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Abstract: This paper proposes a control-oriented model of a floating wind turbine, incor-
porating 2D platform motion via a coupled beam-string structure with axial and transversal
deformations. The model of the floating turbine includes the rigid body rotations of the floating
platform, maintaining the small deformation approximation for the beam. The port-Hamiltonian
approach is used for its modularity and to reflect the system’s passivity. Simulations using a
simplified water-structure interaction modelled by Archimedes’ forces on a rectangular platform
are given. Leveraging system modularity, control alternatives are discussed.
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1. INTRODUCTION

The offshore wind industry is one of the fastest-growing
renewable energy sectors. Thus, designing reliable and
cost-efficient offshore energy generation systems is there-
fore of crucial interest, leading to increased research into
the modelling and simulation of these complex systems
(Robertson et al., 2014). One of the offshore wind energy
conversion systems is the floating wind turbine (FWT)
which includes a wind generator tower, a floating platform,
and a mooring system that allows access to deep waters
(Cruz and Atcheson, 2016). The different aerodynamic and
hydrodynamic interactions with the structure can lead
to undesired behaviours, such as vibrations or external
disturbances leading to unreliability in the structure and
therefore requiring structural analysis and control design
(He et al., 2020). Some of the previously discussed control
strategies for FWT have been designed with rigid body
models (Bakka et al., 2014), tuned through simulation
softwares like FAST (Salic et al., 2019) or developed using
input-output linear models derived from time response
data (Li and Gao, 2016). In He et al. (2020), a simple
distributed parameter model with horizontal (small) de-
formations and displacements was proposed and used to
design a vibration reduction control strategy.

In this paper, we propose an extended distributed pa-
rameter model with horizontal and vertical displacements
and deformations, combined with a rigid body rotation.
The purpose of this extension is to capture the effects
of buoyancy and gravity more precisely. This leads to
a model represented by a larger set of partial differen-
tial equations (PDEs) combined with ordinary differen-
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tial equations (ODEs). One tool that has been useful
for the analysis and control of such systems is the port-
Hamiltonian (PH) framework, a modelling paradigm based
on power-preserving structures (Maschke and van der
Schaft, 2000). The advantage of using the PH framework
lies in its structure that reflects the passivity of the systems
and its modularity, leading to strong results in analysis
(Le Gorrec et al., 2005), control (Rodriguez et al., 2001),
and discretisation (Golo et al., 2004).

The following section describes the system under consid-
eration and how it can be decomposed into subsystems.
This section also provides some notations and main as-
sumptions. In Section 3 the Hamilton’s principle is used
to derive each of the subsystem’s dynamic equations. The
following section presents some simulation results and dis-
cusses some control perspectives. The paper end with some
concluding remarks and perspectives.

2. PROPOSED SYSTEM

The system under consideration is depicted in Figure 1. It
is composed of four subsystems, namely the Mooring lines,
the Floating Wind Turbine Beam, the Floating Platform
and the Nacelle, Rotor and Blades (NRB). In this section
are given the main assumptions made for each of these
subsystems. These assumption are associated to a motion
of the system in a two dimensional space including rigid
body rotations for the FWT beam.

2.1 Notation

For the flexible bodies,  is the domain in the local
coordinates. When a sub-index appears, it refers to the
independent coordinates and the fixed coordinates are
received as input. As an example {2235(£1) represents the
section of the body in the =5 x E3 plan that passes by
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Fig. 1. Proposed Model Diagram

&1, i.e. the points (£1,&2,&3) € Q. While Q; represents the
domain of & that passes £, = &3 = 0.

2.2 Mooring Lines

The mooring lines of the floating wind turbine are mod-
elled using flexible strings with axial and transversal defor-
mations. The transversal section remains constant through
the deformation and depends only on the local coordi-
nate along the neutral axis. Considering that the local
coordinates F; of the i-th mooring line is described by

o m T . .
¢ = (gf" ¢ ¢£¥)”, the assumption on the section can

be expressed as
agefy=[[ A )
2367

Additionally, the position of an arbitrary point in the
mooring line given the proposed assumptions can be de-
scribed as

Pi(t, &) = ¢; + (€5 +wi(t)), (2)
where
0 & vilt, &)
ci = <O>, ehi = §§i and wu; = 0 ,

where v;(t,-) and w;(t,-) are at least C2 in QF7.

