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Abstract

This paper addresses the modeling, parameter identification, and validation of curling Hydraulically Amplified Self-healing Elec-
trostatic (HASEL) actuators using the port Hamiltonian (PH) framework. Employing a modular approach, the HASEL actuator is
conceptualized as a combination of elementary subsystems. Each subsystem includes electrical and mechanical components. The
electrical component is characterized by a variable capacitor in parallel with a resistor branch, which is in series with another ca-
pacitor that is also in parallel with a resistor branch, representing charge retention-related drift. The mechanical component consists
of linear and torsional springs connected to an equivalent mass. The parameters of the proposed model were identified using the
Levenberg-Marquardt optimization algorithm with data from the developed experimental setup. Additional sets of experimental
data were used to validate the obtained model.
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1. Introduction

In recent years, soft robotics has garnered significant impor-
tance, driven by the need for robotic systems that are capable of
adapting to diverse environmental conditions. Current designs
are often bio-inspired, whereas rigid robots consisting of me-
chanical systems do not replicate the behavior of natural organ-
isms in the same manner as soft robots. Soft robots can achieve
smooth and complex motions such as snakes, elephant trunks,
animal tongs, and worms, and replicate muscular movements.

Recently, one of the most captivating advances in soft
robotics is the Hydraulically Amplified Self-healing Electro-
static (HASEL) actuator [1]. HASEL actuators combine the
advantages of Dielectric Elastomer Actuators (DEAs) and fluid-
driven soft actuators, providing convenient electrical control,
excellent electro-mechanical performance, large design flexi-
bility, and various modes of actuation [2]. There are various
types of HASEL actuators, each distinguished by their shape
and motion, including Peano, planar, elastomeric donut, quad-
rant donut, high-strain Peano, and curling actuators. The litera-
ture has documented diverse applications of HASEL actuators,
such as a soft gripper for aerial object manipulation [3], an ac-
tuator powering a robotic arm [1], an electro-hydraulic rolling
soft wheel [4], a Peano actuator for enhanced strain, load, and
rotary motion [5], and spider-inspired electrohydraulic soft ac-
tuated (SES) joints [6].

The design dimensions have a direct impact on the defor-
mation and torque that can be achieved. As shown in [6], the
torque output of SES joints was measured as a function of the
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hinge angle. In [6] the actuator was tested with various dimen-
sions, including the height, width, and height of the region not
covered by electrodes. Two types of films were used: 18 µm
thick biaxially oriented polypropylene (BOPP) and 20 µm thick
polyester film (brand name L0WS®). At the end a comparison
between a servomotor and a SES HASEL was proposed. The
servomotor achieved a peak torque of approximately 40 mNm
at 5 V , while the SES joint reached a peak torque of approxi-
mately 30 mNm. The power consumption of both actuators was
also compared throughout an identical series of motions. The
servomotor consumed 140 mW while holding the load at 25◦,
whereas the SES joint consumed less than 1 mW, demonstrating
the energetic efficiency of the HASEL actuator.

One significant advantage of HASEL actuators is the use of
dielectric fluids, which enhances their reliability and scalability,
improving their ability to self-repair after dielectric breakdown.
Additionally, HASEL actuators can achieve higher deformation
levels than DEAs due to their design allows broader and more
flexible movements [1]. HASEL actuators are highly versatile
and capable of achieving expansion, contraction, and rotation.
They can self-sense their deformation state and be constructed
from various material systems with multiple form factors and
sizes. Current HASEL actuator designs exhibit muscle-like per-
formance, making them a viable alternative to other types of ar-
tificial muscles. Furthermore, HASEL artificial muscles repre-
sent a nascent field of research with significant potential for en-
hanced performance [2]. The main challenges associated with
HASEL actuators include the need for high operating voltage,
the importance of preventing dielectric liquid leakage in case
of pouch damage, and the difficulty in maintaining a constant
position under a steady voltage. The authors of [7] characterize
an individual HASEL bending actuator, or ’finger’, demonstrat-
ing controllable pinch force up to 0.7 N, repeatable capacitance
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change to displacement, and fast tunable grip speeds (as low as
50 ms to grip). They feature different gripper configurations ca-
pable of grasping a wide variety of objects, including delicate
fruits.

Adding a strain limiting layer introduces anisotropic behav-
ior; bending occurs on the opposite side of the layer, enabling
the transition from a linear to an angular deformation mecha-
nism [2]. Curling HASEL actuators can be used to manufacture
more complex actuators thanks to their versatility, durability,
and ability to mimic natural movements. Establishing a reliable
model to accurately represent system dynamics is crucial for
achieving effective actuator control in the next step.

Recently, various models have been proposed to represent
the behavior of HASEL actuators under different assumptions.
[8] employs a hyperelastic neo-Hookean model to character-
ize the coupled elastic-electrical-hydraulic behavior of a donut-
shaped HASEL actuator within the quasi-static domain. The
authors of [9] and [10] used the free energy of the system to
derive analytical models representing the quasi-static response
of a Peano-HASEL actuator and a high-strain Peano-HASEL
actuator, respectively. The authors of [11] propose a dynamic
model of a peano-HASEL actuator based on dimensional anal-
ysis and Lagrange’s second-order law. In [12], Dynamic Mode
Decomposition with control (DMDc) leads to a linear model
that approximates the system dynamics. The authors of [13]
proposed a nonlinear reduced-order mass spring damper (MSD)
approximation of an assembly of HASEL actuators. The au-
thors of [14] studied the film material deformation, dielectric
liquid dynamics, and actuator electrical conditions. They used
finite element analysis with COMSOL Multiphysics software
to develop a generalized physics-based framework represent-
ing the actuation mechanism. Data-driven models are used to
model and control soft actuators [15], yielding good results.
However, the main limitation of such models is that they are
typically black-box representations, offering limited insight
into the underlying physical phenomena.

