shown in Figure 5. The nonlinear electrical system is composed
of a capacitor, the HRC block and the transductor element in a
series circuit connection. The proposed model is similar to the
Maxwell Resistive Capacitor (MRC) model presented in [17],
but instead of using the MRC, an HRC block is used. This ap-
proach is mainly motivated by two reasons. First, the modular-
ity of the HRC block allows the hysteresis curve to be made ar-
bitrarily complex by adding more hysterons to the HRC block.
Secondly, the HRC block resolves the causality issue raised by
the MRC model, ensuring that the overall PZA system remains
passive as previously mentioned. The modularity of the model
is immediately seen when casting the PZA diagram as a Bond-
Graph as shown in Figure 5b. In the diagrams the mechanical
domain is represented in the blue dashed box, the electrical do-
main in the red dashed box, and the HRC block in the purple
dashed box. In the Bond-Graph, grey dashed arrows allow for
the additional connection of new hysterons to the HRC block.
The Bond-Graph formulation is also convenient for identifying
causality conflicts in the underlying mathematical dynamic re-
lations [41]. A brief summary on Bond-Graph relations used in
this work are presented in the Appendix A.

To derive the dynamic equations of the system the consti-
tutive equations of the different components are used. Through
the Bond-Graph it can be noticed that the C-store element in
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(b) Bond Graph Representation.

Figure 5: Piezoelectric actuator model diagram.

the electrical domain and the C-store element in the mechan-
ical domain are interconnected with 1-junctions and a trans-
former, therefore they share a proportional flow. This implies
that the dynamic equations for both components are propor-
tional, Q̇C = αq̇, and consequently, the model can be imme-
diately simplified by one state variable. The derived model has
the following variables and parameters

• q the displacement for the PZA;

• k the elastic stiffness of the model spring;

• p the mechanical momentum of the PZA;

• m the mass of the PZA;

• b the damping of the model damper;

• α the model transducer ratio;

• Qi the charge on the ith hysteron;

• Ci the capacitance of the ith hysteron;

• QC the charge on the external capacitor;

• C the capacitance of the external capacitor;

• h−1
i the nonlinear damping on the ith hysteron;

• Vin the input voltage;

• Fext the external force applied.
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The dynamic equations are given by

Q̇1 = −h−1
1

(
Q1

C1

)
+ α

p
m
, (3)

...

Q̇n = −h−1
n

(
Qn

Cn

)
+ α

p
m
, (4)

q̇ =
p
m
, (5)

ṗ = −α
n∑

i=1

Qi

Ci
− kq − b

p
m
+ αVin − Fext. (6)

Notice that (3)-(4) correspond to the HRC block and have the
structure of (1) driven by the current flow generated by the
transductor. On the other hand (5)-(6) represent a mass-spring-
damper system driven by the force generated by the transductor,
external forces acting on the PZA and the force generated by
the voltage applied to the PZA. It is important to notice that the
dynamic equation of the capacitor outside of the HRC block,
Q̇C = α

p
m , has not been included in the model, due to the

state variable reduction previously mentioned. This is one of
the important features of the Bond-Graph modeling formalism,
because it helps to decide between different models or system
configurations.

2.3. PH formulation of PZA and stability
An input affine PHS is defined as

Σ :


ẋ = [J(x) − D(x)]

∂H
∂x
+ g(x)u

y = g(x)T ∂H
∂x

(7)

where x ∈ Rn is the state and corresponds to the energy vari-
ables of the PZA, H : Rn → R is the Hamiltonian function
and represents the stored electro-mechanical energy of the sys-
tem, J(x) ∈ Rn×n is a skew-symmetric interconnection matrix
characterizing the coupling between energy storing elements,
D(x) ≥ 0, D(x) = D(x)T ∈ Rn×n is a positive semi-definite
dissipation matrix that takes into account the electrical resis-
tive elements and the mechanical damping elements, u ∈ Rm

is the input vector which for the PZA corresponds to the volt-
age applied to its electrical terminals and g(x) ∈ Rn×m is the
input mapping. One of the features of PHS is that they are pas-
sive systems [42, 28]. This implies that they are asymptotically
stable with respect to its unforced equilibrium. This follows
immediately from the energy balance of (7)

