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Abstract

This article presents a systematic modeling methodology for deriving the infinite-dimensional port-Hamiltonian
representation of geometrically nonlinear and hyperelastic systems, and a structure-preserving mixed FEM approach.
The proposed methods provide a rigorous framework for obtaining the dynamic nonlinear partial differential equations
governing these systems, ensuring that they are consistent with a Stokes—Dirac geometric structure. This structure is
fundamental for modular multiphysics modeling and nonlinear passivity-based control. The modeling methodology is
rooted in a total Lagrangian formulation, incorporating Green—Lagrange strains and second Piola—Kirchhoff stresses,
where generalized displacements and strains define the interconnection structure. Using the generalized Hamilton’s
principle, infinite-dimensional port-Hamiltonian systems are systematically derived. To preserve the structure upon
spatial discretization, a three-field mixed finite element approach is proposed, in which displacements, strains, and
stresses are explicitly treated as independent variables to retain the port-Hamiltonian structure. The effectiveness
of the framework is demonstrated through model derivation and simulations, using a geometrically nonlinear planar
beam with Saint Venant—Kirchhoff material, and a compressible nonlinear 2D elasticity problem with a Neo-Hookean
material model, as illustrative examples.
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1. Introduction

Multiphysics models are central to emerging applications such as hybrid nanofluids in electro-magneto-
hydrodynamics, memory response of nano-piezoelectric plates, and rotor dynamics control using mechatronic
bearings [1-3]. These applications involve strong couplings between mechanical, thermal, electromagnetic,
and fluidic subsystems, where the flexible mechanical component is often a key component. Nonlinear me-
chanical systems undergoing large deformations are fundamental in engineering applications ranging from
aerospace structures to soft robotics and advanced materials. Accurate modeling of these systems is essential
for predicting their dynamic behavior, optimizing designs, and developing effective control strategies [4-7].
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Classical modeling approaches based on continuum mechanics, particularly those using Lagrangian formu-
lations, have been extensively developed to describe such systems [8-10]. However, the inherent geometric
and material nonlinearities due to large deformations and hyperelastic behavior pose significant challenges
for both numerical simulation and control design [7, 11-13]. Moreover, Lagrangian and classical Hamilto-
nian systems are intrinsically closed, meaning they do not account for interactions with the environment
through well-defined input and output ports [14]. This structural limitation makes them less suitable for
modular modeling in multiphysics applications and may complicate their use in control design. Therefore,
many existing control strategies rely on simplified or approximate models, which often compromise essential
structural properties such as energy conservation and passivity. These simplifications frequently overlook
the complexities introduced by large deformations and nonlinear material responses, which are critical for
accurately capturing the system dynamics. As a result, conventional approaches may fail to fully represent
the underlying physics, limiting their applicability in real-world scenarios.

Port-Hamiltonian Systems (PHS) offer a structured framework for modeling and controlling nonlin-
ear physical systems while preserving key physical properties such as passivity, energy conservation, and
interconnection structure [14, 15]. Unlike classical Hamiltonian formulations, PHS are intrinsically open
systems, as they explicitly capture energy exchange with the environment through power-conjugated ports.
By centering the modeling process on energy flows, this formalism naturally supports modular design and
the coherent interconnection of subsystems across different physical domains. These features make PHS
particularly well-suited for multiphysics modeling and nonlinear control design [16, 17]. They have been
successfully exploited in passivity-based control (PBC) strategies, which leverage the inherent stability of
passive systems to develop robust controllers in electrical, fluid, thermodynamic, and mechanical applica-
tions [18-22]. For a comprehensive review of the PHS framework, the reader is referred to [23, 24].

The modeling of geometrically nonlinear mechanical systems within the PHS framework has largely
been pursued through case-specific formulations. Several contributions have addressed models using von
Karmén strains assumptions, including Euler-Bernoulli and Timoshenko beams [25-28], with extensions to
two-dimensional plate models [29]. A more general three-dimensional formulation employing the Green—
Lagrange strain tensor and the second Piola—Kirchhoff stress tensor was proposed in [30]. Additionally,
geometrically exact models have been developed, such as the beam formulation introduced in [31]. In paral-
lel, the treatment of hyperelastic systems has gained increasing attention. Examples include one-dimensional
formulations using the right Cauchy—Green deformation tensor and a Neo-Hookean material law for strings
[32], as well as incompressible von Kérméan beam models incorporating Neo—Hookean and Mooney—Rivlin
constitutive laws [33]. Regarding spatial discretization, conventional techniques, such as standard finite
element, finite differences, and finite volume methods, generally fail to preserve the PHS structure, often
leading to a loss of passivity and degraded numerical stability [34], which are critical properties for nonlinear
control applications. To address these limitations, structure-preserving discretization methods have been the
subject of extensive research [34—40]. Within the finite element family, most structure-preserving approaches
for elastodynamics rely on mixed formulations. Some are based on the Hellinger—Reissner variational prin-
ciple [39], which involves inverting the constitutive law, an assumption that is not applicable for general
nonlinear hyperelastic materials. In such cases, it is well established that weakly enforcing the constitutive
relation and treating strain and stress as independent fields yields a mimetic discretization and avoids the
need to invert the constitutive law [41]. To the best of our knowledge, there is currently no general and
systematic methodology for modeling and discretizing geometrically nonlinear and hyperelastic mechanical
systems within the PHS framework. As discussed, existing works are restricted to specific geometries and
assume simplified kinematics and material behaviors. Furthermore, structure-preserving discretizations are
typically introduced in an ad hoc fashion, without a clear connection to the variational methods used to
derive the continuous models. This lack of generality and systematic formulation hinders the extension of
port-Hamiltonian modeling and structure-preserving discretization of systems involving large deformations
and hyperelastic constitutive laws.

In this work, we address these gaps by proposing a unified total Lagrangian framework for model-
ing and discretizing multidimensional, geometrically nonlinear, and hyperelastic port-Hamiltonian systems.
Analogous to the classical treatment of Lagrangian systems, where continuous models and their finite ele-
ment discretizations are derived from Hamiltons principle, our approach enables the direct and systematic
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derivation of PHS models and their structure-preserving discretizations based on the generalized Hamiltons
principle [42]. Specifically, this work makes two main contributions: (i) a systematic modeling methodol-
ogy for directly deriving the port-Hamiltonian representation of geometrically nonlinear and hyperelastic
systems, including explicit definitions of energy and co-energy variables, the nonlinear skew-adjoint differ-
ential operator, and power-conjugated boundary inputs and outputs; and (ii) a specialized three-field-based
structure-preserving mixed finite element discretization approach. A key feature of the methodology is the
modular modeling and the decoupling of the interconnection structure from the constitutive laws. The
kinematic relations are encoded in the nonlinear differential operator defining the interconnection structure,
whereas the constitutive law is captured entirely through the co-energy variables. Consequently, the model’s
state variables comprise momentum, Green—Lagrange strains, and displacements, while the co-energy vari-
ables include velocity, second Piola—Kirchhoff stresses, and body forces. Lastly, this separation enables
modularity and flexibility, allowing the substitution of different strain measures, such as infinitesimal or von
Kéarman strains, or various hyperelastic material models, while preserving the underlying PHS structure.

The paper is organized as follows. Section 2 reviews the generalized Hamilton’s principle, the governing
equations of nonlinear elastodynamics, and the infinite-dimensional PHS framework. Section 3 introduces
the proposed modeling methodology, and Section 4 presents the structure-preserving spatial discretization.
Section 5 demonstrates the effectiveness of the framework through numerical examples. Finally, Section 6
provides conclusions and discusses future directions.

2. Background

In this section, we present the fundamental equations of elastodynamics, focusing on their derivation
from the Generalized Hamilton’s Principle (GHP) [42]. This principle extends the classical Hamilton’s
principle by treating displacements, stresses, and strains as independent variables and can be interpreted
as a dynamic counterpart of the Hu—Washizu principle. Additionally, we introduce the port-Hamiltonian
formalism in the context of Stokes—Dirac structures. For simplicity, spatial and temporal dependencies will
often be omitted.