The referenced articles offer various methodologies for
modeling HASEL actuators; however, none is well suited for
the dynamic modeling of curling HASEL actuators. The model
presented by [16] has focused on the Peano-type HASEL actu-
ator, which exhibits simple vertical contraction, with all actua-
tor units (each pouch) moving in the same direction. As a re-
sult, the underlying model relied on strong assumptions, mak-
ing its geometrical modeling relatively straightforward. Fur-
thermore, this work did not account for the drift effect and the
response to an AC input signal is not addressed in this model.
Hence, drawing on the concepts outlined in [16], taking ad-
vantage of the port-Hamiltonian (PH) approach, we introduce
new multiphysics elements to establish a representative model
of the complex dynamic behavior of a HASEL actuator across
its electrical and mechanical domains while addressing their
coupling through the principles of volume conservation. In ad-
dition, we included the drift effect induced by charge retention
in the actuator materials in the model representation. The pro-
posed model is well-suited for control purposes. Taking advan-
tage of the port-Hamiltonian framework, passivity-based con-
trol methods, such as the Interconnection and Damping As-

signment Passivity-Based Control (IDA-PBC) method, can be
applied to achieve target positions or generate desired forces,
as required in gripper applications. An example of passivity-
based control applied to a soft planar vertical take-off and land-
ing (Soft-PVTOL) aircraft is presented in [17].

To address the flexibility and large deformations of the curl-
ing HASEL actuator, this work adopts a finite-dimensional
model based on nonlinear ordinary differential equations. Al-
though infinite-dimensional models using partial differential
equations (PDEs) offer high accuracy, their complexity and com-
putational demands, particularly under nonlinear deformations,
make them impractical for real-time control. The proposed
lumped-parameter nonlinear model provides a practical approx-
imation of the system dynamics and enables efficient imple-
mentation of passivity-based controllers.

The main contributions of this paper are as follows:

• Modeling of a curling HASEL actuator using the PH ap-
proach to capture electrical and mechanical behaviors of
the actuator. The drift effect is accounted for by adding
a resistor branch parallel to the capacitor that represents
the electrodes, both in series with a capacitor that is also
in parallel with a resistor branch that represents charge
retention. Volume conservation allows coupling of the
electric and mechanical domains.

• The derivation of a complex system from the intercon-
nection of several basic elements takes advantage of the
modularity principle in the PH framework.

• Identification of key design parameters for curling
HASEL actuators. The stiffness Kb, damping b, and in-
put mapping as the cosine of the endpoint position were
derived from the experimental data and validated against
other experimental conditions.

• The model of a Manta Ray bio-inspired soft robot is pre-
sented to demonstrate the applicability of the proposed
modeling methodology to other HASEL actuator-based
systems.

This paper is organized as follows: Section 2 gives a de-
tailed literature review of existing modeling for HASEL actua-
tor and describes the curling HASEL actuator considered in this
work. The dynamic model of the presented curling HASEL ac-
tuator is proposed in Section 3 using the PH framework. Then,
we show in Section 4 the identification and validation results.
Finally, Section 5 gives final remarks and future work.

2. Existing models, curling HASEL actuator description
and modeling assumptions

2.1. Existing HASEL actuator models in literature

In this section, we first introduce the existing modeling ap-
proaches in the literature. The authors in [8] used a hypere-
lastic neo Hookean model to characterize the coupled elasto-
electrical-hydraulic behavior of a donut-shaped HASEL actua-
tor within the quasi-static domain. In [6] a quasi-static model
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of spider-inspired electrohydraulic soft-actuated joints is pre-
sented. The authors of [9] and [10] use the free energy of the
system to derive an analytical model that represent the quasi-
static response of a Peano-HASEL and a high strain Peano-
HASEL actuator respectively. The authors of [11] show the
dynamic model of a Peano-HASEL actuator, based on dimen-
sional analysis and Lagrange’s second order law. They derive
a timescale that describes the influence of geometry, materials
system, and applied external loads on the actuation speed. In
[13], the authors introduce a non-linear quasi-static reduced-
order mass-spring-damper (MSD) model for a robotic manipu-
lator actuated by six HASELs. They demonstrate that simula-
tions based on the non-linear MSD models effectively anticipate
the physical behavior of the robot on a macro scale. In [12],
Dynamic Mode Decomposition with control (DMDc) is used
to acquire a linear model that approximates the system dynam-
ics of a HASEL arm. The study described in [14] investigates
the deformation of film materials, the dynamics of dielectric
liquids, and the electrical conditions of the actuator. The au-
thors employ finite element analysis software COMSOL Multi-
physics to develop a generalized physics-based framework for
representing the actuation mechanism. In [18] an artificial mus-
cle fibre that simulates human triceps surae muscle fibre us-
ing Peano-HASEL actuators is represented by a finite element
model.[19] presents a model that represents the quasi-static re-
sponse of Electrostatic Multilayered Systems (EMSs). This ap-
proach captures the drift effect and allows its reduction by se-
lecting the materials that constitute the actuators. The approach
is used in a Peano-HASEL actuator. Kellaris et al. (2021)
presents a quasi-static model to represent the behavior of soft-
actuated electrohydraulic joints. In [16], a Port-Hamiltonian
(PH) formulation of a one-degree-of-freedom (DOF) HASEL
planar actuator is introduced. A nonlinear spring-damper sys-
tem is used to approximate the mechanical deformation of the
actuator resulting from fluid motion, while a nonlinear capac-
itance model is used to approximate the electrical behavior of
the system but the drift effect is not considered in this work.

Our work presents a dynamic model of a curling HASEL
actuator, whereas [6] provides a quasi-static model of spider-
inspired electrohydraulic soft joints. In this work, the model
captures the drift effect, which is a characteristic of HASEL ac-
tuators, and also represents the current consumption of the actu-
ator, which is not accounted for in the model presented in [16].
This model is based on physical principles, unlike the model
presented in [12]. The model presented here is designed for
control applications, and its modularity allows it to be adapted
for other HASEL actuator configurations. A detailed summary
of the existing modeling approaches is presented in Table. 1.