Ḣ =
∂H
∂x

T

ẋ,

= −
∂H
∂x

T

D(x)
∂H
∂x
+ yT u. (8)

This feature is important when considering nonlinear control
design, in particular passivity based control (PBC) design meth-
ods which precisely exploit (8), such as control by damping in-
jection or energy shaping [34]. In the case of PZA the unforced

equilibrium corresponds to a zero input voltage and zero exter-
nal input force. However, due to the hysteresis of the system
the equilibrium is not a single point but rather a set [40].

The PHS formulation can be directly obtained from a Bond-
Graph [28]. In the case of the proposed PZA model it follows
directly from the Bond-Graph of Figure 5.

Proposition 1. The PZA model (3)-(6) is a passive PHS (7)
with state vector the energy variables x = [Q1, . . . ,Qn, q, p]T ,
Hamiltonian function the electro-mechanical energy

H(x) =
1
2

xTH x, (9)

where H = diag[1/C1, . . . , 1/Cn, k, 1/m], input vector the
input voltage and the external mechanical force u =

[
Vin Fext

]T
,

and structure matrices and input map

J =

 0n×n 0n×1 αn×1
01×n 0 1
−α1×n −1 0

 , g =

0n×1 0n×1
0 0
α −1

 (10)

D(x) = diag





C1
Q1

h−1
1

(
Q1
C1

)
...

Cn
Qn

h−1
n

(
Qn
Cn

)
0
b




, (11)

if the nonlinear damping function h−1
i (·) maps R+ → R+0 and

R− → R−0 . Furthermore the forced equilibrium point

x∗ =



Q∗1
...

Q∗n
α
k

(
Vin −

∑n
i=1

Q∗i
Ci

)
− 1

k Fext

0


, (12)

where h−1
i (Q∗i /Ci) = 0, is globally asymptotically stable.

It is straightforward to verify that (3)-(6) correspond to the
PHS defined in Proposition 1. Due the PHS structure the sta-
bility with respect to the unforced equilibrium is given by (8).
However for inputs different from zero the stability must be
proven.

Proof. The proof is composed of two parts: i) Passivity and ii)
Global asymptotic stability to the equilibrium configuration.

i) To show the passivity of the proposed PH model, we can
easily obtain that H(0) = 0 and the power balance equation can
be computed

Ḣ(x) = −
n∑

i=1

Qi

Ci
h−1

i

(
Qi

Ci

)
− b

( p
m

)2
+ yT u. (13)

Since the nonlinear damping function h−1
i (·) maps R+ → R+0

and R− → R−0 , the
∑n

i=1
Qi
Ci

h−1
i

(
Qi
Ci

)
> 0 and and the damping

coefficient b > 0 which imply

Ḣ(x) = −
n∑

i=1

Qi

Ci
h−1

i

(
Qi

Ci

)
− b

( p
m

)2
+ yT u < yT u. (14)
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Hence, the proposed PH model is passive.
ii). To prove the global asymptotic stability to the force

equilibrium x∗, we consider the following Lyapunov function
candidate

HL(x) =
1
2

(x − x∗)TH(x − x∗), (15)

which corresponds to the Hamiltonian (9) shifted with respect
to the equilibrium (12). It is directly obtained that

HL(x∗) = 0, and HL(x) > 0, (16)

for every x different to the equilibrium. Then by taking the time
derivative of (15) it is obtained that

ḢL(x) = −
n∑

i=1

Qi − Q∗i
Ci

h−1
i

(
Qi

Ci

)
− b

( p
m

)2
. (17)

The second term is always negative and corresponds to the me-
chanical dissipation by friction. The first term is the nonlinear
dissipation induced by the HRC block. To prove that this term
is negative let’s split the domain of Qi in three parts. The first
subset S 1 includes every Qi such that h−1

i (Qi/Ci) = 0. The sec-
ond subset S 2 includes every positive Qi that does not belong
to S 1. Finally, the third subset S 3 includes all the negative Qi

that does not belong to S 1. By taking Qi ∈ S 1 it is clear that

Qi − Q∗i
Ci

h−1
i

(
Qi

Ci

)
= 0.

