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ABSTRACT
Broadcasting efficiently in a Vehicular Ad hoc Network (VANET) 
is a hard task to achieve. An efficient communication algorithm 
must  take into account  several aspects such as the neighboring 
density, the size and shape of the network, the use of the channel, 
the  priority  level  of  the message.  Some studies  [6,12,13]  have 
proposed new solutions of broadcasting on such a network, but it 
is quite hard to evaluate their performance in various contexts. In 
order to determine the best repeating situation for each node in the 
network  according  to  its  environment,  we  developed  a  tool 
combining  a  network  simulator  (NS2)  and  an  evolutionary 
algorithm. In this paper, we study four types of context and we 
tackle the best behavior for each node to determine the right input 
parameters.  These  studies  are  necessary  to  develop  efficient 
broadcast algorithms in VANET.  

Categories and Subject Descriptors
C.2.2 [Network Protocols] 
I.2.8  [Problem  Solving,  Control  Methods  and  Search]: 
Heuristic methods. 

General Terms
Algorithms, Design, Experimentation.

Keywords
VANET,  Broadcast,  Flooding,  Context  dissemination,  Multi-
objective Evolutionary Algorithm.

1. INTRODUCTION
Inter-vehicular communications assist drivers by giving them road 
traffic (e.g. traffic jam) and security (e.g. accidents) information. 
Due to the high mobility of vehicles, unicast transmissions are not 
appropriate to such a network [6]. Communication protocols such 
as existing routing protocols are  based on a  simplistic  form of 
broadcasting known as  "Flooding",  in  which each  node (or  all 
nodes in a localized area) retransmits each received unique packet 
exactly once [12]. The resulting problem is the consumption of 
the bandwidth by useless retransmissions. It should be noted that 
the  use  of  the  bandwidth  is  closely  linked  to  the  density  of 
vehicles in the considered area. 

In a dense environment, if each vehicle retransmits each message 
as  soon  as  it  is  received,  the  number  of  collisions  will  grow 
quickly,  preventing  potential  highly  relevant  and  time-critical 
messages from getting access to the shared wireless medium. In 
low  density,  if  vehicles  rarely  relay  the  transmissions,  the 
rebroadcasting  chain  might  be  broken  (while  using  a  realistic 
propagation  model).  The  behavior  of  the  vehicles  (regarding 
message  retransmission)  must  depend  on  the  context.  The 
problem is how to communicate efficiently without unnecessarily 
saturating the channel.

Many  researches  focus  on  message  dissemination  strategies  in 
Vehicular  Ad hoc  Networks  (VANETs).  [11]  and  [12]  present 
mechanisms  to  reduce  redundancy,  contention  and  collision  in 
Mobile  Ad  hoc  Networks  using  probability,  area  or  neighbor 



knowledge-based  methods.  In  [6]  an  altruistic  communication 
scheme  which  differentiates  messages  by  their  relevancy  is 
proposed. 

In this paper, we suggest the use of four parameters to adapt the 
message dissemination to the context: 
• the probability for each vehicle to rebroadcast a message; 

• the number of times each vehicle retransmits each message; 

• the delay between two retransmissions; 

• the TTL (Time To Live) of messages. 
We intend to establish a platform that will allow various vehicles 
to  detect  the  density  of  their  environment  and  adjust  their 
communication parameters automatically. This paper presents the 
choice of parameters depending on a given context. It is the first 
step of the project. Automatic detection of the context will be our 
future work. An evolutionary algorithm (EA) is used to explore 
the possible settings. Then considering each of these settings (i.e. 
a set of parameters) the behavior of a set of vehicles is simulated 
using NS2 (Network simulator 2) [1]. Our goal is to reduce the 
channel utilization and the time spent for a complete transmission 
(all  vehicles  receive  the  message)  in  a  given  area  when 
broadcasting. 

The remainder  of this  paper is  organized as follows.  Section 2 
presents  different  methods  of  broadcasting  in  wireless  ad  hoc 
networks.  Section  3  describes  our  approach  which  consists  in 
using  an  evolutionary  algorithm  to  determine  the  optimal 
parameters of message dissemination for a given context. Section 
4  evaluates  this  proposition  and  presents  simulation  results. 
Section 5 presents concluding remarks and outlines future work.