2.2. Actuator description
This section describes the curling HASEL actuator and as-

sociated experimental setup, as illustrated in Figure 1. The curl-
ing HASEL actuator was fabricated using a planar HASEL at-
tached to the strain-limiting layer. The bending motion was
obtained by applying high voltage to the electrodes of the actu-
ator. Bending deformation was measured using a profile laser
sensor. The curling HASEL actuator is composed of several

Table 1: HASEL models existing in the literature

Ref. Model type HASEL actuator type Contribution
[6] Analytical model Spider-inspired electrohydraulic Quasi-static model

soft-actuated joints No drift effect
[8] Finite element model Single donut type actuator Quasi-static model

No drift effect
[9] Analytical model Peano Quasi-static model

No drift effect
[10] Analytical model HS-Peano Quasi-static model

No drift effect
[11] Analytical model Peano Dynamic model

No drift effect and not suitable for control
[12] Data-driven model-based Peano Data-driven model

No physical model, not easy to generalize
[13] Analytical model Folded individual pouches Quasi-static model

No drift effect
[14] Finite element model Individual pouch Dynamic model

No drift effect and not suitable for control
[16] Analytical model Peano Dynamic model

PH model describes the dynamics
No drift effect

[18] Finite element model Peano Dynamic model
No drift effect and not suitable for control

[19] Analytical model Peano Quasi-static model
Drift effect and suitable for material selection

Our Analytical model Curling HASEL Dynamic model with Drift effect
work Modular approach and Control oriented model

pouches (sic C-Series Contracting HASEL Actuator, Artimus®

Robotics with dimensions 76.2 × 147 × 3.4 mm) that contain
dielectric liquid (Envirotemp FR3®); each pouch is conformed
by two films of biaxially oriented polypropylene, which are par-
tially covered by carbon paint electrodes. A schematic repre-
sentation of the actuator is shown in Figure 2a. The system is
partitioned into basic subsystems (Figure 2b). Each basic sub-
system comprise electrical and mechanical parts. The experi-
mental setup used a Keyence® LJ-V7080 profile laser sensor to
measure the actuator position.

u=0KV

u=10KV

Curling 
HASEL

Laser 
sensor 
Head

6cm

Figure 1: In the left figure the curling HASEL actuator and the laser sensor
head used to register the displacement are shown. The right figures show the
curling HASEL displacement from the equilibrium position with an input of 0
kV and the actuator deformation when the applied voltage is 10 kV.

2.3. Assumptions

We present the assumptions taken into account in model-
ing the curling actuator. First, the width of the actuator was
assumed to be uniform; thus, a two-dimensional analysis was
conducted.
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Assumption 1. The model is composed of subsystems as de-
scribed in Figure 2a. Each subsystem is composed of a chamber
and a shell, as depicted in Figure 2b. The corresponding nota-
tion is presented in Table 2. The chamber is the area between
the electrodes, and the shell is the part of the pouch that receives
the dielectric liquid when the electrodes are zipped.

Assumption 2. The total volume (the volume of the shell plus
the chamber volume) is considered constant and the dielectric
liquid is incompressible. The bending of the bottom film was
modeled as a torsional spring.

Assumption 3. The top film of the shell is assumed to be ex-
tendable and to store mechanical energy. The elongation was
modeled as a linear spring. The volume of the liquid dielectric
in the chamber is transferred to the shell as a function of the
zippered area induced by the applied voltage.

Assumption 4. The material is homogeneous throughout the
actuator. Therefore, the parameters to be identified are the same
for all subsystems.

u , 0

Subsystem 1

Subsystem 2

Subsystem 3

(a)

u = 0
Ki Ki

Ki
b

mi

u , 0
Ki

Ki

Ki
b

miAi
s

δi1

θi

Xh

lie

Le (1/2)Lv

(1/2)lip

Ai
C

(b)

Figure 2: 2a) illustrates the cross-section of the Curling HASEL actuator, where
the subsystems are interconnected to represent the entire actuator. The same
voltage is applied to each subsystem. 2b) the basic subsystem is illustrated. On
the left, the electrodes are fully unzipped, while on the right, the electrodes are
partially zipped when voltage is applied, resulting in shell deformation.

2.4. Geometric relations
This section discusses for each subsystem i the geometric

relations that link the deformation angle θi with the zipped elec-
trode length lie. Therefore, from θi, one can derive the actuator

Table 2: Notation and definition

Symbol Units Definition
Ri

0 Ω Equivalent resistance
Ri

1 Ω Equivalent resistance
Ri

2 Ω Equivalent resistance
Ci

1 F Capacitance related to drift effect
Ci

2 F Variable capacitor
Ki N/m Linear spring stiffness
Ki

b Nm/rad Torsional spring stiffness
Xh m Chamber high
mi kg Mass of the actuator
δi1 rad Auxiliary angle
θi rad Angular position
lie m Electrodes zipped lenght
Le m Electrodes lenght
Lv m Length of bottom film
lip m Length of top film
Ai

s m2 Area of the shell

endpoint position h(θ), that is, the displacement of the actua-
tor tip position. Establishing a relationship between θi and lie is
crucial, because the capacitance of the the electrode can be ex-
pressed as a function of lie. This relation enables us to connect
the electrical charge with the derivative of the electrical energy
with respect to the angle θi, thereby coupling the electrical and
mechanical components of the system.

We assumed that the chamber has a rectangular area, and
the shell was modeled as two symmetric triangles. Figure 2b
shows the different variables of a basic subsystem. The follow-
ing equations allow us to determine the relationship between
the θi angle and zipped electrode length lie. The area inside a
single shell Ai

s can be computed as:

Ai
s =

1
4

lipLvsin(δi1(θi, lip)) (1)

with

δi1(θi, lip) =
π + θi

2
− sin−1

(
Lv

lip
sin

(
π − θi

2

))
, (2)

where i ∈ N denotes the index of an individual subsystem. The
constant Lv is the shell bottom length. The total area (area of the
chamber + area of the shell) AT is constant because we assume
that the dielectric liquid is incompressible. It can be computed
from its initial position when the electrodes are unzipped (lie =
0), as shown in Figure 2b. Furthermore, the total area can be
related to the zipped length of the electrode lie of each subsystem
using the following equation:

AT = Ai
s + Xhi (Le − lie(θi, lip)), (3)

where Xh is the height of the chamber, and Le is the length of the
chamber. The total area AT is equal to the sum of the unzipped
areas of the shell and chamber.