2.1. Nonlinear elastodynamics

Let By C R? be the volume of an elastic body in the reference configuration, as in Fig. 1. The motion
of a hyperelastic solid undergoing large deformations is described by the displacement field u(X,t) € R3,
defined as:

u(X,t) =x(X,t) — X, (1)

which assigns to each point X € By a displacement vector specifying its current position x(X,t) at time
t > to in the deformed configuration, relative to the reference configuration. The deformation gradient
tensor F € R3*3, which characterizes local deformations, is given by:

0x
F=—=1I+Vu 2
F=—s=1+Vu (2)
where I € R3*3 is the second-order identity tensor, and V() represents the gradient operator with respect
to the material coordinates X. The Green-Lagrange strain tensor E € R3*3, which measures nonlinear
strain in the reference configuration, is defined as:

E-= % (ETE —1) - % (Vu+ (Vu)T + (Vu) Vu). 3)

The second Piola—Kirchhoff stress tensor T € R3*3, which represents stresses energy-conjugated to E, is
related to the strain energy density function W(E) € R by:

ow
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Figure 1: Three-dimensional body and external work.

where W (E) represents the deformation energy per unit reference volume By. Therefore, the elastic energy
U € R is defined as:

u= [ wmax. (5)
Bo

Remark 1. In material Cartesian coordinates X = {X;, X5, X3} € By, the displacement field u(X,t) is
expressed component-wise as:

u’L(X’ t) = xi(X7 t) - Xia (6)
where i = {1,2,3}, X; are the material coordinates in the reference configuration, and z; are the spatial
coordinates in the deformed configuration. The components of the deformation gradient F are given by:

- 8:52 8712'

= 5x; =% T ax; @)

where d;; is the Kronecker delta, defined as d;; = 1 if ¢ = 5, and d;; = 0 otherwise. Finally, the components
of the Green—Lagrange strain tensor E are given by:

3
E;; = L <6ui + Ou + Our 8uk> ) (8)

2\0X;  0X; — 0X; 0X;
where the summation over k is written explicitly.

Before stating the GHP, let us first consider the continuum body in Fig. 1, with reference volume By C R3
and boundary surface 0By = 9B U BY, where 0BY and 0B} denote the portions of the boundary on
which Dirichlet and Neumann boundary conditions (BC) are applied, respectively. In Fig. 1, external work
is performed on the body through both its volume and boundary. A distributed volumetric force fy (X, t) €
R? acts on By, which represents self-weight and external inputs. On 9B, the prescribed displacement
up(S,t) € R? induces its energy-conjugated reaction traction tp(S,t) € R3. Conversely, on 9B}, the
prescribed traction ty(S,t) € R? induces its energy-conjugated reaction displacement ux(S,t) € R3. The
variable S € 9By denotes a curvilinear coordinate along the boundary.

Definition 1 (GHP, [42]). The GHP states that the true evolution of u(X,t) between two specific times
t1 and t9 is a stationary point of the generalized action functional under admissible independent variations
ou, 0E, 0T and dtp, i.e.:

to
/ 5 (T = Up + W) di = 0, ()
t1
su(S,t) = 0 on BY for all t, (10)
du(X,t1) = ou(X,t2) =0 for all X, (11)
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where ¢ is the variational operator, 7 € R is the kinetic energy, Ur € R is the extended elastic energy, and
Wpg € R is the extended external work, respectively defined as:

:%/l; poua-udX, (12)
U= [ [T5(Bw - E)+ W(E)] X (13)
Bo
Wg = fr-udX -I—/ tN~udS+/ tD~(u—uD)dS, (14)
Bo oBY oBD

where po(X) € R is the density of the material, and E(u) denotes the Green-Lagrange strain tensor expressed
in terms of u(X,t). Consequently, its variation must be expressed in terms of Ju.

Remark 2. The GHP shares conceptual similarities with the Hu—Washizu principle, as both formulate
variational frameworks that treat displacements, strains, and stresses as independent variables. However, the
Hu—Washizu principle was originally developed for elastostatics, enforcing homogeneous Dirichlet boundary
conditions strongly by restricting the admissible displacement fields. In contrast, the GHP is introduced as
a dynamic extension and explicitly incorporates tractions on Dirichlet boundaries as independent variables,
enabling the weak imposition of non-homogeneous Dirichlet boundary conditions. This feature makes the
GHP particularly well suited for dynamic problems and boundary control scenarios.

Applying the GHP from Definition 1 yields:

poit = Div(ET) + fv,
for all X € By : E= E(u), (15)
T= 2%
4 E)oR
forall S € 9By : wup=u, (16)
forall S € OBY :  ty =FTN, (17)

where F is expressed in terms of u(X,t), i.e., F(u), and N € R3 is the outward unit vector normal to
0By. From (15), the first equation represents the kinetic equation (balance of linear momentum), the
second describes kinematics (strain-displacement relation), and the third defines the constitutive law for a
hyperelastic solid (stress-strain relation). Dirichlet and Neumann BC follow from (16) and (17), respectively.

2.2. Port-Hamiltonian systems

Let 2 C R with £ = {1,2,3} be an open set representing an /-dimensional spatial domain and 942 its
boundary, such that X € {2 and S € 9f2. A conservative dynamic system is an infinite-dimensional PHS if it
is expressed as [14]:

)= J(x)0.H(x)+G(z)ua(X,t)
)= G(x)"0.H(x),
)= Byd. H(z),
ya(S7 t) = Co 5TH(SC),

forXe 2: x(X,t
t

(18)

where (X, t) is the state, uq(X,t), ya(X,t) are the distributed input and output ports, respectively. J(x) =
—J(x)* is a formal skew-adjoint differential operator, G(z), G(x)* are the input mapping operator and its
formal adjoint, respectively. The variational derivative of the Hamiltonian functional H (z) with respect to
x(X,t), denoted by 8, H (x), defines the co-energy variables. The boundary operators By and Cy provide the
boundary input ug(S,t) and output ys(S,t) ports [43, 44]. To ensure that an infinite-dimensional PHS is
defined within the Stokes-Dirac structure, the operators J (), By, and Cs must satisfy the Stokes’ theorem;
see [45, Assumption 1] for further details.
5
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Definition 2 (Stokes—Dirac structure, [44]). Let %, &;, and %, be Hilbert spaces, where %, is the
flow space, its dual &y is the effort space, and B, = %4 x &y is called the bond space of power variables. A
Stokes—Dirac structure on 4, is a subspace Y5 C %4 such that I, = Qj with respect to a bilinear form
((,-)) given by:

<<(f1, f31 y €1, 631)7 (f27 faza €2, e32)>> = <e1|f2>{727, + <62|f1>7¥1 + <eal |fd2>?7{2 + <e32 ‘f31>i37{2’ (19)

where (-|-)§ and (:|-)?*? are inner products defined over the spatial domain {2 and its boundary 92, respec-

tively. Therefore, for any (f,f5,e,e5) € s it holds that (((f,f5,e,ep), (f,f9,e,ep))) = 0, which can be
generally verified by applying the Stokes theorem.

Considering the infinite-dimensional PHS in (18), let £ = [£,f.,f5]T and e = [es, e.,ep] |, where f, = i,
fo=ug, o = uy, es = 0, H, ec = —yq4, €5 = —ys. Then the set:

-@s = {(fve) S %d | fs = jes + gf67 € = _g*esa fa = Baea €y = _Caes} (20)

is a Stokes—Dirac structure. With the above definitions of £ and e, it follows that system (18) is conservative,
and that the energy exchange with the environment is characterized by:

H = (ya| ua)f} + (yol ua) o’ (21)

Remark 3. Infinite-dimensional PHS have been generalized to dissipative systems within Stokes—Dirac
structures by partitioning the distributed ports into open and resistive ports. For additional details, see
[14, 46]. In addition, infinite-dimensional PHS can also be defined in jet-bundle structures of variational
complexes, often called port-Lagrangian systems (PLS) [47]. This approach, based on differential geometry,
uses jet bundles to describe field interactions and higher-order spatial derivatives, offering a powerful tool
for modeling and analyzing complex systems. For details on PHS in jet bundles, see [48, 49], and for a
comparison with PHS in Stokes—-Dirac structures, see [50].

In elastodynamics, the differential operator arises from the kinematic equation. In the geometrically
nonlinear setting, displacements and strains are related through a first-order differential operator without
cross derivatives, as shown in (3). Hence, this work focuses on systems defined by this class of operators.

Definition 3 (Differential operators, [33]). Let X={ X, ..., X} be a set of orthogonal coordinate axes,
2 C R an open set, v(X) € R™ and w(X) € R™ two vector-valued functions. The first-order differential
operator Fx and its formal adjoint Fy are given by:

Frw(X) = Fo(X) w(X) + Yy Fi(X) (),
Fro(X) = Fo(X) To(X) — Yh_y Ok (Fr(X) To(X)),
with 8y = 8/0X; and Fy(X), Fi(X) € R™>™,

Remark 4. In Definition 3, a vector-valued function v(X) € R™ (and analogously w(X) € R™) is understood
as a mapping that assigns a vector in the Euclidean space R™ to each point X € §2. In contrast, in differential
geometry, a vector field v(X) is formally interpreted as a first-order differential operator, i.e., a map assigning
to each point a directional derivative of the form:

0
oX;

This distinction is important to avoid confusion regarding the notion of v(X) € R™ in Definition 3.

v(X) = vi(X)
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Lemma 1 (Integration by parts, [33]). Consider Definition 3. For any smooth functions v(X) € R™
and w(X) € R™ defined on the closure 2 = £2U 942, the following identity holds:

/ [o(X) T Fxw(X) — w(X) " Ff v(X)] dx:/ w(S) " F5(8) v(8) ds,
2 o202

with Fy(8) € R"*™ a boundary matrix function given by:

Fy(8) = iy Fr(8)T n(S),

and 7 (S) is the k-th component of the outward unit vector 72(S) € R normal to 942.