2. RELATED WORK 
Some work has been done to optimize broadcasting in wireless ad 
hoc networks. The objective is to reduce the number of broadcasts 
without  decreasing  reachability  or  increasing  latency.  The 
proposed techniques can be classified into five groups [11,12,13]: 
simple  flooding,  probabilistic,  counter-based,  area-based,  and 
neighbor-knowledge-based methods. 

In  simple flooding methods,  each node rebroadcasts a message 
only the first time it receives it. The message references are stored 
to avoid later rebroadcasting.  If  this technique gives interesting 
results in a sparse environment, when the density is high, many 
relays are redundant and waste the channel bandwidth [13]. 

The  probabilistic  methods  are  proposed  to  improve  the  simple 
flooding.  When  a  node  receives  a  message,  it  rebroadcasts  or 
drops it depending on a given probability. If this probability is set 
to  1,  this  technique  is  equivalent  to  the  simple  flooding.  The 
problem of  this  method is  the determination of the appropriate 
value of the probability. Even if values between 0.6 and 0.8 as 
rebroadcast probability are considered optimal [8], it is clear that 
these values are not likely to be globally optimal [13]. 

The counter-based methods are based on the fact that the most a 
message is received by the same node, the less an additional area 
will be reached if this node rebroadcast it as demonstrated in [11]. 
When a node receives a message for the first time, it initializes the  
counter with a value of 1 and sets a Random Assessment Delay 
(RAD) which is  a  time  chosen  in  a  given interval.  Before  the 
expiration of the RAD, each time the same message is received, 
the counter is incremented by 1. When the RAD is over, if the 
counter  is  less  than  a  given  threshold  value,  the  message  is 

rebroadcast. Otherwise the message is discarded. In [11] Tseng et 
al., showed that this threshold could be lower than 6. It should be 
noted that this implies an additional latency. 

When  using  an  area-based  method,  before  rebroadcasting  a 
message, the node evaluates the additional coverage area which 
will result upon this retransmission. In [12] it is mentioned that 
this technique does not consider whether nodes exist within that 
area. To evaluate the additional coverage area, the node can use 
the  distance  between  itself  and  each  node  that  has  previously 
rebroadcast  the  message  (distance-based  scheme)  or  the 
geographical coordinates (location-based scheme). The GPS is not 
indispensable  in  the distance-based scheme (the signal  strength 
can be used to calculate the distance). In both distance-based and 
location-based schemes, a RAD is assigned before the message is 
rebroadcasted  (if  the  additional  coverage  area  is  higher  than  a 
fixed threshold) or dropped. It is possible for VANET to improve 
this method by using knowledge of way, and direction of node, 
and not only area, which can change. 

In the neighbor knowledge-based approaches, the nodes exchange 
a “Hello” packet periodically and build a 1-hop neighbors’ list. 
When  transmitting  a  message,  the  node  adds  its  list.  So  the 
receiver compares the sender list to its own list and retransmits the 
message only if all his 1-hop neighbors are not included in the 
sender’s list. This is the self-pruning method. Another approach 
known as Scalable Broadcast Algorithm uses a 2-hop neighbors’ 
list in the same way. This method is inadvisable for vehicular ad-
hoc network because of the relevancy about the information on 
neighbors.  In  fact,  with  high-velocity  mobile  network,  the 
information about neighbors is quickly inaccurate. In this case, the 
performance of this algorithm is very poor. However, for static or 
low mobility network, it is a very fair method. 

The first step of our project deals with probabilistic broadcast, by 
taking into account other parameters like the delay between two 
retransmissions  of  a  message  by  a  vehicle,  the  number  of 
retransmissions and TTL. Since this increases the complexity of 
the problem, an EA is  used to solve it.  We have not found in 
literature  any  work  applying  EAs to  VANET communications. 
The next section describes the proposed approach.

3. HYBRID APPROACH TO OPTIMIZE 
COMMUNICATIONS

The proposed approach is based on two main modules, an 
optimization engine and a simulation engine, which cooperate to 

identify the best choice(s) of parameters for a given context. 
Figure 1 illustrates these two sub-systems and their interactions. 

Figure 1: Interaction between the two sub-systems



The optimization engine uses an evolutionary algorithm (EA) and 
the simulation engine uses NS2.  This section first presents some 
basic elements about EA and NS2. Then, it details how each of 
them has been used to optimize the communications in VANET.