The zipped electrode length depends on the angle δi1(θi, lip)
which is a function of the top film length lip and angular position
θi:

lie(θi, lip) = Le −
1
Xh

AT −
Lvlip

4
sin(δi1(θi, lip))

 . (4)
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The endpoint displacement of the HASEL actuator with n ∈
N interconnected subsystems can be computed as

h(θ) = (Lv + Le)

 n∑
j=1

sin

 j∑
i=1

θi


 . (5)

Remark 1. A dynamic model comprising four elements ad-
equately captures the observed dynamical behavior in the ex-
perimental measurements. This number of elements strikes a
balance between capturing the essential dynamics of the sys-
tem and maintaining the computational efficiency. Although a
higher number of elements could potentially improve the pre-
cision of the model, it would also increase its computational
complexity and resource requirements.

2.5. Electric subsystem and charge retention
This subsection deals with the electric behavior of the actua-

tor, focusing on the drift effect observed during the experiment.
The drift effect, attributed to the charge retention phenomenon
as documented in the literature [20], manifests itself as a po-
sition drift when a constant voltage is applied to the actuator.
The applied electric field induces Maxwell stress, which zips
the electrodes. However, charge retention within the actuator
generates an internal electric field opposite to the external elec-
tric field, leading to the observed drift effect (see Figure 3).

u , 0

+ + +

Eint Eext

+ + +

- - - - - -

Figure 3: Charge retention phenomenon. The wrapped internal electric field
inside the pouch is opposite the external electric field, decreasing the Maxwell
stress over time.

Ri
1 denotes the resistance of the electrodes. The series cir-

cuit of capacitor Ci
1 and resistance Ri

2 represents charge reten-
tion. Capacitor Ci

2 presents the dynamics of parallel electrodes
of the HASEL actuator. Capacitor Ci

2 has two parts whose ca-
pacitance depends on the zipped and unzipped areas (see Figure
4).

3. Curling HASEL port-Hamiltonian model

In this section, we model curling HASEL actuator dynam-
ics using the PH framework. First, let us briefly recall the PH
model in [21].

ẋ = [J(x) − R(x)]∇xH(x) + g(x)u;
y = g⊤(x)∇xH(x)(x), (6)

where x ∈ Rn, J(x) = −J⊤(x) is the interconnection matrix,
R(x) = R⊤(x) ≥ 0 is the dissipation matrix and H(x) is the total
energy of the system.

Uin

Ri
0

Ri
2 Ci

2

Ci
1

Qi
1

Qi
2

Ri
1

Dri f t e f f ect

Figure 4: An equivalent electrical circuit is proposed, consisting of a resistor
Ri

0 that represents the resistance in the connectors, the resistance Ri
1 in parallel

with a capacitor Ci
1 that represents the material charge retention in series with

a dynamic capacitor Ci
2, in parallel with resistance Ri

2. This configuration ac-
counts for the drift effect arising from material charge retention.

The model consists of the following parts:

• The interconnection J and dissipation matrix R, which re-
lates the energy exchanges between the sub components
and the energy dissipation in the system.

• The vector of co-energy variables, ∇xH(x), which is de-
fined as the gradient of the Hamiltonian H(x) with respect
to the states x.

• The input map, defined as g(x), and the input u.

• The output, which is the power-conjugated variable of
the input. For this model, it corresponds to the system’s
current.

The modeling methodology is shown in Figure 5.

Define
the

energy
variables

Express
the total
energy

(Hamiltonian)
of the actuator

in terms
of the energy

variables

Compute
the

co-energy
variables

Formulate
the dynamic

equations
and derive the

interconnection
and dissipation

matrices

Incorporate
the system
input and

output

Figure 5: Methodology for formulating the PHS model.

By combining the basic subsystems in a power preserving
manner, that is equaling velocities and forces, we can represent
the overall dynamic behavior of the HASEL actuator, as shown
in Figure 6. Analogous to a two-degree-of-freedom manipula-
tor, ai

c represents the distance between the joint and the center
of mass of the link and ai denotes the link length. The mass is
denoted as mi.

We define the energy variables as the state variables

x =
[
θ⊤, l⊤p , p⊤, Q⊤1 , Q⊤2

]⊤
(7)

where θ is the torsional spring angular position vector, lp is the
top film length vector, p is the momentum of the tip mass vec-
tor, Q1 and Q2 are the electrical charges vectors of the capac-
itors C1 and C2, respectively. With these energy variables, the
total energy of the actuator (Hamiltonian) is composed of the
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h

Uin

a1
c a1

m1

m2

m3

m4

θ1

θ2

θ3
θ4

hv

P

Figure 6: The interconnection of subsystems represents the entire behavior of
the system.

following five components:

H(θ, lp, p,Q1,Q2) = Hθ(θ)︸︷︷︸
Torsional spring

+ Hlp (lp)︸ ︷︷ ︸
Linear spring

+Hg(θ)︸︷︷︸
Gravity

+Hp(p)︸︷︷︸
Kinetic

+ HQ(Q1,Q2, θ, lp)︸               ︷︷               ︸
Electrical

. (8)

The first term in (8) is the potential energy related to the
torsional spring:

Hθ =
1
2

n∑
i=1

Ki
bθ

2
i =

1
2
θ⊤Kbθ (9)

where Kb = diag[K1
b K2

b . . . Kn
b ] is the stiffness matrix and θ =

[θ1 θ2 . . . θn]⊤ represents the angular vector of each subsystem.
The second term in (8) is the potential energy related to the

top film elongation, which reads:

Hlp =
1
2

n∑
i=1

Ki(lip − Lp)2 =
1
2

(lp − Lp)⊤K(lp − Lp), (10)

where K = diag[K1 K2 . . . Kn] and lp = [l1p l2p . . . lnp]⊤.
The third term of the energy in (8) is the potential energy

related to gravity. Each subsystem can be considered as a link
interconnected in series with the other subsystems. The poten-
tial energy associated with gravity is given by:

Hg =

n∑
i=1

miḡ

hv −

aci cos

 i∑
j=1

θ j

 +
 i−1∑

j=1

a j cos

 j∑
k=1

θk




 ;

where ḡ is the gravitational acceleration constant, and hv is the
actuator height.