3. Modeling

This section addresses the modeling of a broad class of multidimensional systems. To ensure clarity and
consistency throughout the presentation of results, a notation is established that effectively organizes and
distinguishes the relevant elements.

Notation

Let X = {X;1, Xo, X3} € By denote the material Cartesian coordinates of a three-dimensional body, as
illustrated in Fig. 2. The reference volume is decomposed as By = £2 x 2¢, where 2 C R? is the /-dimensional
spatial domain over which the model parameters are distributed, and {2¢ is a complementary domain. The
boundary surface is assumed to be 0By = 02 x 2¢, with 92 = 002p U 025 denoting the Dirichlet and
Neumann boundary portions, respectively. Let X C X with X € {2 represent the subset of coordinates where
the parameters are distributed, and let X C X with X¢ € §2° denote its complement. With this, a volume
differential is given by dX = dX°dX, and the integral of an arbitrary separable function g(X) = ¢1(X)g2(X°)
over By becomes:

/B X)X = /Q 7n(X) /Q )2t .

(a) 3D domain

A(X32) : Cross

Xz \ of ZA\' section Area
Ny =n Xaen
- T2 o
n = n2
X1 B, 7_Q><(_Ll Lz) ny Byp=02xA X::J\AX
0 — 219 2
(b) 2D domain (c) 1D domain

Figure 2: Schemes to illustrate notation [51].
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3.1. Considered class of systems

The class of systems considered in this study must satisfies the following assumptions, which serve as
foundational pillars for characterizing the proposed modeling framework.

Assumption 1. Counsider three-dimensional bodies with density po(X) € R, whose kinematic assumptions
yield a displacement field u(X,t) € R? as:

u(X,t) = My (X) r(X, 1), (22)

where M;(X¢) € R3*" is a full-rank matrix, and r(X,t) = [r1(X,t) --- 7, (X,1)]T € R™ denotes the vector of
generalized displacements.

Let E = [E11 Fas Es3 2E15 2E3 2E23]T € RS be the Voigt-strain vector containing the six independent
components of the Green—Lagrange strain tensor E. This vector may have up to six nonzero components,
so we define &(X,t) € R? as the vector composed of its nonzero entries, with d < 6.

Assumption 2. Assume that &(X,t) € R%, the nonzero components of E, can be expressed as:
&(X,t) = My(X%) e(X, 1), (23)

where M;(X¢) € R¥™ is a full-rank matrix, and e(X,t) = [e1(X,t) -+ €m(X,1)]T € R™ is defined as the
vector of generalized strains. Furthermore, assume that the strain energy density function evaluated at
&(X,t), denoted W (e) € R, is integrable over the complementary domain £2¢, and defines:

U(e) = . W(E) dX© = /cw(MQ(xC)e(x,t)) dxe, (24)

where ¥(e) € R is referred to as the generalized strain energy density function.

The full-rank assumptions on M;(X°) and My(X¢) are required to ensure the invertibility of the mass
density matrix and the positive definiteness of the stiffness density matrix, respectively, as discussed in [51]
for linear systems. However, these conditions can often be relaxed when the complementary domain {2¢
is symmetric with respect to its centroidal coordinates, as such symmetry leads to equivalent properties.
Furthermore, note from (24) that, due to the explicit dependence of the matrix Mj(X¢) on X¢, general strain
energy functions W (E) may fail to satisfy the integrability condition. This issue arises, for example, when
using Neo—Hookean or Mooney—Rivlin models for beams or plates. Nevertheless, it can be addressed by
approximating the non-integrable terms via polynomial expansions. A detailed analysis of this strategy in
the context of hyperelastic von Kédrman beam models within the PHS framework is presented in [33]. Despite
these limitations, the proposed assumptions still encompass a broad class of systems relevant to engineering
applications. Examples of displacement fields u(X,t) of the form (22) are provided in [52, Appendix B],
while strain energy functions W (E) for hyperelastic materials are reviewed in [53-56].

3.2. Energy and external work

To derive the PHS representation for the considered class of systems, the GHP is applied. This first
requires expressing the kinetic energy, elastic energy, and external work in terms of the generalized variables.

Proposition 1 (Kinetic energy, [51]). The generalized momentum p(X,¢) € R™, the mass density matrix
M(X) = M(X)T > 0 € R™*", the kinetic energy T'(p) € R, and the co-energy variable e,(X,t) € R" are
defined as:

p(X,t) = M(X) #(X, 1), (25)
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M) = o) [0 ()T AT () (26)
7(0) =5 [ PO M) p(0,1) i, (27)
ep(X,t) = M(X)"'p(X, 1). (28)

Proof. According to Assumption 1, the displacement field implies (X, t) = M;(X¢)#(X,t). Then, from the
definition in (12), we obtain:

T- 3/ ) 80X, 1)K, 1) 0

A
. /Q F(X,6) T MX) #(X, £) dX,

where the mass density matrix M(X) is given by (26). Since M;(X°) is full-rank, or assuming that ¢ is
symmetric with respect to its centroidal coordinates, M(X) is invertible, and thus 7 = T'(p). By definition,
ep(X,t) is the variational derivative of T'(p) with respect to p(X,t). O

Proposition 2 (Elastic energy). The time derivative of the generalized strains €(X,t) € R™, the elastic
energy U(e) € R, and the co-energy variable e.(X,t) € R™ are defined as:

é(X, 1) = Fx(r) (X, 1), (29)
Ule) = /Q U (e) dX, (30)
€€<X, t) = 8y;i6)a (31)

where Fx(r) is a differential operator belonging to the same class as in Definition 3, with associated matrices
Fo(r), Fy(r) € Rm*m,

Proof. The generalized strain e(X,t) is a function of r(X,t) and its spatial derivatives. Then, by applying
the chain rule, é(X,t) can be written as in (29), where Fx(r) is a differential operator modulated by r(X,t)
and its spatial derivatives. From the definition of elastic energy I in (5), and considering Assumption 2, we
obtain U = U(e). By definition, e.(X,t) is the variational derivative of U(e) with respect to e(X,t), and is
defined as the generalized stress. O

In the following, the extended external work Wg, previously defined in (14), is reformulated to be
applicable for any spatial domain 2 C R.

Proposition 3 (Extended external work). The extended external work Wg can be expressed as:

We :/r(x,t)T [Baua(X,t) + b(X)] dX +/ r(S,t) 7 (8, 1) dS +/ [r(S,t) = rp(S,1)] (s, t)ds,  (32)
0 0NN 90p

where Bjugq(X,t) € R™ denotes the generalized distributed load, with By an algebraic input map and
uq(X,t) the distributed input, b(X) € R™ is the generalized body force due to the self-weight, 75 (8,t) € R"
is the imposed generalized traction on 92y, 7p(8,t) € R™ is the generalized reaction traction on 9f2p, and
rp(8,t) € R™ is the imposed generalized displacement on 9£2p.

Proof. The extended external work Wg defined in (14) is composed of the three terms:

Wg = fv-udX+/

ty - udS +/ tp - [u—up)dS.
Bo oBY

o8P

(a) (b) (e
9
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According to Assumption 1, for (a) we have:
@ = [ " [ ) e ax dx
2 Q°
= / r(X,t) " fo(X,t) dX
2
= / (X, t) " [Bgua(X,t) + b(X)] dX,
2

where fo = [,. My fy dX° and the partition fq(X,t) = Bguq(X,t) + b(X) is considered. For the terms (b)
and (¢) we obtain:

(b) = / v )T [ N (x0) Tty dx° ds
0NN e
:/ r(8,6) 7 (S, 1) dS,
0NN

(c):/ [r(S,t) —rp(S,0)] T | My(x%) Ttp dxcds
02p e

:/ [r(S,t) —rp(S,t)] " 7p (S, t) dS.
o2p

Considering the above, Wg in (14) is equivalent to the expression in Proposition 3. O

The extended external work is associated with the external loads acting on the body, either distributed
over the spatial domain 2 C R’ or applied through its boundary 0¢2. The distributed loads comprise two
components: Bgug(X,t), representing the generalized distributed load with ug(X,t) as an external input,
and b(X), representing the body force due to self-weight. On 9082y, 7n (S, t) denotes the imposed generalized
traction, with its power-conjugated reaction being the generalized velocity vy (S,t). Conversely, on 92p,
vp(8,t) = p(8,t) is the imposed generalized velocity, whose power-conjugated reaction is the generalized
traction 7p(8,t). For a visual representation of these variables, see Fig. 3.

Remark 5. Dissipative effects are not considered in the present formulation. The incorporation of phenom-
ena such as viscous damping requires special attention, especially in nonlinear systems. While such effects
can be introduced subsequently in either infinite-dimensional or finite-dimensional settings, they must be
carefully examined on a case-by-case basis to ensure consistency of the formulation.