3.1 Introduction to Evolutionary Algorithms
Evolutionary  algorithms  (EAs)  draw  an  analogy  between  the 
solutions of an optimization problem and individuals in nature. 
They first build an initial  population P0,  containing  n randomly 
generated  individuals,  which  are  the  possible  solutions  to  the 
problem. An evaluation process assigns a fitness value to each of 
them. The more interesting a solution is, the greater its fitness. 
Thereafter,  in  the  selection  phase,  the  probability  to  select  an 
individual  is  proportional  to  its  fitness.  Thereby,  the  best 
individuals are most likely to become parents. The recombination 
of  two  parents  uses  a  crossover  operator  to  generate  new 
individuals, called children. By analogy with natural selection and 
reproduction,  children  inherit  qualities  from  their  parents. 
Repeating these steps to create several successive populations P i 

(also called generations),  the algorithm evaluates and compares 
many solutions,  while continuously increasing their quality.  An 
additional operator, called mutation also generates new solutions 
to prevent the EA from being trapped by local optima. Crossover 
and mutation are applied with given crossover and mutation rates. 
Finally, according to a given stop criterion, the algorithm returns 
the best solution(s) it has found.

3.2 Introduction to Packet based Network 
Simulators
VANETs  may  contain  thousands  of  nodes  (Vehicles). 
Communication  solutions  cannot  be  evaluated  nor  by 
representative real  hardware experiments  nor  in  a  deterministic 
way. This is why simulation is very important. There are lots of 
network simulators (NS, GloMoSim, OMNeT++,...) but NS2 [1] 
is  the  most  reliable  in  our  case,  the  most  active  open-source 
network  simulator,  and  the  most  frequently  used  for  wireless 
simulation. It uses discrete event simulation, which is based on the 
change of events and states, because it is a faster more realistic 
method. It is also packet-based, which means that we simulate the 
transport  of  data  packets  on  network  topology.  For  our 
experiments,  we  want  to  evaluate  the  packet  propagation  in  a 
wireless  scenario.  There  is  some  limits  to  NS2  about  the 
propagation model for wireless communication, it is why we use 
an internal improvement with a Shadowing Pattern model [5] to 
have  a  more  realistic  error  model.  The  simulator  works  with 
scenarios which are evaluated by the program. A scenario is a set  
of start parameters, explicit nodes for communication, and time 
events.  Each  new  event  (in  time)  changes  the  state  of  the 
simulator, and can modify some parameters.  The scenarios used 
here are either a single or a double line of nodes which transmit  
one packet or repeat transmitted packets. 

3.3 Context-Oriented Broadcasting Strategy 
into VANET
The proposed system hybridizes EAs and NS2 to determine the 
best set of parameters (or settings) of a probabilistic broadcasting 
strategy for different given environments. The EA explores a set 
of  possible  settings.  NS2 is  used to  assess  the  quality  of  each 
considered  setting  by  simulation.  The  following  sections  detail 
this  cooperation between these  two sub-systems.  Section 3.3.1. 
presents the studied kind of strategy. It particularly specifies the 

settings (based on four  parameters)  that  are  used to  make this 
broadcasting strategy context-oriented. Finally, it indicates which 
kinds of simulation environments have been used to compute the 
values of these criteria for each examined setting. Section 3.3.2 
shows how these parameters and criteria are used in the EA to 
determine  the  best  settings  for  each  of  the  considered 
environments. It describes the different elements of the algorithm: 
the  genotypic  representation  of  each  considered  solution  (i.e. 
setting), the evaluation of its fitness according to the value of the 
different  performance  criteria  it  obtained  by  simulation,  the 
selection  process,  the  recombination  operators  (crossover  and 
mutation) and the stop criterion.