The kinetic energy (fourth term of (8)) is then given by:

Hp =
1
2

p⊤M−1 p. (11)

M is the inertia matrix and p is the vector of angular momenta
p = [p1 p2 . . . pn]⊤.

M =
n∑

i=1

(miJi
v
⊤

Ji
v + Ji

w
⊤

ĨiJi
w) (12)

where Ji
v and Ji

w are the ith linear and angular velocities Jaco-
bians and Ĩi = (1/12)aimi is the inertia.

The last term of (8) is the electrical energy stored in the
capacitors, which can be represented as:

HQ =
1
2

n∑
i=1

 (Qi
1)2

Ci
1

+
(Qi

2)2

Ci
2

 = 1
2

Q⊤1 C−1
1 Q1 +

1
2

Q⊤2 C−1
2 Q2,

(13)

where C1 = diag[C1
1 C2

1 . . . Cn
1] is the constant capacitance

that represents the charge retention effect of the actuator. C2 =

diag[C1
2 C2

2 . . . Cn
2] is the dynamic capacitance that represents

the electrodes, films, and dielectric liquid, computed as the sum
of the capacitance of the zipped electrodes and the capacitance
of the unzipped electrodes.

Ci
2(θi, lip) = ϵ0ϵrw

 lie(θi, lip)

2t
+

Le − lie(θi, lip)

2t + Xh

 (14)

where ϵ0 is the vacuum permittivity, ϵr is the relative permittiv-
ity, w is the actuator width, t is the film thickness, Le is the
chamber length and lie is the length of the zipped electrodes
part. Xh is the chamber height. Q1 = [Q1

1 Q2
1 . . . Qn

1]⊤ and
Q2 = [Q1

2 Q2
2 . . . Qn

2]⊤ are the electric charges.
Once the state (energy) variables and Hamiltonian of the

system are defined, we introduce the dynamics of the actuator.
First, the angular velocity of a single subsystem is equal to:

θ̇i =
∂Hi

∂pi
=

pi

Ĩi
(15)

The time variation of the top film length is l̇ip = vi
m sin(δi1),

where vi
m is the mass velocity defined as vi

m =
Lv
2 θ̇i. From the

definition of Ai
s, we derive the expression for sin (δi1) = Ai

s

lip
4
Lv

.
Thus, the time variation of the top film is given as:

l̇ip =
2Ai

s

lip

∂H
∂pi
. (16)

Therefore, the relation between the time derivative of the top
film length l̇ip and the partial derivative of the Hamiltonian with
respect to the angular momentum of a single subsystem is given
by the term 2Ai

s

lip
.

The angular momentum variation of a single subsystem
with respect to time is:

ṗi = − Ki
bθi −

Lv

2
miḡ sin (θi) −

∂Hi
Q2

∂θi
−

Ai
sKi(lip − Lp)

lip

−
2Ai

s

lip

∂Hi
Q2

∂lip
− bi

pi

Ĩi
. (17)
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Thus, we can write the equation for n interconnected sub-
systems as:

ṗ = −
∂H
∂θ
− d
∂H
∂lp
− b
∂H
∂p

(18)

where b = diag[b1 b2 ... bn] and d = diag[ 2A1
s

l1p

2A2
s

l2p
. . .

2An
s

lnp
].

The charge variation of the two electrical charges Q1 and
Q2 with respect to time is derived as follows:

Q̇1 = R̄0gaUin − R̄0C−1
1 Q1 − R̄1C−1

1 Q1 − R̄0C−1
2 Q2, (19)

Q̇2 = R̄0gaUin − R̄0C−1
1 Q1 − R̄0C−1

2 Q2 − R̄2C−1
2 Q2, (20)

where the inverse value of the equivalent electrical circuit resis-
tances are defined as R̄0 = diag[ 1

R1
0

1
R2

0
... 1

Rn
0
],

R̄1 = diag[ 1
R1

1

1
R2

1
... 1

Rn
1
] and R̄2 = diag[ 1

R1
2

1
R2

2
... 1

Rn
2
]. The input

mapping is denoted by ga = [ga1 ga2 ... gan]⊤. To capture
the system’s nonlinearity in the inputs, we choose a function
of the form gai = γ1 cos (γ2θi) to reflect the observed exper-
imental behavior, where γ1 and γ2 are parameters to identify.
We observed from the experimental data that the relationship
between the response of the actuator and input voltage can be
approximated by a cosine function that depends on the angular
position.

From (15)–(20) and the expression of the Hamiltonian (8),
one can write the PH model of the curling HASEL actuator as :

θ̇

l̇p

ṗ
Q̇1

Q̇2

︸︷︷︸
ẋ

=


0 0 I 0 0
0 0 d 0 0
−I −d −b 0 0
0 0 0 −(R̄0 + R̄1) −R̄0

0 0 0 −R̄0 −(R̄0 + R̄2)

︸                                                   ︷︷                                                   ︸
J−R


∇θH
∇lp H
∇pH
∇Q1 H
∇Q2 H

︸  ︷︷  ︸
∇xH

+
[
0 0 0 R̄0ga(θ)⊤ R̄0ga(θ)⊤

]⊤︸                              ︷︷                              ︸
g

Uin; (21)

y = (R̄0ga(θ))⊤C−1
1 Q1 + (R̄0ga(θ))⊤C−1

2 Q2︸                                            ︷︷                                            ︸
g⊤∇xH

.

The output y = ie is the current, that is the power-conjugated
variable to the input voltage. The energy balance equation can
be written as:

∂H
∂t = − ∂H

T

∂x R ∂H
∂x + y⊤u;

∂H
∂t ≤ y⊤u = ieUin.