Finally, the following considerations are taken into account
for the interconnection:

e The mooring line is fixed at the bottom at point
Pi(t,03x1) = ci. (3)
e The mooring line is fixed at the top at point
L; o (t) + (—1)1“% sin a(t)
Pilt,| O 0
0 p-(t) + (=1)'"" L cos at)
given by the position (p,(t),0,p-(t)) and angle a(t)
of the floating platform.

» (4)

2.8 Floating Wind Turbine Beam

The FWT beam is modelled as an extension of a Timo-
shenko beam. In this extension, we consider both transver-
sal deformation of the neutral axis and axial deformation.
The section of the beam remains constant through the
deformation but remains orthogonal to the neutral axis.
An additional rigid body rotation « is considered. Con-
sidering the local coordinates Fy of the beam described by

& = (ff‘) fQF‘) §°)T, the supposition that the area of the
transversal section remains constant can be expressed as
(1) with ¢ = 0. Finally, the base of the FWT depends on
the position of the floating platform, with this, the position
of an arbitrary point in the beam given the proposed
assumptions can be described as

PO(t7 gFo) = CO(t) + Ra(t) (fFO + uO(t))’ (5)
where
b cos (a fo
eolt) = pa(t) + 20 ( (t)) 7 gFo _ 550 ’
pa(t) = Lsin (a(0) B
vo(t, &) — & sin (6(1,£7°))
up(t) = 0 ,
wo(t,ff(’) - 5“ (1 — cos (qb(t,ff“)))
and

cos (a(t)) 0 sin (a(t))
R.(t) = 0 1 0 ,
—sin («(t)) 0 cos (a(t))
where vg(t,-), wo(t,-) and ¢(t,-) are at least C2 in QF0.
pz(t), p.(t) and «(t) are given by the position of the
floating platform and % is the distance between the centre
of mass of the floating platform and the base of the beam.

Finally, the following considerations are taken into account
for the interconnection:

e The mooring line is fixed at the bottom at point

h
Pz (t) + 5 cosa

Po (?Z 03><1) = Oh ; (6)
p.(t) — 5 sin «

given by the position (p,(t),0,p.(t)) and angle a(t)
of the floating platform.
e The mooring line is fixed at the top at point

P, (t, (Lo 0 O)T) P —) (7)

which corresponds to the position of the lumped
nacelle, rotor and blades system.

2.4 Floating Platform

In this paper the floating platform is modelled by a lumped
system, this consideration is done to simplify the water-
structure interactions. For this paper, the fluid struc-
ture interactions are modelled using only the Archimedes
forces, avoiding water dynamics and terms like the added
mass effect (Lannes, 2017). For the remaining of this
paper, we consider that the floating platform can be ap-
proximated to a rectangular body of height h and length
L. With this in mind, the calculations of the Archimedes
forces and torques can be found in the Appendix A.



2.5 Nacelle, Rotor and Blades

Finally, the other lumped system considers the nacelle
rotor and blades effect. This is approximated as a lumped
mass at the tip of the beam and a rotating inertia for the
rotation of the section. This inertia is mainly given by the
blades and can be approximated as

17 = kyM}Lg?, (8)
where M7 is the mass of the lumped NRB, L is the length

of the blades and k; is a factor due to geometry described
in Gonzélez Rodriguez et al. (2007).

3. MODULAR SYSTEM MODELLING

This section presents the energy variables, the Hamil-
tonian, port-Hamiltonian formulation and the respective
input/output of each subsystem.