1.1.1  Parameters and performance criteria in a multi-hop model

As previously explained, our context-aware diffusion protocol is 
based  on  a  probabilistic  broadcasting  strategy.  Each  node  is  a 
smart repeater. When receiving a message, it decides whether it 
must  rebroadcast  it  or  not  using  four  parameters  to  adapt  its 
behavior to the current environment. These parameters have been 
chosen so that they remain as few as possible in order to enable 
fast  genetic  computations.  Yet  they  can  combine  and  express 
optimized solutions in an extremely large array of environments. 
These parameters are: 
- P : The probability to start repeating a packet when receiving it 
for the first time. Inherited from probabilistic flooding algorithms, 
this parameter enables the tuning of the contention for the radio 
channel, especially in high density environments. 
- Nr : The total number of repeats (applied only when a node has 
decided it should repeat a packet). It enables the protocols to cope 
with  low  to  extremely  low  node  densities.  In  mobile 
environments, when repeating a packet, one cannot be sure there 
will be a neighbor to repeat and process it further. Repeating this 
packet again over time maximizes the probability a passing node 
will receive it, at a price of channel over-use. This parameter is 
also needed to limit the diffusion over time.  
- Dr : The delay between repeats (also only applied if the node 
initially chooses to repeat the packet). This parameter is used to 
tune the channel use and, in conjunction with the total number of 
repeats to tune how long a packet will be broadcast. 
- TTL : The Time To Live of a packet, expressed as a number of 
hops.  This  parameter  also  limits  the  diffusion  over  time.  This 
parameter could be complemented or replaced by time and / or  
geographic limitations. However a lot more computations would 
be required to optimize and should be explored in future work. 

In  the  proposed  approach,  EAs and  NS2 are  used  to  optimize 
these four parameters in any given environment. The EA explores 
the set of possible values for each of them. A given combination 
of values is called a  setting. NS2 is used to assess the quality of 
each considered setting by simulation. Several objectives are used 
to determine whether a solution is interesting or not. The given 
values of the parameters must enable to use the communication 
network efficiently without saturating it. Four criteria are used to 
characterize this. Three of them must be minimized:
- Nc : the number of collisions, 
- T : the time spent until the last node receives the message,
- and R : the number of retransmissions during the simulation run. 

As simulation is a stochastic process, five hundred simulations are 
run  to  evaluate  the  mean  values  of  these  objectives  for  each 
setting. In each of these simulations, if the channel is saturated, 
the  number  of  collisions  may prevent  the  message  from being 
normally transmitted to all the nodes. In this case, the simulation 
is stopped, and this is stored as a failed simulation. This permits to 



compute a fourth criterion for each  setting, called full reception 
ratio in a limited area (FR), which equals the ratio between the  
number  of  successful  simulations  and  the  total  number  of 
simulations.  This criterion must be maximized.  Besides,  if  it  is 
less than a given threshold,  the considered setting is said to be 
unfeasible.  Otherwise,  the setting is feasible and the successful 
simulations are used to compute the mean values of the three other 
criteria.

1.1.2 Optimizing broadcasting settings
The  previous  section  described  a  multi-objective  optimization 
problem. Evolutionary algorithms (EAs) are known to solve such 
problems efficiently in various fields of application [2,10]. That is 
why we chose this kind of heuristics to solve the current problem. 
The first step of the project uses a very simple multi-objective EA. 
It  does  not  include  any  mechanisms  of  diversification  such  as 
those used in classical multi-objective EAs like the very famous 
NSGA2 [4]. Indeed, the main goal of this step was to estimate the 
feasibility quickly and to check that EAs are tools adapted to this 
problem. Besides, the evaluation phase based on NS2 simulation 
is rather time-consuming. Therefore the developed version of EAs 
had  to  be  all  the  more  simple  to  limit  the  computation  time 
required by optimization operations. Each individual represents a 
setting  of  the  broadcasting  strategy  by  encoding  each  of  the 
considered multi-hop model parameters (P, Nr, Dr and TTL) as 
integer numbers. For instance, the individual presented in figure 2 
corresponds to the following setting of these decision variables: 
the probability P equals 0.5264603, the number of retransmissions 
is  2,  the  delay  between  two  successive  retransmissions  is 
0.2454129 seconds and TTL equals 27.

Figure 2. Example of individual
In accordance with the variation ranges of decision variables set in 
Table 2, the search space contains 12.1015 possible combinations 
(9.1016 in the rural area context). Simulate all possible cases with 
NS2 would take a lot of time. Hence, an EA is an appropriate tool 
for solving this problem.