Prescribed Prescribed
generalized velocity Distributed load generalized traction
vp(S,t) = p(S,1) Bq ua(X,t) TN (S, t)

/ Reaction

generalized velocity

/ un(S,t) =7 (S, 1)

Reaction \

generalized traction

(S, 1) \

7 @ Normal unit vector
pointing outward

Figure 3: Scheme to illustrate the extended external work.
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3.3. Systematic modeling methodology

The infinite-dimensional PHS representation for the considered class of hyperelastic systems is presented
in the following theorem.

Theorem 1 (Infinite-dimensional PHS). Let z(X,t) = [p(X,t)" X, t)" »(X,#)T]T € R?"*™ be the
state variables, and 6, H(x) = [ep(X,1)T ec(X,t)T — b(X)T]T € R2"+™ be the co-energy variables. From
Propositions 1, 2 and 3, the dynamics of the geometrically nonlinear and hyperelastic systems in PHS form
is given by:

p(X,t) 0 —Fx(r)* —1||ep(X,t) By
x| = | Fx(r) 0 0 ||eX,t)| + | 0 |ua(X,t)
7(X, 1) 1 0 0| -bx) 0
i i (33)
#(X,) T(z) =T (x)* 5. H () g
ya(X,t) = G*6,H(z) = B, e,(X,1).
The boundary inputs and outputs us(S,t), ys(S,t) € R?" are defined as:
T
us(8,) = [r(8.6)7 wn(s.0)7] o
vo(8.1) = [on(8,)T To(8,1)7] ",
with
TN (S, t) = Fa(r)ec(S,t), wvn(S,t) =ep(S,t) (on 002y), (35)
Tp(S,t) = Fa(r)ee(S,t), vp(S,t) =ey(8,t) (on 002p),
where the matrix Fy(r) € R"*™ is defined by:
Fy(r) = Yk Fr(r) Tak(s), (36)

with 71;(S) denoting the k-th component of the outward unit vector 2(S) € R’ normal to 9f2. The total
energy function, given by the Hamiltonian H(x), is:

1) = [ (G000 ME 00,0+ 7(6) — 0,075 ) dx (37)
(9]
and the power balance satisfies:
= ua( )T ya(x, 0 dx + / uo(S,1) Tyo(S, 1) ds. (38)
2 on

Proof. The result follows from the application of the GHP, with full details provided in Appendix A. [

The infinite-dimensional PHS models presented in Theorem 1 incorporate geometric nonlinearity through
the differential operator Fx(r), while material nonlinearity (hyperelasticity) appears exclusively in the gen-
eralized stress e.(X.t). Moreover, [51, Theorem 1] on systematic modeling of linear systems is a particular
case of Theorem 1, where the strain measure is the infinitesimal strain tensor and the strain energy density
function corresponds to the Saint Venant-Kirchhoff model, which is equivalent to Hooke’s law in the context
of small deformation theory. We also remark that the system described in Theorem 1 defines a Stokes—Dirac
structure %, over the space %, introduced in Definition 2. The Stokes—Dirac structure is given by:

]- 1 SJ[] ommm e}
e

fo Jo en

Ds = {(frz,fa,erz,ea) € By

11
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where the flow and effort variables are defined as f3 = &, f. = ug, £9 = uy, €s = 6 H, ec = —yq, €9 = —Yo,
and the boundary input and output operators as:

Faee
Baes =

’&QN‘| ) Caes -

®plony

ep‘aer
Fae6 ap

The Stokes-Dirac structure satisfies the condition 2, = 27, where orthogonality is understood with respect
to the bilinear pairing (19). The proof follows by showing both inclusions ¥, C 2 and 2+ C %, as in
[45, Proposition 2], to which we refer the reader for further details.

Now, a systematic procedure is proposed for modeling geometrically nonlinear and hyperelastic PHS over
multidimensional spatial domains. This procedure involves defining the system’s state variables, formulating
the Hamiltonian function, constructing the nonlinear differential operator, and specifying the distributed
and boundary ports. These steps provide a structured approach to accurately capturing the system’s dy-
namics and energy exchanges.

Procedure: To derive a PHS representation for a flexible mechanical system with density po(X), where
kinematic assumptions lead to a displacement field u(X,¢) as in Assumption 1, and the constitutive behavior
is governed by a hyperelastic model with a strain energy density function W (E) satisfying Assumption 2,
follow the steps below:

Step 1. Calculate the mass density matrix M(X) and define the generalized momentum variables p(X,t),
the co-energy variables e,(X,t) and the kinetic energy T'(p). (Proposition 1).

Step 2. Identify the nonzero components of the Voigt-strain vector and define the generalized strain (X, t).
Then, compute its time derivative to construct the differential operator Fx(r) and its formal adjoint
Fx(r)*. (Proposition 2).

Step 3. Compute the generalized strain energy density function ¥(¢). Then, compute the co-energy variable
ee(X,t) and the elastic potential energy U(¢). (Proposition 2).

Step 4. If applicable, define the generalized distributed load By ug(X,t) and the generalized body force b(X).
(Proposition 3).

Step 5. Apply Theorem 1 to obtain the infinite-dimensional nonlinear PHS representation, including the
definitions of boundary inputs us(S,t) and boundary outputs yas(S,t).

4. Structure-preserving mixed FEM discretization

In this section, we propose a structure-preserving, nonlinear mixed finite element discretization based
on three fields. The approach is derived from a virtual power principle rooted in the GHP, enabling the
derivation of finite-dimensional nonlinear PHS models. It is assumed that the interpolation spaces for
the generalized displacement, strain, and stress fields are appropriately selected to ensure consistency and
accuracy of the discretized system. A brief discussion on the choice of these interpolation is provided later
in the section.

Proposition 4 (Weak form). The weak form of the nonlinear PHS (33), following the virtual power
principle derived from the GHP, is given by:

0P, = [ or-[p+ Fx(r)*ec —b— Bgug| dX + or - [Fa(r)ec — Tn] dS = 0, (39)
Q AN

0P, = /Qée6 [é— Fx(r) 7] dX + /BQD Sec - Fa(r)" (7 —vp)dS =0, (40)

12
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5P, = /56 <€—>dX:O, (41)

where dP,, P, and 6 P represent the virtual powers associated with the variations 67, dec, and d¢, respec-
tively.

Proof. The details of the proof are provided in Appendix A. O

Theorem 2 (Structure-preserving mixed FEM). The structure-preserving mixed FEM discretization
of (33) based on the weak formulation in Proposition 4, using the approximations:

(X, 1) = Np(X) 7(2), o7(X, 1) = Ny (X) 67(t), 0p(8,t) = Nup(8) op(t),
Ce(X, 1) = Ne(X) e(t), 0¢c(X,t) = N.(X) dé(t), N (S,t) = Non (8) T (1), (42)
€(X, 1) = Ne(X) €(t), 0€(X, 1) = Ne(X) 6€(t), a(X,t) = Nuy(X) da(t),

with N.(X), Ne(X) = N(X), Ny, (X), Ny, (S) and N, (S) properly selected interpolation shape functions,
leads to the finite-dimensional nonlinear PHS of the form:

p(t) 0 —E@®T -1 [6®] [Ba By 0 ][
)| = | Fu(?) 0 0] [e@|+]0 0 Bp@||in() (43)
7(t) I 0 0 —b 0 0 0 op(t)
——— N—— N —
#(t) J(@)y=—J@)T ViH (&) G(&) a(t)
) ) Bj &(1) Ja(t)
9(t) = G(@) VaH(2)=| Byeéy(t) |=|on(®)],
Bp(A)e(e)] LFn(®)
A(#) = 5 () NEp(0) + 06) — #(1) T, (44)
H=at)Tg(t), (45)

where é,(t) = M~1p(t) is the discrete generalized velocity, é.(¢) = V¢ U(é) is the discrete generalized stress,
and I is an identity matrix. The discrete elastic energy U(€) and the involved matrices and vectors are
defined as:

0(e) = /Q W(N.(X) &(t)) dX, (46)
o= [ (Mo Gl ) ax (47)
M, = QNe(x)Tz\Q(x)dx, (48)
() = QNG(X)T(fx(f)NT(X))dX— aQDNe(S)TFa(f)TNT(S) ds, (49)
I(r) = am{\fe(S)TFa( )" Nuy, (S) ds, (50)
By = BQJ\J,\TT(S)TNTN(S)CZ& (51)
Bd_/NT( By Ny, (X) d (52)
M= /N X) T M(X) N,.(X) dX, (53)
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b= / N.(X)T b(X) dX, (54)
2

where F,(#) = M ' 5(#) and Bp(#) = M1 T'(7).

Proof. The proof follows by substituting the approximations into the weak formulation. Details are provided
in Appendix A. U

Corollary 1. An alternative PHS representation of the finite-dimensional model in Theorem 2 is given by:

M0 0] [o(t) 0 —x@®7T —I] [0t Bs By 0 tg(t)
0 M, o] |ét)] = |£() 0 0| [e@]+]0 o I@E|]|in) (55)
0 0 I]|F)] I 0 0 —b 0 0 0 | [op(t)

E ) Je(©)=—Je(©)T 2(é) Ge(&) a(t)

o(t) T Mo(t) +U(&) —#(t) b, (56)
H=at)T9(t), (57)

ETZ(£) is the gradient of the Hamiltonian, 9(t) = #(¢) is the discrete generalized velocity,

éc(€) is the discretized stress.