(22)

The model parameters are shown in Table 3. The relative
permittivity parameters are taken from [6].

In summary, the methodology for formulating the model is
as follows.

1. Define the energy variables (7) corresponding to the dif-
ferent components of the curling HASEL actuator.

2. Express the total energy (Hamiltonian) of the actuator
(8) in terms of the energy variables. The Hamiltonian
is defined as the sum of the mechanical potential and ki-
netic energies, and the electrical energy associated with
the electrical subsystem.

3. Compute the co-energy variables by evaluating the gra-
dient of the Hamiltonian with respect to the energy vari-
ables, ∇xH.

4. Formulate the dynamic equations and derive the inter-
connection and dissipation matrices, which describe the
relationship between the energy variables and co-energy
variables. It is essential to incorporate the geometric con-
straints and relations inherent to the system during this
process.

5. Incorporate the system input and output. The input of
the system (input voltage) is multiplied by the input map.
The output of the system is defined as the power con-
jugate variable associated with the input, which, in this
case, corresponds to the current of the system.

Table 3: Model parameters

Symbol Value Units Definition
Lp 0.015 m Initial length of top film
Lv 0.015 m Length of bottom film
Le 0.015 m Length of electrodes
Xh 0.002 m Chamber high
mi 0.007 kg Mass
ϵr 2.2 F/m Relative permittivity
ϵ0 8.854x10−12 F/m Vacuum permittivity
w 0.05 m Actuator width
t 18 × 10−6 m Film thickness

4. Model identification and validation

In this section, we identify the system parameters using ex-
perimental data obtained from the setup shown in Figure 1.
This experimental setup employed a Keyence® LJ-V7080 pro-
file laser sensor to measure the actuator position. The sensor
accuracy is ±0.1% of full scale and the sampling time is 1 ms.
The input voltage was supplied by a Trek® 610E high-voltage
amplifier controlled by a dSPACE board CLP1104. The cur-
rent was monitored using a high-voltage amplifier. The actuator
used to validate the model was the Artimus® Robotics HASEL
C-Series actuator (C-5015-06-01-B-ACAC-50-096), which was
attached to a strain-limiting layer (polymer sheet, 76.2 × 120 ×
0.08 mm). We used a dSPACE board CLP1104 to receive the
measured position signal from the laser position sensor and cur-
rent from the amplifier. The dSPACE board transmitted the in-
put signals to the high-voltage amplifier. The system identi-
fication results comprised four interconnected subsystems that
approximated the curling HASEL actuator.

4.1. Identification by Nonlinear grey box

To identify the system parameters, we used a gray box iden-
tification method. First, we characterized the most sensitive pa-
rameters from the model response. Figure 7 shows the system
response to a 5 kV step input. From this response, we can de-
termine the sensitive parameters as follows:
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• Damping (b): This parameter was adjusted to regulate the
amplitude of the oscillations.

• Torsional spring stiffness (Kb): This parameter was ad-
justed to regulate the frequency of the oscillations.

• Capacitance (C1) and conductances (R̄1 and R̄2): These
parameters are adjusted to account for the position drift
effect.

• Input gain (ga): This parameter is adjusted to correctly
scale the input voltage.

• Equivalent electrical circuit conductance (R̄0): This pa-
rameter is adjusted to define the electrical behavior of the
system.

We can fine-tune the model to accurately reflect the system
dynamics across different input voltages by focusing on these
parameters. The initial parameter values have been manually
tuned by comparing the simulation results with experimental
data to achieve an acceptable fit. Using these initial values,
the Levenberg-Marquardt optimization algorithm is then used
for parameter identification. To determine these initial values,
we followed a multistep approach. First, parameters related to
the physical properties of the actuator—such as the mass m,
the length of top film Lp, the length of electrodes Le, actuator
width, height and film thickness—were obtained through direct
measurement from the real actuator. The permittivity for the
electrical component was obtained from the literature.

0 1 2 3 4
Time [seconds]

0

2

4

6

h
[c

m
]

b

ga;Kb

Kb

C1; R2

Figure 7: Parameter sensitive and their effect in the dynamics and steady-state
behavior.

The identified model parameters are listed in Table 4. Fol-
lowing this, we adjusted the resistance Ri

0 to fine-tune the total
current peaks of the system.

Table 4: Identified model parameters

Symbol Value Units Definition
Ri

0 1 × 103 Ω Equivalent resistance
Ri

1 1 × 106 Ω Equivalent resistance
Ri

2 1.47 × 106 Ω Equivalent resistance
Ci

1 1.75 × 10−5 C Capacitance related to drift effect
Ki 20.83 N/m Spring constant
Ki

b 0.04 Nm/rad Torsional spring constant
bi 0.0031 kgs Damping
γ1 40.38 - Gain parameter
γ2 7.05 - Gain parameter

The final step involves model validation, where we com-
pare the model response with the experimental data to ensure
accuracy and reliability.

Figure 8 shows the identification results obtained using a
negative input voltage with sequence input values. The fitness
between the experimental and simulation results is 92.7%. The
current comparison between the experimental measurement and
the model simulation is shown in Figure 9. It can be observed
that the identified model can predict the current correctly.
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Figure 8: Model identification 8a) Comparison between model response and
experimental data, 8b) Input voltage.
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Figure 9: Current comparison between experimental and model simulation.

4.2. Parameter sensitivity
The sensitivity analysis is performed using the identified

parameters: Ri
2,C

i
1,K

i
b, bi, γ1, and γ2. Each parameter is var-

ied by ±10% and ±5% from its identified value while keeping
the other parameters fixed. The standard deviation (SD) of the
fitness values is obtained using the MATLAB function std for
each parameter. A higher SD indicates that variations in the
corresponding parameter have a greater impact on the system’s
response. The results are summarized in Table 5.