The initial population is generated by choosing the values of each 
decision  variable  randomly  in  its  given  variation  range.  Each 
individual provides four input values for the NS2 simulator, which 
determines the mean values of the objectives NC, T, R and FR. 
These  values  are  used  by  the  EAs  to  compute  the  fitness  of 
individuals using the principle of non-dominated sorting, based on 
Pareto  dominance  [3].  Pareto  solutions  are  those  for  which 
improvement in one objective implies the worsening of at  least 
one other objective. In the proposed approach, the EA uses the 
evaluation results  returned by the NS2 simulator to  build three 
Pareto fronts. First, all the individuals for which FR is less than a 
given threshold are said to be unfeasible. The remaining feasible 
individuals  are  compared,  using  Pareto  dominance  and  all  the 
non-dominated individuals are put in the first Pareto front R1. This 
process is repeated successively twice with the remaining subset 
of individuals to build the second and the third Pareto fronts (R2  

and R3).  Finally,  the  remaining  subset  and  the  unfeasible 
individuals  are  gathered  in  the  set  of  dominated  solutions R4. 
These sets are then used to compute the fitness in this way:

P Ri =
δ  Ri ∗Card  Ri 

∑
i=1

4

δ  Ri ∗Card R i 

,∀  i  s . t .    1≤i≤4

where  Card(Ri) is  the  cardinality  of  Ri,  and  δ (Ri) is  a  fixed 
probability ratio between the dominated solutions and those of Ri. 

This permits to define a roulette wheel in which the part of each 
front depends on its cardinality. Figure 3 gives an instance of such 
a  roulette  wheel  built  from the  sets  presented  in  table  1.  This 
prevents the dominated solutions from having very low values of 
fitness and preserves the diversity of the successive populations.

Table1: Example of sets and associated selection probabilities
Sets δ (Ri) Card(Ri) P(Ri)

R1 4 19 0.5984252
R2 3 8 0.1889764
R3 2 5 0.0787402
R4 1 17 0.1338583

Figure 3. Example of roulette wheel.

This roulette wheel permits to select parents to be recombined. 
Each parent is chosen by two random selections. The Pareto front 
is first selected, then an individual is selected randomly among the 
individuals belonging to this front, using equal probabilities for all 
these individuals.
Each pair of selected parents is then recombined using a binary 
10-point  crossover.  The  four  variables  of  each  parent  are  first 
converted  into  binary  strings  and  concatenated.  The  resulting 
binary string is then separated into several parts by choosing ten 
crossover  points  randomly.  Then  two  children  are  built  by 
alternatively  copying  the  odd  parts  and  the  even  parts  of  the 
selected parents. Then, the resulting binary string of each child is 
converted  into  four  new  integer  values  of  parameters.  This 
crossover operator has been chosen because k-point crossover is a 
classical method of recombination [7]. It has been tested with 1 
point,  but  there  was  not  enough  diversity  in  the  successive 
evolutionary populations. After several tests a 10-point crossover 
has  been  chosen  because  it  seemed  more  efficient.  However, 
additional  experiments  should  be  done  by  comparing  various 
methods  of  crossing  to  determine  which  of  them  is  the  most 
suitable.
Finally, mutation chooses one of the four variables randomly and 
changes its value randomly. These operators permit to generate a 
new  population  containing  n children,  whose  fitness  is  again 
estimated  using  NS2  simulations.  All  these  steps  (selection, 
reproduction, mutation, evaluation) are repeated until a given stop 
criterion. For the moment, since simulation requires quite a large 
computing time, this criterion is a given number of generations, in 
order to keep reasonable solving times. The EA finally returns the 
set R1.

4. EXPERIMENTATION

4.1 Test environment
The simulations are done under the all-in-one distribution of NS2 
running  on  a  multiprocessor  computer:  four  2600  MHz  AMD 
Opteron CPUs with 32 GB of Random Access Memory. For each 
individual,  500  independent  NS2  iterations  are  run  to  obtain 
statistically  reliable  results.  This  number  of  iterations was 
determined  empirically.  Each iteration  has  a  duration  of  1000 
simulated  seconds,  allowing  the  complete  sending  of  one 



emergency message on a dedicated channel,  the processing and 
accounting  of  all  the  repetitions  of  this  message  that  may  be 
scheduled due to retransmission policy.  The variation ranges of 
decision variables are given in table 2.
In the next sections, the TTL of each individual is not used in the  
interpretation because the size of the simulated networks is not 
high enough.