Then by taking Qi ∈ S 2 we notice that Qi > Q∗i , which implies
that Qi − Q∗i > 0. Therefore

Qi − Q∗i
Ci

h−1
i

(
Qi

Ci

)
> 0,

Finally, by taking Qi ∈ S 3 we notice that Qi < Q∗i , which im-
plies that Qi − Q∗i < 0, thus

Qi − Q∗i
Ci

h−1
i

(
Qi

Ci

)
> 0,

Then for every Qi we have that

Qi − Q∗i
Ci

h−1
i

(
Qi

Ci

)
≥ 0. (18)

Consequently the first term of (17) is negative semi-definite and
by Lyapunov’s stability theorem the system is stable at (12). To
prove the asymptotic stability of the system, the largest invari-
ant set of ḢL(x) = 0 is investigated. The set is obtained by tak-
ing the intersection between the zero set of h−1

1 and ẋ = 0. The
obtained set can be described as S : {x ∈ Rn+2|h−1

i (Qi/Ci) =
0 , δ = δ∗ , p = 0}. Therefore using LaSalle invariance theo-
rem it is concluded that the system is asymptotically stable with
respect to the set of equilibrium points S .

Since the proposed model is asymptotically stable with re-
spect to a forced equilibrium it is convenient to model and study
stability when considering a controlled actuation or when the
PZA is used as a sensing element rather than an actuator.

2.4. Discussion

Different modeling considerations, which lead to alterna-
tive models, are briefly discussed in this subsection. The main
discussion point is the hysteron choice and how it affects the
electrical domain configuration.
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(a) Series RL hysteron with capacitor (HRLC).
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(b) Parallel RC hysteron with inductor (HRCL).

Figure 6: Alternative PZA models.

2.4.1. Hysteron choice
For the PA model of Proposition 1 a seemingly arbitrary

choice has been made in the construction of the hysteron. The
hysteron must be composed of a non-linear resistive compo-
nent and an energy accumulating component. For the current
PA model the hysteron is composed of a parallel connection of
a capacitor and the non-linear resistance. This choice is not
unique and alternative electrical configurations of the hysteron
can be used. For instance, the energy accumulating component
can be an inductor, or a series connection of the components
could be considered. In the present paper the parallel RC hys-
teron is preferred since the resulting PA model is input affine
and the causality of the underlying ODEs of the Bond-Graph of
Figure 5 is such that all components are in series connection,
including the mechanical domain components, which allows to
reduce the order of the overall model. This choice does not af-
fect the hysteresis modeling capacity as the same input/output
were obtained with the four combinations of components in the
hysterons. For the rest of the work the benefits of having an
input affine model prevailed over the potential computational
benefits that other hysterons models could have.

2.4.2. Electrical domain connection
It is important to notice that the series RL hysteron also ren-

ders an input affine model. Combining the different hysteron
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options with different electrical configurations enables for the
Bond-Graphs shown in Figure 6. The PZA model derived from
the Bond-Graph of Figure 6a is one order higher than the one of
Proposition 1. This is due to the series-parallel-series connec-
tion of the components, which does not allow to reduce the or-
der of the dynamic system. The experimental validation of this
model presents similar results to the proposed model, hence the
additional state variable does not translate into a bigger bene-
fit. On the other hand in the dynamic model derived from the
Bond-Graph of Figure 6b the equilibrium point of the displace-
ment does not depend on the input voltage, hence it is not able
to model a step voltage input.