3.1 Mooring Lines

Following the undeformed section area given by (1) and the
displacement given by (2), the momentum of an arbitrary
point in the mooring line is given by

T
pi(t) = (Aipii)i(t) 0 Aiﬂ@i@)) ) 9)

where f(t) = 8,;(;)7 and p; may be a function of ff With
this, the kinetic energy can be expressed as

1 .
Kilt) = / T Mpdel, (10)
91’
where
i .
M(eF) = (o 0 0> .
001/ (Aipi)

To obtain the elastic potential energy due to the deforma-
tion of the string, the small deformation approximation is
considered. Therefore the strain is given by the symmetric
gradient operator

Grad(u) = %(Vu + vaul). (11)

In Voigt-Kelvin (VK) notation, the strain tensor can be
expressed as a vector following the structure
€ = (e7 €5 €5 2ehy 2eiy 2632)7"7
thus the strain of the mooring line model can be expressed
as )
v; (1)
0
0
0

ei(tvgf‘i) = ’ (12)

~

wj(t)
0

N

Fi
where f’ (ff = 6’(; (sFli ) The elastic potential energy of
1

the mooring line can be then expressed as

Us(t) = l/ﬂﬂ ()T Cieldey™, (13)

2
where
Ci(eF) = diag[(EZ-AZ- 000 G4 0)].

As a consequence, it is possible to express the mooring line
model as a PHS, where the Hamiltonian is the sum of (10)
and (13). The energy variables are given by (9) and (12)

. T
CZ = (’U; w; Alpﬂ}z Aipﬂ.)Zl) 5 (14)
and the Hamiltonian can be expressed as
1 . i o F
(0 =5 [, @ HCal, (15)
Qi
and the energy density is modulated by
1 1
H,; = diag ( A Aiﬂi) (16)

The dynamic equations for ¢? are derived from Hamilton’s
principle as presented in (Ponce et al., 2024), leading to
the following PDE

. 9 .
) :Pz Hz 7 , 17
where
i 0o I
P} = <I; 02). (18)

Thus, the boundary efforts and flows can be parametrized
as presented in (Le Gorrec et al., 2005) by

<fé> _ b (Pf —Pf> <7"1‘Ci_|u)
6710 \/i Iy Iy Hi<l|0 7

where P} is defined by (18). Finally, from (3) and (4)
the boundary inputs at ff = 0 and §f = L; are
velocity inputs, because they are imposed by the external
system. Then inputs and outputs can be formulated as a
combination of the boundary variables as

w=ws () e (B). e
where

€y
Wi _ L (120500 15 W _ 1 (02 Iy =15 0y
B_\/§ I 05 05 Io C_ﬁ 0o Is Iy 05/

This leads to the energy balance

(19)

: i T i
Hi = Ua ya
3.2 Floating Wind Turbine Beam

Following the undeformed section area approximation
given by (1), with ¢ = 0 and the displacement given by
(5), the generalized momentum of an arbitrary point in
the wind turbine beam using linear and angular momenta
is given by

Polt) = (Aopova(t) Aopove(t) Topor()",  (21)
where v,, vy and r are the axial velocity, tangential
velocity and angular velocity of the section defined by

Ua(t7 gf_‘o) Zd(t)IUQ(t, g{“—b) + ijO(t ffo) +..

4 palt) cos (a(t)) — pu(B)sin (a(®)), )
ur (1, €)= — al) (& +uolt € + ) +
o it E7) + pa(t) sin () + ... (23)
<+ p.(t)cos (a(t)),
r(t,&°) = ¢(t,£1°) — at), (24)



Iy is the rotational inertia of the section defined by

//FO(slo)

and pg may be a function of 51 .

(25)

The kinetic energy can be expressed as (10), with ¢ = 0,

and where
000
000 26
Aopo 001 IOPO (26)

100
i) - (010)

000
To obtain the elastic potential energy due to the deforma-
tion of the beam, the small deformation approximation is
considered just like in the string case. We then consider
the strain as in (11) and the quadratic energy density
described by the generalized Hooke’s law. This energy
can be then expressed using the generalized displacement
vector given by

E(t,670) = (vh() wy(t) — o(t) &'(1)",  (27)
obtaining the elastic potential energy as in (13) with ¢ = 0,
and where

Col&1?) = diag| (BoAo Goo Boly)|.