Table 2: variation ranges of decision variables
Parameter

P Nr Dr (in seconds) TTL
Lower bound 0 1 0 10
Upper bound 1 51 2 40

Table 3: configuration parameters of the EA
Parameter Value Parameter Value

Size of population 32 Number of generations 15

Crossover rate 1 Mutation rate 0.02

The presented tests used the values of δ (Ri) given in table 1, the 
configuration  parameters  of  the  EA  given  in  table3  and  a 
feasibility  threshold equal to  0.75.  The population size  and the 
number  of  generations are  low to limit  computation time.  The 
other parameters were defined empirically.

4.2 Tests in a highway context
To  illustrate  vehicle  communications  on  a  highway,  the  chain 
topology  presented  on  figure  4  has  been  set.  50  nodes  were 
simulated, with a distance of 200 meters between two nodes. This 
illustrates cars lined up on 10 km with a medium density. Each 
vehicle is able to communicate regularly with a dozen peers, but 
more occasionally packets are received by vehicles up to a few 
thousands meters away (as observed in real experiments).

Figure 4 : The simple chain topology

The results are presented in figures 5 to 8. The EA provides a few 
dozen  solutions  belonging  to  R1  among  the  12.1015 possible 
combinations.  All  these  solutions  are  feasible  (FR  >  0.75).  A 
number of unfeasible solutions that were not selected by the EA 
were taken into account to draw the provided figures. This permit 
to better observe the shape of the curves. The aim of this first step 
of  the  project  was  mainly  to  check  that  this  approach  could 
identify adapted settings for each given context. Therefore, only 
simple  broadcasting  methods  were  taken  into  account  and  the 
obtained  results  will  not  be  compared  with  other  known 
broadcasting methods.  For  some cases the simple flooding will 
simply be taken as reference. The comparison between complex 
strategies (and the associated settings) returned by this approach 
and  classical  broadcasting  methods  will  be  performed  in  the 
second step of the project.

Figure  5  presents  the  full  reception  ratio.  It  shows  that 
retransmitting  a  packet  only  once,  whatever  the  retransmission 
probability  (P),  leads  to  incomplete  coverage.  Out  of  500 
simulations for a given setting, the Nr=1 curve never goes over 
than  90%  of  FR.  And  this  ratio  quickly  decreases  with  the 
decrease of P. In this scenario and for this criterion, individuals 

1  Except for the rural area experiment where the upper bound is 
30.

Figure 5: Full reception ratio for the medium density scenario

Figure 6: Delay for the medium density scenario

with  Nr  =  2;  P  >  0.9  and  Nr  ∈ {3,4};     P  >  0.7  prevail 
(highlighted individuals in figures).

From figure 6,  it  appears that only individuals for which Nr=1 
maintain a  very short  delay for  any P.  It  also appears  that  for  
P>0.7,  the  other  individuals  behave  essentially  the  same, 
increasing delays as P decreases.

Although this result was expected, it validates our approach and 
confirms its practicality.

Considering those two first  criteria,  only individuals  for  which 
Nr = 2; P > 0.9 and Nr ∈ {3,4}; P > 0.7 are selected, as shown 
with still highlighted individuals on figure 6. The figure 7 leads to 
eliminate individuals for which Nr ∈ {3,4}, as they cause to much 
collisions.

Finally,  figure  8  shows  a  cost  expressed  as  a  number  of  sent 
packets, and leads to select the individuals that have the lowest 
cost (R) which are Nr=2 and P > 0.9.  The observed delay time 
between repeats (Dr) for these individuals is in [0.7 ; 1.2]. For this 
context, it is clear that the simple flooding (P=1 and Nr=1) will be 
efficient since it allows only one retransmission for each packet.



4.3 Tests in an urban context
Here the focus is on the increased density of vehicles. The used 
topology is similar to the previous chain, but with 134 nodes for 
the  same  10-km  length  (one  VANET  capable  node  every  75 
meters). Each message may be received by tenths of nodes. The 
results are presented in figures 9 to 12.

Figure 7: Collisions for the medium density scenario

Figure 8: Number of retransmissions for the medium density 
scenario

 
Figure 9: Full reception ratio for the high density scenario

As  far  as  full  reception  ratio  is  concerned  (see  figure  9),  all 
individuals are equivalent if P is high enough (P>0.7). Concerning 
delay, the individuals all behave equally well as long as P >0.55 
(see  figure  10).  The  still  selected  individuals  set  is  thus  not 
reduced.  Figure  11  shows  that  all  individuals  behave  also 
essentially the same for a given P.