In the formulation of Corollary 1, the velocity ©0(¢) is introduced as a state variable in place of the
momentum p(¢). This leads to an equivalent PHS while avoiding the need to compute M-t In addition,
in Theorem 2 and Corollary 1, preserving the PHS structure depends on the invertibility of the matrix
M, in (48), which couples the strain and stress interpolation spaces. Since invertibility may not hold for
arbitrary shape function choices, we impose the condition that both fields share the same interpolation, i.e.,
N (X) = N(X). In this context, we emphasize that the selection of interpolation spaces may depend on the
specific spatial dimension and the nature of the nonlinearity. For instance, the linear case, characterized by
infinitesimal strains and Hookean material, can be seen as a particular case in which greater flexibility in
the choice of interpolation spaces is possible. However, for nonlinear elasticity, standard practice suggests
using continuous piecewise linear shape functions for displacements, and discontinuous piecewise constant
shape functions for stresses and strains, in order to ensure both numerical stability and accuracy [57, 58].

An important feature of the proposed finite-dimensional port-Hamiltonian formulations is that general-
ized stresses, strains, and displacements are treated as independent fields. This approach eliminates the need
to invert the hyperelastic (nonlinear) constitutive relation, which is advantageous for general hyperelastic
materials where the stress-strain relationship may not be uniquely invertible [59]. Inversion-based methods
are more commonly associated with Hellinger-Reissner-type formulations [60], for which a port-Hamiltonian
variant has been developed in [30], albeit restricted to materially linear systems. While certain strategies
allow the constitutive relation to be inverted by selecting appropriate solution branches [60], extending the
present port-Hamiltonian framework to such cases lies beyond the scope of this work and represents an
interesting direction for future research. It is also important to mention the issue of volumetric locking, a
well-known numerical artifact that can arise when modeling nearly incompressible materials. Although this
work does not explicitly address locking, the formulation’s treatment of generalized strains as independent
fields is, in principle, compatible with extensions that incorporate enhanced strain modes to alleviate such
effects, as in [61, 62]. Integrating these techniques into the proposed approach remains an open and valuable
avenue for further investigation.

14
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One potential limitation of the proposed finite-dimensional models is their applicability to static prob-
lems. From a control-theoretic perspective, the equilibrium points (i.e., static solutions) of the system cannot
be directly characterized within the current formulation. To illustrate this, let 2* = [p*"T & #*T]T and
ot = [y % 05 |7 denote the equilibrium state and input vectors, respectively, under the assumption

ok Ak T axT A%
Z = 0. This leads to the following set of equations:

0=—F,(7* ) c(&) + b+ By + By7 (58)
F (P )M™'p* + Bp(7*)05, (59)
0= M 1p*. (60)

As expected, (60) implies that p* = 0 (or 0* = 0 in the model of Corollary 1). Substituting this into (59),
and noticing that 9}, = 0 at equilibrium, results in an identity of the form 0 = 0, rendering the equation
uninformative. Consequently, only (58) remains to implicitly characterize equilibrium points in terms of é*
and 7*. This issue arises because the kinematic relation is introduced in rate form, meaning that no algebraic
equation directly links generalized strains and displacements. To overcome this, we propose to augment the
finite-dimensional PHS models with an additional equation: a discretized version of the kinematic relation,
derived from the virtual work principle underlying the GHP.

Proposition 5 (Kinematic equation). Consider the infinite-dimensional PHS of Theorem 1. The weak
form of the kinematic equation is given by:

/ dee - [e —e(r)] dX +/ dec - Fa(T)T(T —rp)dsS =0, (61)
2 o

2p

which represents the virtual work associated with the variation de., where €(r) € R™ denotes the continuous
generalized strain expressed in terms of r(X,¢). Using the approximations introduced in (42), along with
7p(S,t) = Ny, (S) #p(t), this leads to the following discretized kinematic relation:

é(t) = é(7) + Bp(f)ip(t), (62)

where é(#) = MY (B(F) — T(#)#), with &(7) and T() defined by:

T(#) = [ N(S)"Fo(7) " N,(S)ds (64)
292p
Proof. The details of the proof are provided in Appendix A. O

Evaluating the proposed equation (62) at equilibrium, i.e., & = &(#*) + Bp(#*)f%, together with (58) and
(60), yields a system of equations that can be solved to determine the equilibrium points, given the known
stationary inputs 4}, 7x, and 77,.

5. Examples

In this section, two examples illustrate the applicability and effectiveness of the proposed framework
for multidimensional PHS modeling and mixed finite element discretization. The first example considers a
one-dimensional beam modeled with Saint Venant—Kirchhoff material and von Karman strain assumptions,
aimed at validating the static formulation. The second example analyzes the dynamic response of a two-
dimensional frame composed of compressible Neo-Hookean material and governed by full Green-Lagrange
strains.

15
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¢0 (X7 t)

Time : t > to
Deformed
configuration

Time : to
Initial
configuration

Xo

" Ay : Cross section area

Figure 4: Beam configurations.

5.1. One-dimensional planar Timoshenko beam

The Timoshenko beam model is based on the kinematic assumption that plane sections perpendicular
to the neutral line before deformation remain plane but are not necessarily perpendicular to the neutral
line after deformation [63, Chapter 10.1]. Figure 4 shows the initial and deformed configurations. Let X
be an arbitrary material point with coordinates X = [X; X, X3]". Since plane sections remain plane, the
position X in the deformed configuration has coordinates x = x(X, ) given by:

X1 Xl
x(X,t) = | Xo 4+ ug(Xa,t) — Xgsin(po(Xa,t)) | = | Xo +uo(Xo,t) — Xz1ho(X2,1) | ,
U)Q(XQJ) + X3 COS(¢0(X2,t)) ’U)()(X2,t) + X3

where the usual approximations sin(v¢g) & 19 and cos(¢)g) & 1 are used. Then, the kinematic assumption of
the Timoshenko beam is equivalent to the displacement field u(X,t) € R? given by:

0 0 0 0] [uo(X,1)
u(X,t) =x(X,t) = X = [ug(X2,t) = Xg9po(Xa,t)| = |1 =Xz 0| [vo(X,t)],
’wo()(z7 t) 0 0 1 ’LU()(X, t)
M (x¢) r(X,t)

where X = {Xo}, X¢ = {X}, X3}, 2 = (0,L¢) C R with Ly the initial length of the beam, 2¢ = A, C R?
with Ao (X) the initial cross section area, ug(X,t) and wo(X,t) are the axial and vertical displacements of
points belonging to the neutral axis, respectively, and (X, t) is the angle rotated by the cross section.
Hyperelastic material behavior is modeled using the Saint Venant—Kirchhoff model, where the strain energy
density function is given by:

1
W)= (CL:E)E.
with Cp, : R3*3 — R3*3 the isotropic fourth-order constitutive tensor given by:
Cr=2pZs + Al @1,

where Zg is the symmetric fourth-order identity tensor, and ur, A € R are the Lamé constants of the

material given by:
E vE

T N (E )

where F is Young’s modulus, v is Poisson’s ratio, and p; = G is also known as the shear modulus.
16
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5.1.1. Port-Hamiltonian modeling
To obtain the infinite-dimensional PHS model we apply the Procedure stated in Section 3.3.

Step 1. From Proposition 1, and assuming that the cross section is symmetric with respect to its centroidal
coordinates, the mass density matrix M (X) € R**3 is given by:

) ) po(X) Ao (X) 0 0
M(X) = po(X) Ml(XC)TMl(XC) dX° = 0 pQ(X)IQ(X) 0 y
o 0 0 po(X) Ao (X)

with I2(X) € R the second moment of inertia of the cross section. Then, the generalized momentum
p(X,t) € R3, the kinetic energy T(p) € R and the co-energy variable e, (X,t) € R? are completely defined.

Step 2. The components of the Green—Lagrange strain tensor are obtained from (8). Then, the nonzero
components of the Voigt-strain vector are given by:
1 2 1 2
By = (O2uo — X302¢0) + 5@2“0 — X30a10)" + 5(32100) )
2E23 = (O2wo — o) — Yo(D2ug — X302100),

Es3 = ~93.

1
2
Applying the von Karméan strain approximation, that is, neglecting nonlinear stretching terms, these ex-
pressions simplify to:

By | ll —-X3 01 Oauo B%w(a?woy
2F,| |0 0 1 270

23 Orwo — o
&(X,t) Ma(X€) e(X,t)

With the above, the generalized strains €(X,t) € R3, as well as its time derivative ¢(X,t), are expressed as:

€1 Oaug + %(82“}0)2 €1 Oy 0 Oywp0Osy ’L:L()

€| = 029 — 2| =10 0 0 Yo |,

€3 Oawo — o €3 0 -1 02 wo
e(r) Fx(r)

where the associated matrices of the differential operator Fx(r) are given by:
0
0

0 10
0], F@E=1]0 1 0
-1 0 00

0

Fy= 10

0

Finally, the formal adjoint operator Fx(r)* is obtained in accordance with Definition 3.