2.4.3. Applicability to other PZA
The proposed model was presented for a bidirectional PZA,

but other applications can be discussed. By leveraging the mod-
ular formulation of the system, specific configurations of PZA
can be studied using power preserving structures in the me-
chanical domain. For instance, in [4] a PZA is modeled as a
second-order PHS and used to actuate a flexible optical fiber
system. Even though the approach is simple it is underscored
that there is a limitation in accurately capturing the hysteresis
behavior of the PZA when changing the operation frequency.
With the approach proposed in this paper this issue can be ef-
fectively addressed by interconnecting the PH hysteron based
PZA model with the flexible optical fiber model while preserv-
ing the overall PH structure. This modular interconnection does
not only enhance the modeling accuracy but also simplifies the
control design. Additionally, in the case of asymmetric PZA,
the non-linear damping function can be chosen with the prop-
erty of obtaining an asymmetric hysteresis.

2.4.4. Temperature Dependence
The proposed model assumes isothermal operating condi-

tions, i.e., constant temperature. However, in applications with
large temperature gradients, the isothermal assumption is no
longer valid. One of the advantages of the PH formulation is
that, being a modular and multiphysical approach, it allows the
incorporation of energy or entropy balances. This leads to Irre-
versible Port-Hamiltonian Systems (IPHS) [43, 44], a class of
systems that define thermodynamically compatible PH formu-
lations. For instance, in [25], a class of PZA is formulated as
an IPHS by making the nonlinear resistance of the hysteron and
the electromechanical coupling temperature-dependent, and by
characterizing the entropy produced by the irreversible ther-
modynamic phenomena. Other hysteresis formulations, such
as the Prandtl–Ishlinskii Hysteresis Model, have also been ex-
tended to account for thermodynamic effects through the use of
nonlinear, temperature-dependent resistance functions [11].

3. Experimental Validation

The experimental validation of the proposed model is per-
formed on a Thorlabs piezoelectric bender PB4VB2S [39] ac-
tuated by a high-voltage FLC Electronics A400DI linear ampli-
fier. The displacement measurement is obtained by means of

LK-G3001P
(Driver) MicroLabBox

LK-G87
(Laser) PZB

Measurement
Data

Voltage
Amplifier
A400Di

150V 0VVin

Displacement
Measurement

Figure 7: Experimental setup description.

a Keyence one-dimensional LK-G87 laser displacement sensor
togehter with a Keyence LK-G3001P driver. The control unit
is a dSpace MicroLabBox running with dSpace Control Desk.
The control algorithm is programmed by Matlab. A diagram of
the experimental setup is depicted in Figure 7, and the exper-
imental arrangement is shown in Figure 8. The model identi-
fication uses four datasets. In each dataset, the external force
applied to the piezoelectric bender is zero, and the input volt-
age is applied using a differential voltage. The identification
datasets encompasses four 75V sinusoidal inputs at frequencies
of 1Hz, 50Hz, 100Hz and 150Hz; and the validation datasets
includes three 75V sinusoidal inputs at frequencies 10Hz, 25Hz
and 75Hz.

3.1. Model identification

For the identification of the model, the mechanical parame-
ters are first identified. The mass is obtained by weighting the
PZA, m = 1.1104 g, and the PZA identified as a purely me-
chanical mass-spring-damper system the remaining mechani-
cal parameters are k = 25.000 N/m and b = 3.7 Ns/m. In a
second step, the transfer function of the complete model is ob-
tained, considering (2) and linearizing it by setting the dead
zone di = 0. The transfer function has relative order 2 with n
zeros and n + 2 poles for n hysterons. For simplicity a model
with two hysterons is considered. The transfer function is iden-
tified using quadratic cost minimization with the ‘tfest’ func-
tion of the ‘System Identification Toolbox’ in MATLAB. From
the obtained transfer function the electrical parameters are es-
timated and taken as initial condition to perform a linear grey-
box estimation. This is done with the ‘greyest’ function from
the ‘System Identification Toolbox’. Following the linear iden-
tification, the non-linear parameters are obtained by solving a
non-linear least square problem. This is implemented through
the ‘nlgreyest’ function from the ‘System Identification Tool-
box’ with the ‘lsqnonlin’ method from the ‘Optimization Tool-
box’ in Matlab, a flowchart is presented in Figure 9 to summa-
rize the model identification process. The obtained parameters
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No
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Fit percentage on test
frequency and step >90%?
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Figure 9: Identification flowchart.

are given in Table 1. Table 3 gives the fit percentages for differ-
ent frequencies obtained by the ‘compare’ function in Matlab.