Figure 10: Delay for the high density scenario

 
Figure 11: Collisions for the high density scenario

Figure 12: Number of retransmissions for the high density 
scenario



Figure 12 finally enables to discern an optimal setting. The best 
individuals correspond to Nr=1 (as they have the lowest channel 
occupation)  and  P=0.7,  which  is  the  minimum  below  which 
information would not always reach all the nodes. The Dr time 
has no sense here because when Nr = 1 there is no second repeat 
on nodes.

The simple flooding will unnecessarily consume the bandwidth if 
it is used in this context.

4.4 Tests in a mobile node context
The topology used in this scenario is derived from the previous 
one, as shown in figure 13.  There are two chains of 67 vehicles,  
each driving in opposite directions. The results are not shown, as 
they are very similar to those presented in figures 9 to 12. From 
the packet diffusion protocol point of view, this topology and the 
previous one are very similar. In such dense scenarios, the vehicle 
density  largely  prevails  over  mobility  patterns,  i.e.:  when  the 
matters less average number of neighbors is high how they move.

Figure 13: The double chains topology

4.5 Tests in a rural area
This  scenario  focuses  on  a  very  low-density  topology  where 
vehicles are often too far away from each other to communicate. 
The topology is basically similar to the one presented in figure 4. 
But in order to simulate a scarcer vehicle distribution, the radio 
propagation  model  mimics  the  very  intermittent  presence  of 
neighbors:  a  given  vehicle  can  communicate  only  for  periods 
accounting for about 20% of the total simulation time. Figure 8 
shows that the EA selected only individuals with high Nr values. 
This is understandable as only high redundancy enables reliable 
enough hop-to-hop communications in such a scarce network.

Figure 14 shows that for an FR value close to 1, Nr > 15 and P > 
0.8  are  necessary.  This  appears  in  figure  15  as  a  high  overall 
number of retransmissions. Hopefully this network overhead is of 
course distributed over a longer period and a large area (tenths of 
seconds  and 10km line  in  this  scenario).  So the  collision ratio 
remains  very  low (around  an  average  of  20  collisions  for  the 
selected individuals). In such an environment, as information can 
only occasionally have the opportunity to jump from one vehicle 
to the next one, the delay before every vehicle has been reached is 
quite high, in the order of tenths of seconds, because the Dr time 
is in [0.3;2].

Due to the fact that the message should be retransmitted many 
times, the simple flooding is not applicable in this context.

5. CONCLUSION
The goal of this work was to emphasize efficient parameters in the 
inter-vehicle  communication  context.  However,  the  number  of 
potential  values  for  this  communication  context  is  huge.  The 
identification of right parameters for this type of ad hoc network 
is extremely complex using an analytical approach or a classical 
simulation  approach.  The  originality  of  our  work  is  to  use  an 
evolutionary  algorithm (EA)  to  track  local  optima  which  offer 
good properties. Based on the results developed in the previous 
section, we highlighted the need for an adaptive strategy to design 
broadcast strategies. The results have enabled us to measure the 

Figure 14: Full reception ratio for a low density scenario

Figure 15: Number of retransmissions for a low density 
scenario

differences  between  an  appropriate  strategy  and  an  inefficient 
strategy  in  a  particular  context.  Even  if  some  results  were 
expected,  they validate the proposed approach and confirms its 
practicality. Now, we know the effect of input parameters on the 
efficiency of  the broadcast  function linked to  the environment. 
The next step is to integrate these results into an adaptive strategy. 
However, we must design mechanisms as implicit as possible to 
assess  the  vehicle  environment.  One  of  the  challenges  is  to 
identify the density of neighbors by transmitting as few messages 
as  possible.  The  second  main  prospect  concerns  the  EA.  Its 
improvement will mainly focus on the development of an adaptive 
distributed version of EAs, to facilitate the configuration phase 
and  to  reduce  computation  time.   This  step  will  rest  on  the 
adaptation of concepts we already used in other application fields 
[9]. A comparative study of crossover methods must also be done. 
The goal is to increase performance. More complex and realistic 
network topologies (such as grid topologies) could be considered. 
Simulating  others  communication  strategies,  such  as  location-
based  methods  and  various  classes  of  messages  to  take  into 
account priorities is possible.
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