Step 3. Considering that only remain &(X,t) € R?, the strain energy density function of the Saint Venant—
Kirchhoff material can be rewritten as:

17
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where & is a correction factor and C1, is the constitutive matrix. Since &(X,t) = M(X°)e(X,t), the generalized
strain energy density function ¥(e) is obtained from (24) and is given by:

| _ i} el [BAx) o 0 e

W(E) = 5 E(X,t)T MQ(XC)TCLMQ(XC) dx°© G(X,t) = 5 €2 0 EIQ(X) 0 €21,
e €3 0 0 K)GA()(X) €3

ICS(X) N~ N~

e(X,t) Ke (X) e(X,t)

where K (X) is the stiffness density matrix. Then, the elastic energy U(e) and the co-energy variables e, (X, t)
are completely defined.

Step 4. The generalized distributed load and body force are not included in this example.

Step 5. From Theorem 1, the infinite-dimensional nonlinear PHS, the Hamiltonian, and boundary inputs
and outputs are completely defined.

Note that the PHS model derived here coincides with the formulation proposed in [27], illustrating the
ability of the proposed methodology to systematically recover known models. Moreover, by selecting differ-
ent combinations of strain measures (e.g., infinitesimal, von Kérmdn, or GreenLagrange) and constitutive
hyperelastic laws, new models can be readily derived.

5.1.2. FEM discretization and static solutions

The previously derived model is now employed to test the proposed mixed finite element method in a
static setting. The beam under consideration is characterized by the following physical parameters: Ly = 0.5
[m], Ag =3 x 107° [m?], I = 2.5 x 10712 [m*)], py = 7800 [kg/m?], E = 210 [GPal, v = 0.3 [], and x = 5/6
[-]. Homogeneous Dirichlet boundary conditions are imposed at S = 0, that is, vp(0,t) = 0, while a
non-homogeneous Neumann condition is applied at the opposite end:

0
TN(Lo,t): Mo(t) 5
0

where M, (t) denotes a bending moment. It is well known in the literature that when M, = a2wEI5/Ly,
with a € [0, 1], the beam is expected, according to the exact deformation theory, to deform into an arc of
a circle of radius R, = EIy/M,. Here, the parameter « characterizes the deformation stage, with o = 0
corresponding to the undeformed (straight) beam, and « = 1 corresponding to the fully deformed circular
beam. This benchmark allows us to assess the accuracy of the proposed mixed FEM formulation.

To evaluate the performance of the discretization, four test cases are considered. The first two cases
use uniform meshes of five and ten elements, employing continuous first-order Lagrangian shape functions
for the generalized displacements and discontinuous piecewise constant shape functions for the generalized
stresses and strains; this combination is denoted as P1-P0. The other two test cases also use uniform
meshes of five and ten elements, but employ continuous first-order Lagrangian shape functions for all field
variables, denoted as P1-P1. Simulations are conducted for o = {0, 0.05, 0.10, 0.15, 0.20, 0.25}. The set
of equations (58) and (62) are solved in MATLAB using the fsolve function with the Levenberg-Marquardt
algorithm. FEach case converges in fewer than five iterations, with the full set of simulations completed in
approximately 80 seconds. The results are shown in Fig. 5.

It should be recalled that the beam model is derived under the approximations sin (1) =~ 9 and
cos (1) =~ 1, along with von Kérmén strains, which are valid under small strains and moderate rotations.
Accordingly, the model is expected to reproduce the correct behavior in this regime. As shown in Fig. 5,
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N° elements: 5, Shape functions: P1-P0 N° elements: 10, Shape functions: P1-P0

w0 ! I I I I n ! I I I I
=) 04+ a=0 = 04 F a=0 il
o v o v
2 a=0.05 = a=0.05
§ 03 a =010 ! g 03] a=0.10 ; ]
0 a=0.15 ' 0 a=0.15 A
Cg 02F a=0.20 Ué 02t a=0.20 N
8 a=0.25 8 a=0.25

0.1 H= = = Exact 0.1 H- = —Exact f
g - g
g 0 ==—— g 0 1
M | | | | | as} ‘ ‘ ‘ ‘ |

0 0.1 0.2 03 0.4 0.5 0 0.1 0.2 0.3 0.4 05
Xo X
N° elements: 5, Shape functions: P1-P1 N° elements: 10, Shape functions: P1-P1

wn ! I I I I n ! I I I I
g 04r a=0 g o04r a=0 1
2 a =005 2 a =005
g 03 a=0.10 ! § 03} o =0.10 i 1
2 a=0.15 \ = a=0.15 ,
S o2 a =020 ’ z G o02r a=10.20 1
8 a=0.25 8 a=0.25

0.1 - = = Exact 0.1 H|- = —Exact 1
g g
g o g ok ]
a8 | | | | | aa | | | | |

0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
Xo X

Figure 5: Static solutions of the beam for the four test cases.

axial and vertical displacements are coupled, consistent with the geometric nonlinearity of the model. The
FEM-based results for the static problem exhibit excellent agreement with the exact solution for small values
of , confirming the model’s validity within its intended range of application. In addition, all four test cases
yield consistent results, with convergence toward the same static configuration as the mesh is refined, despite
the different combinations of interpolation functions.

5.2. Two-dimensional elastic frame

To evaluate the dynamic capabilities of the proposed framework, we now consider a two-dimensional
elasticity problem as a representative example. Consider the frame in Fig. 6, where h € R represents the
constant thickness. The displacement field for the two-dimensional elasticity problem is given by:

10
uX, = |o 1] [m&D] (65)
0 0 ’LLQ(XJ)
~————
——
1

where X = {X1, X5}, X¢ = {X3}, 2 C R?, ¢ = (—%,%) C R, and u;(X,¢) € R and us(X,t) € R are
the displacements in the direction of the axes X; and Xs, respectively. Hyperelastic material behavior is
modeled using the compressible Neo-Hookean model, where the strain energy density function is given by:

W(C) = % [Ic —3—1In (IIIC)] + % (\/ s — 1)2,

where ur, A, € R are the Lamé constants of the material, and I = tr(C) € R and IIlc = det(C) € R are
the first and third invariants of the right Cauchy—Green deformation tensor C = 2E + L.
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Figure 6: Two dimensional frame

5.2.1. Port-Hamiltonian modeling
To obtain the infinite-dimensional PHS model we apply the Procedure stated in Section 3.3.

Step 1. From Proposition 1:

M(X) = po(X) QCMlTMl dx© = [po((;()h po((;()h]'

20

Then, the generalized momentum p(X,t) € R?, the kinetic energy T'(p) € R and the co-energy variable

ep(X,t) € R? are completely defined.

Step 2. The components of the Green—Lagrange strain tensor are obtained from (8). Then, the nonzero

components &(X,t) € R? of the Voigt-strain vector are:

1 1
E11 = 81u1 + 5(31111)2 + 5(81’&2)2 = €1,

1 1
Es; = Oaus + 5(32111)2 + 5@2“2)2 = €2,

2E12 = (92’&1 + 31’&2 + (31’&1 32’&1) + (31’&2 82’&2) = €3,

where the generalized strains are defined as € = [Ey; Fap 2E12]". Taking the time derivative of ¢(X,t) € R?

we obtain:

ég = 32’&182 62 + 82U282

€1 01 + 011104 O1ug0 .
i
€3 02 + Oou101+01u102 01 + Ooua0i + O1u202

Fx(r)

where the associated matrices of the differential operator Fx(r) are given by:

1+81U1 8111,2 0 0
Fl(T) = 0 0 s FQ(T‘) = (92u1 1+82u2 .
82u1 1+82u2 1+81U1 61’&2

*

Finally, the formal adjoint operator Fx(r)* is obtained in accordance with Definition 3.
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Step 3. Considering the nonzero components of the Green—Lagrange strain tensor E, the right Cauchy—
Green deformation tensor C is given by:
261 + 1 €3 0
C(e) = €3 2¢0+1 0],
0 0 1

so the invariants expressed in terms of the generalized strains are:

Ic(e) = tr(Cle)) = 2€1 + 2e2 + 3,
I (e) = det(C(e)) = (21 +1)(2e9 + 1) — €3.

With the above, the generalized strain energy density function is given by ¥(e) = hW(C(¢)). Now, the
co-energy variable e(X,t) € R? is obtained by differentiation and we have:

e(Xt)_@_huL%_aIIIC hur — hAr hAr
YT 8 T 20 Oe de \ 2~ 2 2VIs )

Step 4. The generalized distributed load and body force are not included in this example.