Table 5: Sensitivity of key model parameters

Identified Fitness Standard
parameters +10% +5% 0% -5% -10 % Deviation

Ri
2 92.14 % 92.58 % 92.7 % 92.46 % 91.65 % 0.4219

Ci
1 92.28 % 92.6 % 92.7 % 92.57 % 92.09 % 0.2539

Ki
b 90.33 % 92.04 % 92.7 % 92.06 % 90.34 % 1.0908

bi 92.61 % 92.67 % 92.7 % 92.7 % 92.66 % 0.0370
γ1 81.29 % 88.35 % 92.7 % 86.7 % 75.15 % 6.7834
γ2 89.27 % 91.68 % 92.7 % 91.82 % 89.52 % 1.5172

The most sensitive parameters are the gains in the input
map. Furthermore, variations in system stiffness result in a no-
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tably high standard deviation, indicating a significant influence
on the system response.

4.3. Model validation

To validate the model, we use two different experimental
datasets. Dataset # 1 (Figure 10) considers successive negative
input steps of 500 V every 2 seconds from 2 to 10 seconds. Sub-
sequently, we compare the simulation results with experimental
data from Dataset # 2 (see Figure 11) where a positive signal
was applied. The fitness between the model and experimental
data were computed using the fitting values, representing the
norm of the error with the normalized mean squared root error
(NRMSE) as a cost function.

f it(i) =
∥ xre f (:) − xdata(:) ∥

∥ xre f (:) − mean(xre f (:)) ∥
(23)

where ∥ . ∥ is the 2-norm of the vector. Thus, the model fitness
is computed using the MATLAB function goodnessOfFit with
the cost function NRMSE.

In the aforementioned scenarios, the fitness ratios were
83.1% and 91.27%, illustrating good agreement between the
model and the experiments. A variation of 10% in the param-
eters was considered to illustrate the behavior of the actuator
with similar characteristics. The difference in the model re-
sponse when varying the values of the sensitive parameters by
± 10% increases over time due to the effect of drift. The signif-
icant impact of the drift effect on the model response is evident.
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Figure 10: Model Validation Dataset # 1 10a) Comparison between model re-
sponse and experimental Dataset #1, 10b) Input voltage.
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Figure 11: Model Validation, 11a) Comparison between model response and
experimental Dataset # 2. 11b) Input voltage Dataset # 2.

By varying conductance R̄0, the current peaks of the identi-
fied model response fit correctly with the experimental results,
as shown in Figure 12a and 12b.
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Figure 12: Model current validation, comparison between model current re-
sponse and experimental 12a) Dataset # 1. 12b) Dataset # 2.

4.4. Model validation for AC input signal

The AC voltage input can effectively mitigate the drift ef-
fect of the HASEL actuator induced by the charge retention. In
this section, we demonstrate that the proposed model can also
represent the dynamic response of the HASEL to an AC input
voltage. To validate the model, we apply a 5 kV AC signal with
a 4 Hz frequency and a duty cycle of 50% and the same signal
with a 2 Hz frequency in 13, 16 respectively; the correspond-
ing parameters are detailed in 4. The fitness ratios are 85.11%
and 81.03% respectively. 14, 17 present the model’s response
alongside the experimental data over a longer period. 15, 18
illustrate the comparison of the current. These results indicate a
strong correlation between the simulated model and the experi-
mental data under the specified AC input conditions.
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Figure 13: Model validation 13a) Comparison between model response and
experimental dataset with a 4 Hz AC input signal,13b) Input signal.
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Figure 14: Model simulation in 30 s.
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Figure 15: Comparison between current model response and experimental cur-
rent.
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Figure 16: Model Validation 16a) Comparison between model response and
experimental data with a 2Hz AC input signal, 16b) Input signal.
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Figure 17: Model validation in 30 s.
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4.5. Bio-inspired robotics application

This section presents the model of a bio-inspired Manta Ray
HASEL robot following the methodology introduced in Section
3. The model was identified and validated in the same way as
in Section 4.

The objective is to replicate the flapping of the Manta Ray
fins. To achieve this, we used a HASEL actuator with bending
motion for each fin. The strain-limiting layer, made of a poly-
mer, enables the bending motion and defines the shape of the
Manta Ray. The model of the bio-inspired HASEL robot has
the same structure as the curling HASEL model (21), with the
difference being that the electrodes are only on one side of the
actuator, so the dimension of each state in the electrical part is

1. The HASEL actuator is composed by a single pouch with a
corrugated shape. Each corrugated part can be seen as a indi-
vidual shell that shares the liquid with the other shells and the
unique chamber. The model is equivalent to the interconnection
of two types of basic systems: one corresponding to the cham-
ber and the others representing the interconnection of multiple
shells. This is achieved thanks to the modularity property of
the model. The schematic representation of the model is shown
in Figure 19, while the CAD design of the Manta Ray robot
is depicted in Figure 20. The black component represents the
electrode, whereas the transparent section corresponds to the
curling HASEL actuator, which enables the bending motion.

Figure 21 illustrates the real-life Manta Ray robot in our
laboratory (Figure 21a) along with its motion. Specifically,
Figure 21b depicts the robot’s state without an applied voltage,
while Figure 21c demonstrates its deformation under an applied
voltage of 5 kV.

u , 0 AC

4∑
i

Ai
S

A4
s

A3
s

A2
s

A1
sXh

Figure 19: Manta Ray fin schematic representation.

Actuators

Electrodes

Figure 20: Manta Ray CAD design.

We define the next geometric relations, considering that the
total area (AT ) is equal to the sum of the pouches plus the area
of the single chamber Ac.

AT =

n∑
i=1

Ai
s + Ac (24)

The zipped length is computed considering the total area
and the sum of the shell areas:

le = Le −
1
Xh

(AT −

n∑
i=1

Ai
s) (25)
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Figure 21: Manta Ray bio-inspired HASEL. 21a) Manta Ray bottom view.
21b), and 21c), Manta Ray movement. [FEMTO-ST]. 21d) Representation of
the Manta Ray movement along the time.

where Le is the electrodes length, Xh is the high of the cham-
ber when the electrodes are unzipped. The displacement of the
endpoint is:

h(θ) = Lv

 n∑
j=1

sin

 j∑
i=1

θi


 (26)

where Lv is the bottom layer length.
The energy expressions are the same than in Section 3. The

equivalent electric circuit model considered for the bio-inspired
HASEL robot is shown in Figure 4.