3.2. Comparison with a Bouc-Wen model

The results obtained with the proposed model are compared
with the response of a Bouc-Wen (BW) model of the same or-
der. The BW model is one of the most used mathematical mod-
els to model the dynamic behavior of the hysteresis in PZA
[13, 14, 15, 16] and is characterized by the following set of
non-linear ODEs [15]

ḣ = AV̇in − β|V̇in|h − γ|h|V̇in,

δ̇ =
p
M
,

ṗ = −kδ − b
p
M
+ KvVin − Khh − Fext.

(19)

Table 1: Parameters for the PHS model.

Parameter Value Units

M 1.0148 · 10−3 [kg]
k 24579 [N/m]
b 3.7356 [Ns/m]
C1 5.6425 · 10−7 [F]
C2 5.2125 · 10−7 [F]
α 0.046311 [C/m]
ϱ−1

1 0.6002 [Ω−1]
ϱ−1

2 1.1528 · 10−4 [Ω−1]
d1 14.7571 [V]
d2 8.6838 [V]
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Figure 10: Response for identification inputs.
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Figure 11: Error comparison for identification inputs.

Here the mass-spring-damper dynamics are completed with the
dynamic of an internal state variable h which accounts for the
hysteresis behavior of the actuator. The same procedure for pa-
rameter identification was employed as in the previous model,
skipping the linear identification part. The obtained parame-
ters are given in Table 2 and the fit percentage for sinusoidal
inputs of different frequencies in Table 3. Figures 10, 11 and

12 show, respectively the time response for a step response and
sinusoidal inputs of 1, 10 and 100Hz, the error between the sim-
ulated model and the experimental response, and the hysteresis
curves of the corresponding inputs. While Figures 13 and 14
present the time response and error for a chirp input signal that
goes from 1Hz to 100Hz.

A comparison between the proposed model and the BW

8
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Figure 12: Hysteresis for identification inputs.
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Figure 13: Chirp response of identified model.

model shows that both models have a high fit percentage, over
90%, for the sinusoidal inputs over the whole range of stud-
ied frequencies (1-150 Hz). However, while the BW model fit
percentage decreases when the frequency increases, the PHS
model fit percentage remains practically constant around 97%.
In Figure 10 one can observe that at higher frequencies the BW

model struggles to accurately replicate the experimental data at
the sinusoidal wave’s extreme points. This is also highlighted in
Figure 11, and quantified by the RMSE in Table 3 that presents
the root mean square error (RMSE) for the identification and
validation dataset. In Figure 12, it is observed that the hys-
teresis curves of both models closely resemble the hysteresis
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Figure 14: Error comparison for Chirp signal.

Table 2: Parameters for the Bouc-Wen model.

Parameter Value Units

M 9.4023 · 10−4 [kg]
k 24579 [N/m]
b 5.2 [Ns/m]
A 0.008743 [V−1]
β 0.00637 [V−1]
γ 0.0144905 [V−1]
Kv 0.048676 [N/V]
Kh 1.9767 [N]

curve of the PZA at lower frequencies. At higher frequen-
cies however the proposed PHS model has a better fitness than
the BW model. The improved high-frequency performance of
the proposed PHS model arises from its power-preserving cou-
pling between a mass-spring-damper system and an electrical
domain that incorporates hysterons to represent hysteresis. This
contrasts sharply with the Bouc–Wen model (and other com-
mon approaches), where the hysteresis component operates as
a feedforward block–driven by input voltage but unaffected by
the mechanical system. As a result, the dynamic coupling in the
proposed model allows the mechanical domain to influence the
hysteresis response, a feature absent in the BW model. On the
other hand, for the step response the fit percentage and RMSE
are very close and no real benefit is seen. Finally, in the case
of a chirp signal in the range of the identified frequencies, the
error grows in peak values for the BW as the frequency grows,
meanwhile the proposed PHS model remains constant.