Step 5. From Theorem 1, the infinite-dimensional nonlinear PHS, the Hamiltonian, and boundary inputs
and outputs are completely defined.

Remark 6. If a different hyperelastic model is considered, the only requirement is to apply Step 3 for the
new strain energy density function W (E). Consequently, if the kinematics remain unchanged, i.e., u(X,t)
and the strain measure do not change, Theorem 1 ensures that the new PHS model will have the same
interconnection structure J(x) = —J (z)*.

5.2.2. FEM discretization and time integration

The proposed mixed FEM discretization is now validated through numerical simulation. The following
parameters are considered: L, = 30 [cm], L, = 11 [em], ¢, = 2 [em], h = 1 [em], po = 1000 [kg/cm?],
pur = 17.8 [kPal], and A\ = 71.5 [kPa]. The discretization mesh follows the triangulation shown in Fig.
6, where continuous first-order Lagrangian shape functions are used for the generalized displacements, and
discontinuous piecewise constant shape functions for the generalized stresses and strains. Homogeneous
Dirichlet boundary conditions are applied, i.e., vp(8,t) = 0 for all 8 € 92p, along with non-homogeneous
Neumann boundary conditions given by:

0 0
T~ (S,t) = {fa(S,t)] = [8.28111(50&] , for t < 0.5 [s],
where fy(S,t) [N/cm] represents a distributed boundary force applied only in the region indicated in Fig. 6.

To simulate the model, we consider two time integration schemes: an extended version of the Stérmer—
Verlet method [64], which provides an explicit scheme for the discretized PHS model, and the implicit
midpoint rule, known for its enhanced stability and better energy behavior. In our implementation, the
implicit midpoint method is initialized using the solution obtained from the extended Stérmer—Verlet scheme,
improving convergence speed. Details of this implementation are provided in Appendix B.

Remark 7. The Stormer—Verlet method and the implicit midpoint rule have been successfully combined in
the context of geometrically nonlinear elastodynamics to achieve exact energy conservation and accelerated
simulations [65, 66]. Although these approaches do not directly apply here due to material nonlinearity,
recent developments in discrete gradient methods for port-Hamiltonian differential-algebraic equations [67]
suggest promising directions for structure-preserving time integration of a broader class of nonlinear PHS,
including those addressing hyperelasticity.
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The simulation results are presented in Figs. 7 and 8, using a fixed time step At =2 x 107* [s] and the
initial condition #(0) = 0. Fig. 7 shows the system configuration at different time instants. As expected,
the frame remains fixed at the nodes where homogeneous Dirichlet BC are applied on 9f2p. Given that
the initial condition is zero and neither distributed inputs nor self-weight are considered (uq(X,t) = 0 and
b(X) = 0, respectively), the system’s dynamics is solely driven by the applied boundary traction, which
ceases at t = 0.5 [s]. Since the system is conservative, the total energy should remain constant for ¢ > 0.5 [s].
Both time integration methods yield similar results, with differences more clearly observed in the evolution
of the total energy function H(%).

Fig. 8 shows that, while the Stérmer—Verlet method performs adequately, it does not accurately capture
the system’s energy behavior after the input ceases. In contrast, the implicit midpoint rule more effectively
preserves the system’s energetic behavior, albeit at the cost of increased computational effort. To provide a
quantitative comparison, the total simulation times were approximately 3.5 [hours] for the Stormer—Verlet
method, 10 [hours] for the implicit midpoint rule initialized at each time step with the Stérmer—Verlet
solution, and 24 [hours| for the implicit midpoint method alone. These runtimes were obtained using a
suboptimal MATLAB implementation, without parallelization or code-level optimization, aimed solely at
validating the effectiveness of the proposed FEM approach. We are confident that significant reductions in
computation time can be achieved through improved implementation strategies.

Time: 0.25 [s] Time: 0.5 [s] Time: 0.75 [s] Time: 1 [s]
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Figure 7: Time evolution of the configuration.
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6. Conclusion and perspectives

This paper presents a framework for modeling and FEM discretization of hyperelastic systems within
the port-Hamiltonian formalism. The first contribution establishes a systematic methodology for modeling
multidimensional nonlinear mechanical systems using the Generalized Hamilton’s Principle. This approach
provides a systematic and flexible framework capable of deriving infinite-dimensional PHS representations,
enabling the rigorous treatment of large deformations and hyperelastic materials. The second contribution
focuses on structure-preserving discretization using a mixed FEM approach with a three-field formulation.
This method is proposed to preserve the intrinsic PHS structure of the system, ensuring physically consistent
finite-dimensional approximations. Numerical simulations demonstrate the effectiveness of the proposed ap-
proach in accurately capturing the dynamic behavior of the underlying continuous system.

Future research may extend the proposed modeling framework to incorporate more complex physical
phenomena, such as viscoelasticity [68] and electroelasticity [27, 69], thereby broadening its applicability
to a wider range of engineering systems. The treatment of constrained systems, such as inextensible or
incompressible formulations, is also of interest. In the context of discretization, nonlinear systems pose
significant challenges due to the need for spatial integration and reassembly of system matrices at each time
step. This complicates their use in control design, emphasizing the need for efficient simulation strategies.
Potential advancements include the development of methods to accelerate computations and derive explicit
global matrices, as explored in [65, 66] and [70, 71], respectively. These improvements could enhance the
efficiency of simulations and facilitate the integration of the discretized models into control applications.
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Appendix A. Proofs

Proof of Theorem 1. The proof consists of applying the GHP. To improve the readability of the proof, it
is divided into four steps and the spatial and temporal dependencies are omitted.

Step 1: From Proposition 1 we have 7 = 1 [, 7T M7 dX, then the term 5f:12 T dt is given by:

to
5 Tdt / / o7 T My dX dt,
t1
where integrating by parts w.r.t. time we obtain:

ta
5 Tdt= /5rTMrdX] //&"TMrdth

ty
= 0 due to (11)
Step 2: Defining or(X,t) € R? as the corresponding nonzero components of the Voigt-stress vector T =

[T11 Too T33 T12 Tis ng]T € RS, where T;; are the independent components of the second Piola-Kirchhoff
stress tensor T, the extended elastic energy Ug defined in (13) is equivalent to:

Uy, — /B - (1) — &) + W(&)] dX
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Noticing that de(u) = MyFx(r)dr, then we have:

i L{Edt /t/ o - de(u +5a(()—8)—53.<a—avg£8)>]dxczt

o MQJ:X(ST’

tz _ _
:/ [// o-TMngC]-'X5rdX+// S " ModX®(e(r) — €) dX...
t1 (9 < (%} <
— \—\/_/
eT T

..—/955( QCMQTU'dXC— QCMTaVaVi ) xe )dx}dt

€e 3?(6)

by Assumption 2

_ /j[/nejfxardx +/95ej(e(r)—e)dx —/956 <e€ - Waie))dx}dt.

Lemma 1

Applying Lemma 1 to the first term indicated above we obtain:

/e:}—xérdX: /51"T}";eedx+/ 5TTF36£dS+/ or' Fye.ds.
(9} 2 NN 02p

=0 due to (10)

Replacing the last expression into 4 | ttlz Ug dt we obtain:
ta to W
(5/ Up dt = / {/ [(57‘T.7-';66 + (56:(6(7‘) —€) — de' (e6 — 8(6)> } dX + or' Fye.dS }dt.
t ty ~J0 e 002y
Step 3: From Proposition (3) we derive:
to ta
5/ Weg dt = / [/ 5rT(Bd ug + b)dX + orTry ds + (575(7“ — TD)CZS} dt.
t1 t £2 ONN 002p

Step 4: Considering the above expressions, the application of the GHP leads to:

to

) §(T —Up+Wg)dt :/:2{/Q [6rT(—M7“—fx(r)*e€+b+Bd uq) — del (e(r)— ) + 5J(e€ _o¥e ) } dX}dt

1 86
(1) (2) —
(3)
t2 t2
..+/ [ or' [tn — Fa(r)ed] dS+/ [ 6tp (r—1p) dS} dt = 0.
ty Ny Sm————— t1 oNp N———

(4) (5)

So applying the fundamental lemma of variational calculus, each term (¢) with ¢ = {1, ...,5} is equal to zero.
Then, the following Lagrangian model with Dirichlet and Neumann BC is obtained:

VX € 2: Mi=—F(r)ec+b+ Bgug, (A1)
e=¢(r), (A.2)
OV (e)
— A.
Ce= "5 3)
VS € 02n: TN = Fy(r) e, (A.4)
VSedf2p: rp=r. (A5)
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Noticing that the time derivative of (A.2) leads to é = Fx(r)r = Fx(r)e,, the Lagrangian model with Hamil-
tonian in (37) can be written as the explicit PHS in (33). The power exchange with the environment is
given by:

H(x):/QémHT:'EdX:/Qe;BduddX—i—/Q(e:}"x(r)ep—e;—fx(r)*ee)dx,

Lemma 1

so applying Lemma 1 to the term indicated above we obtain:

H(m):/ulB;ep dx +/a e;F@(r)eedS:/
2 = Q

ug ya dX +/ uh Yo ds,
2 o1

Ya

where ug and ya are the boundary inputs and outputs ports defined in (34). O

Proof of Proposition j. From Step 4 in the proof of Theorem 1, note that each term (¢) with ¢ = {1, ...,5}
is multiplied by a virtual displacement, virtual strain, virtual stress or virtual traction, and these products
define virtual work. In addition, from (35) we get d7p(S,t) = Fy(r)de(S,t), where there is no contribution of
dr since it vanishes on 92p. Gathering the terms (1) and (4) and multiplying them by d7, we get the virtual
power expression in (39). Similarly, gathering the time derivative of the terms (2) and (5) and multiplying
them by de. and d7p, respectively, we get the virtual power expression in (40). Lastly, multiplying the term
(3) by d¢, we get the virtual power expression in (41). O

Proof of Theorem 2. For simplicity the spatial and temporal dependencies are omitted. From 6P, in (39)
and the integration Lemma 1 we have:
/ 67T Fx(F)*e. dX = / el Fx(7) 67 dX — < 67 Fy(7) é. dS + 87 T Fy(7) é. ds),
Q Q o2p 00N

where replacing in (39) we obtain:

6P, = o7 /N:MNT dx 7 — / N,'BgN,,dX g — / Nlbdx— [ N]IN..dS 7y + ..
0 n 0 02N
M Ba b B,
(/ (Fa(F)N,)T N, dx _/ NT Fy () Neds)é _o.
2 92p
2(M)T

Using p = M #, the above equation leads to:
p=—3F)"Te+b+ Byig+ B 7. (A.6)
From 0P, in (40) we have:

6P, = 5éTl/ NN dx é — (/ N/ Fx(7)N, dxf/ NJFy(7) "N, ds)%/ N E5(7) "N, dS@DH =0,
2 2 o82p 92p

M. 2(7) I(#)

which using 7 = M~'p = é,, F(7) = M;*3(#), and Bp () = M 'I'(7) leads to:

A~ A

é = F,(#)é, + Bp(#)op, (A7)
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where M, is invertible since N, (X) = N.(X). From §P. in (41) we have:

0P = 6éT[/N€TNedXé—/NTaw\G_de] =0,
0 0

N T éc(é)

which leads to: A

é=M;"é.(é). (A.8)
Replacing (A.8) into (A.6), together with (A.7) and # = &,, they define the discretized finite-dimensional
PHS in (43). Regarding the elastic potential energy, it is trivial that U(¢) = [, ¥ L V(E)dk = [, W(N,é)dX.
Lastly:

. 0 T(’)Q/ L a
VeU(€) = 86/ (N ¢€) d)(—/NE 86 _ cdX = é.(8),

which concludes the proof. O

Proof of Proposition 5. For simplicity the spatial and temporal dependencies are omitted. From Step
4 in the proof of Theorem 1, we gather terms (2) and (5) and multiply them by de. and d7p = Fs(r)de,,
respectively. This leads to the virtual work expression in (61). Using the approximations introduced in (42),
along with 7p(S,t) = N, (S) #p(t), and substituting into (61) we obtain:

5éTl/NJNE dx é—/NeTe(f)Nr dX+ [ NJFy(7)'N,ds#— | N]Fs(7)"N,,dStp|=0,
2 2 o2p o82p

N, B(#) T(7) I(#)

from which we obtain: é = M, Y(&(#) — T(#)#) + M I'(#) #p, which matches (62) and concludes the proof.
o —
e(r BD (rf‘)

O

Appendix B. Numerical time integration schemes

One of the main challenges in the time integration of discretized nonlinear FEM-based models lies in the
evaluation, spatial integration, and assembly of nonlinear terms at each time step, such as Z:}(f), Ep(f),
and é.(€), due to their high computational cost. This issue is further compounded when using implicit time
integration schemes, which require solving a nonlinear system of equations at each step, typically via iter-
ative methods. Explicit methods have the advantage of avoiding such nonlinear solvers at each time step,
significantly reducing computational cost by requiring only the evaluation of nonlinear terms. However,
their stability is limited by the time step size, and they may fail to accurately capture the system’s energy
behavior. In contrast, implicit methods such as the implicit midpoint rule provide greater stability for larger
time steps and improved energy behavior, albeit at a higher computational cost due to the nonlinear solves.

To address these challenges, this work adopts two simulation strategies. The first is an explicit scheme
inspired by the Stérmer—Verlet method, originally developed for Hamiltonian systems with two variables:
momentum and displacement. Since our PHS models include an additional strain variable, the method is
extended to accommodate this structure. The second approach applies the implicit midpoint rule, supple-
mented with a predictor step based on the Stormer—Verlet scheme. This predictor provides an initial guess
for the iterative nonlinear solver, aimed to reduce the number of iterations per time step and, consequently,
the overall computational cost.
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Explicit scheme Implicit scheme
~SV
N Lht1 LSV . Solver N .
Tk Pred. | Up. R LTit1 [ ] ¥ N Im — Lk+1
Tk Pred.| Up. Lo, g(Zm) =0 Tht1
(a) (b)
Figure B.1: (a) Extended Stormer—Verlet. (b) Implicit midpoint rule with Stérmer—Verlet as predictor.

Appendiz B.1. Explicit scheme
Before presenting the extension of the Stérmer—Verlet method, we first introduce the classical method applied
to a Hamiltonian system:

pt)| [0 —I||V,H(p,7) I

L’“(t)} = [I o | |VoH .|t o] “® (B.1)
The Stormer—Verlet method consists of a prediction step given by:

Pi+1/2 — Dk

At/2 = — VTH(p/H_l/Q, ri) + u(ty), (B.2)
r -
A = Vol (P, The), (B3)

where At is the time step, (B.2) is implicit in pj41/, and must be solved for this variable, while equation
(B.3) is implicit in 741 and must be solved accordingly [64]. Next, the update step is performed as:

Pk+1 = Pk+1/2

At /2 = Ve H(pryija, Thr1) + u(trgry), (B.4)

where t 1/, =t + At/2 is the midpoint time, and (B.4) is implicit in pg1.

Method 1 (Explicit scheme). The explicit extended Stormer—Verlet scheme for time integration of the
nonlinear PHS in (43) is given by:

R AT A& T - A A
Prediction step: Prtijs =Pr + — {_Fx(rk)Tee(Ek) + b+ Batia(ty) + BNTN(tk)} ;
. . At [a oo~ g A
€ty = €+ > {Fz(rk)M Di41/2 + BD(Tk)vD(tk)} ,
. LA
Tk-l—l =Tk + 7M 1pk+1/2.
. . At a Ta s A N A
Update step: Dk+1 = DPr+1y2 + > [—Fx (Phg1)  ec(€pqryz) + b + Batig(tpyay) + BNTN(tk+1/2):| )
. R At 1~ PR N R
€ht1 = Etrpp T - |:Fm(rk+1)M Dik+1 + BD(Tk+1)UD(tk+1/2):| ;
Dr+1
The next state is denoted as: 5254‘{1 = | €xt1
Pr1
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Appendixz B.2. Implicit scheme

Consider a nonlinear dynamical system of the form: & = f(x,t). The application of the implicit midpoint
rule to this system yields:

At
7f(5577u tk+1/2) =0, (B5)

where z,, = (zx+1 + x)/2 denotes the midpoint state. At each time step, solving g(x,,) = 0 for z,, is
required, typically using iterative methods. For instance, the Newton—Raphson method updates the initial
guess x,y, as:

9(Tm) = T — T8 —

ot =g — J(a) g (), (B.6)
where the Jacobian matrix J,(z,,) is given by:

g At Of

Jg(@m)=——=1— ——. B.7
Convergence is achieved when a prescribed criterion is met, for instance: [|g(z),)| < tol. A better initial
guess x typically leads to a faster convergence of the nonlinear solver. Once z,, is computed, the next
state is obtained as zj41 = 2x,, — zk.

Method 2 (Implicit scheme). The implicit midpoint rule applied to the finite-dimensional nonlinear
PHS in (43), using the extended Stormer—Verlet scheme in Method 1 as predictor for the midpoint state
Zm, is summarized as follows:

1. Estimate :fsf_‘(l using Method 1.

‘%f-i‘{l + Tk

—

. . . At o A At A

3. Solve for &p,:  g(2,,) = B0, — &1 — ?J(xm)V@H(xm) — —G(Zm)(tgqs) = 0.

4. Compute the next state: Tx11 = 2%y, — k-

2. Compute the initial guess: 27, =

Neither the extended Stérmer—Verlet method nor the implicit midpoint rule guarantees exact energy preser-
vation in nonlinear systems. However, the implicit midpoint rule is expected to yield better energy behavior
due to its symplectic structure and fully implicit formulation. A rigorous analysis of energy conservation,
convergence, and error properties of the implemented time integrators is beyond the scope of this work.
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