The capacitance C2 is a function of the angle θi and the top
film length lip, it is equal to:

C2(θi, lip) = ϵ0ϵrw

 le(θi, lip)

2t
+

Le − le(θi, lip)

2t + Xh

 (27)

where ϵ0 is the vacuum permittivity, ϵr is the relative per-
mittivity, w is the actuator width, t is the film thickness.

4.6. Model identification and validation
The input signals used for the identification and validation

are sinusoidal because the aim is to represent the periodic move-
ment of the Manta Ray (see Figure 21d). The model parameters
were identified with 5 [kV] and 1 [Hz] sinusoidal input signal

(see Table 6). The fitness of the identification is 80.11 % (see
Figure 22). The validation was done with a 5 [kV] and 0.5 [Hz]
sinusoidal input signal with a fitness of 77 % (see Figure 23).
The fitness for both identification and validation is lower than
the values obtained for the curling HASEL model. This can be
explained by the more complex shape of the actuator. Never-
theless, it is observed that the model represents the behavior of
the bio-inspired robot quite well. The reader is referred to the
video, which illustrates the behavior of both the curling actuator
and the Manta Ray HASEL robot.

Table 6: Bio-inspired robot model parameters

Symbol Value Units Definition
Lp 0.015 m Initial length of top film
Lv 0.015 m Length of bottom film
Le 0.05 m Length of electrodes
Xh 0.002 m Chamber high
m 0.018 kg Total mass
ϵr 2.2 F/m Relative permittivity
ϵ0 8.854x10−12 F/m Vacuum permittivity
w 0.05 m Actuator width
t 18 × 10−6 m Film thickness

Ri
0 1 × 103 Ω Equivalent resistance

Ri
1 1.18 × 105 Ω Equivalent resistance

Ri
2 1.55 × 106 Ω Equivalent resistance

Ci
1 2.05 × 10−5 C Capacitance related to drift effect

Ki 0.7 N/m Spring constant
Ki

b 0.2616 Nm/rad Torsional spring constant
bi 0.0266 kgs Damping
γ1 42 - Gain parameter
γ2 8.9 - Gain parameter
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Figure 22: Identification result. 22a) Comparison between model response and
experimental Manta Ray bio-inspired HASEL fin’s movement

data with a 1Hz AC input signal, 22b) Input signal.
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Figure 23: Validation result. 23a) Fin movement. Comparison between model
response and experimental data with a 0.5Hz AC input signal, 23b) Input signal.
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Discussion: The curling HASEL actuator exhibits complex
non-linear behavior, and the presence of drift poses challenges
in developing a model that accurately captures both its dynamic
and static responses. Nevertheless, the identified model pro-
vides a response that closely aligns with the experimental data,
even though it does not perfectly match the real actuator’s po-
uch configuration in terms of number and dimensions. The pri-
mary goal of this model is to enable effective control of the
HASEL actuator. By adopting a PHS approach, the derivation
of non linear controllers becomes more accessible, which are
available in the literature for other soft actuators [22, 23, 24,
25]. The drift effect is a slow dynamics that has to be taken
into account during control design. It is the case when applying
energy based techniques such as IDA-PBC technique using the
model that includes the drift effect. An alternative to eliminate
drift is the application of an AC signal, which discharges the
actuator and prevents the accumulation of an internal electric
field. The drawbacks of this method are that it requires a volt-
age source capable of generating this type of signal and there is
a ripple in the actuator’s response.

5. Conclusions

We employ the PH approach to model a curling HASEL ac-
tuator by dividing its dynamics into two distinct components.
The mechanical aspect is characterized by linear and torsional
springs coupled with a mass, whereas the electrical component
consists of a varying capacitor Ci

2 in parallel with resistance
Ri

2, both in series with capacitor Ci
1 in parallel with a resistance

Ri
1. This model effectively captures both the drift phenomenon

and the intricate dynamics of the actuator. Moreover, the pro-
posed PH system model demonstrates robustness in represent-
ing system dynamics across a range of input voltage values,
regardless of polarity. Once calibrated, the model allows for
the adjustment of the resistance Ri

0 value to fine-tune the to-
tal measured current, providing flexibility in matching experi-
mental observations. Furthermore, the model proved adept at
simulating the response of the actuator to an AC signal, ef-
fectively mitigating the drift effect induced by charge reten-
tion. This capability enhances its utility in practical applica-
tions where the stability and accuracy of actuation are crucial.
The use of the port-Hamiltonian (PH) framework for model-
ing the dynamics of the HASEL actuator offers two main ad-
vantages. First, the modularity of the port-Hamiltonian system
(PHS) model facilitates the interconnection of different com-
ponents of the actuator, such as the mechanical and electrical
subsystems. This modular structure also enables seamless inte-
gration with other systems, for example, the bio-inspired Manta
Ray robot presented in the paper and a flexible structure actu-
ated by the HASEL actuator. Second, the PH framework is
well-suited for control design using passivity-based methods,
such as the Interconnection and Damping Assignment Passivity-
Based Control (IDA-PBC) approach.

In future work, the model can be extended to an infinite-
dimensional model to capture the actuator compliance deforma-
tion more precisely. For example, the proposed model can be

integrated with a beam model to represent more complex sys-
tems composed of mechanisms and HASEL actuators. This ad-
vancement would provide a more detailed representation of the
actuator behavior under varying conditions. Additionally, the
proposed model holds promise for the design and implemen-
tation of various nonlinear control strategies. These advanced
control techniques leverage the fidelity of the model to achieve
robust and precise control over actuator dynamics. Such ap-
proaches are particularly beneficial for high-performance and
stable applications where conventional linear control methods
may fall short. The potential application of the proposed model
in self-sensing for HASEL actuators will be explored, inspired
by the approach presented in [26].
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