Finally, to illustrate that the model is rate-dependent, Figure

Table 3: Fit percentages summary for both models

Experiment Fit Percentage (%) RMSE (µm)

PHS Bouc-Wen PHS Bouc-Wen

1 Hz 97.11 96.35 2.3251 2.9358
10 Hz 97.23 94.97 2.2284 4.0418
25 Hz 97.41 94.02 2.0335 4.6937
50 Hz 96.59 93.06 2.6051 5.2988
75 Hz 96.69 91.75 2.4579 6.1254
100 Hz 96.99 90.80 2.2222 6.7942
150 Hz 96.98 90.14 2.1947 7.1673
Step 97.59 97.07 2.9342 3.5302
Chirp 95.36 94.60 3.6480 4.2410

15 shows an example using two input functions with the same
extreme values but different rates of change. It can be seen that
not only do the extreme displacements vary according to the
input rate, but the intermediate values also differ.

4. Conclusion

A port-Hamiltonian system (PHS) model has been proposed
to describe a large class of piezoelectric actuators with hys-
teresis. The proposed model comprises a mechanical mass-
spring-damper subsystem and a nonlinear electrical subsystem
which captures the hysteresis of the actuator. Furthermore, us-
ing Bond-Graphs, model configuration has been explored by in-
vestigating the causal interconnection between the energy stor-
ing components. The proposed model is a passive input-affine
PHS asymptotically stable with respect to arbitrary equilibrium
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Figure 15: Rate-dependency example

configurations. The model showed high accuracy in experi-
mental validations across a wide frequency range using a com-
mercial piezoelectric actuator, achieving a fit percentage above
96.5% for sinusoidal inputs. The model was compared with a
Bouc-Wen model of the same order, showing improved perfor-
mances when working at high frequencies.

Future work shall investigate the use of the model for pas-
sivity based control techniques, the study of creep in the case
of steady state regulation and the addition of the dynamic of the
temperature in the model.

Appendix A. Bond-Graph Conventions

In the Bond-Graph (BG) formalism each bond is charac-
terized by a couple of variables e(t) and f (t), related to power
flows, and their corresponding energy variables ṗ(t) = e(t) and
q̇(t) = f (t), which characterize the dynamics of energy storing
elements. The relation of power and energy variables in the me-
chanical and electrical domains are shown in Table A.4 and the
elemental graphical relations and corresponding constitutive re-
lations of BG are presented in Table A.5. See for instance [41]
for a complete overview.
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Table A.4: Power and energy variables.

Bond Graph Mechanical Domain Electrical Domain
Effort e(t) Force F(t) Voltage V(t)

Flow f (t) Velocity v(t) Current i(t)

Generalized
Momentum p(t) Momentum p(t) Magnetic

Flow ϕ(t)

Generalized
Displacement q(t) Displacement q(t) Electric

Charge Q(t)

Table A.5: Basic BG relations.

Name Graphical Representation Constitutive Equation

0 Junction 0

n∑
i=1

fi = 0

ei = e j ∀i, j

1 Junction 1

n∑
i=1

ei = 0

fi = f j ∀i, j

Resistive element
R : ΦR(·)
or
R : ΦR(·)

General: e = ΦR( f )
Linear: e = R f

C store C : ΦC(·)
General: q = ΦC(e)

Linear: q = Ce

I store I : ΦI(·)
General: p = ΦI( f )

Linear: p = I f

Transformer
T F
g

or

T F
g

1 2

1 2

f1g = f2 and e1 = ge2

Effort source S e : es(t) e = es(t)
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