(28)

As a result, it is possible to express the FWT as a PHS,
where the Hamiltonian is the sum of (10) and (13), with
i = 0, by using the previous definitions (21), (26), (27) and
(28). The energy variables are given by (21) and (27)

¥ = (vh wh— ¢ ¢ Agpova Aopovy Topor), (29)

and the Hamiltonian can be expressed as in (15) with ¢ = 0
and the energy density is modulated by

1 1 1
Ho = diag | EgAg GoAy Eol . (30
0 g< 070 00 070 A pe Aopo Iopo) (30)

It is then possible to obtain dynamic equations for ¢° from
Hamilton’s principle, leading to the following PDE

. 0
¢ = <P1 ag(p) + P@) HoC" + Brug, (31)
where
o_ (03 I3 0 03 M(g)
m=(B0) 2= (g o)
(32)

00 0
MY ={00-1],
00 0

and the pair Br, upr represents the distributed forces and
velocities that have to be considered for the beam to obtain
a rigid body rotation. They are described by

T
_(FE 0 —¢ Yo _[(«
BR_( 1 000 00 HUr = aa)
(33)
£(¢%) = =2 + / QO(t, )de.
With a distributed input port it is necessary to define the

conjugated output which is given by

Lo
YR = / BrTHodelo. (34)
0

Similarly to what was done for the mooring line system,
the boundary efforts and flows can be parametrized by (19)
with 4 = 0. Finally, from (6) and (7) the boundary inputs

at ffo = 0 and ff‘) = Ly are velocity inputs, because
they are imposed by external systems. Thus the inputs and
outputs of the system can be derived as a combination of
the boundary variables given by (20), i.e

Wo — 1 (I3 03 03 I3 Wo — 1 (03 I3 —1I3 03
B \/ﬁ I3 03 03 I3 c \/5 03 Is I3 03/
This leads to the following energy balance
. T
Hy = uy v
8.8 Floating Platform

The floating platform is approximated by a lumped system
with fluid structure interactions, which are conservative
and given by the Archimedes forces. Thus, the energy of
the system is composed of the kinetic energy as a function
of the generalized displacement variables p,, p,, and &
and the non-linear potential energy defined by p, and the
angle a. This non-linear potential energy must fulfill the
following relations

Ut ot

- = _FWa

Pa

where Fyr and Ty are the forces and torques calculated in
Appendix A. By choosing the energy variables as

=TwW, (35)

' = (p. a Mip, M{p. I{a)" (36)

the Hamiltonian can be written

1
Hi(x') = §(x1)TH§m1 + U, (37)
where
02 02x3 )

HE = . 1. 38
! <0M diag (M{ M| I) (38)

From this definition of the Hamiltonian, it is possible to
derive the dynamic equations for x' using the Hamilton’s
principle. In this step it is important to take into consid-
eration the interaction with each distributed systems ad-
justed to the local reference frame using energy preserving
interconnections. This leads to the following ODEs

2
OHY! . .
! 1 A e, 10
X Ja 1 +Big, ulRQ+ZB;(Zuz)(Z+Bdud+uCa (39)
i=1
where
0 0 100
0 0001 0 Fy
J=|-10 000 ,ulc"_(QIX3) F. |,
0 0000 3 Ter
0 -1000
0 0 0
0 0 0
B{Ra = | cosa sina 0 [, ul{Ra = (13 [)3> Y5,
—sina cosa 0
h
0o -k
0 0
, 0 0
B;{Z: 1 0 )
0 1
(-1)"* 'L cosa (1) Lsina
00
ukz :—(02 12) vy, Bi=00 |, uf=—yg,
00
jeY



and ulcf is included as a control input. With this the
respective outputs can be calculated as

P , TOH{
= — 40
YR, Ra gl ’ (40)
; , TOH{
Yxz = Bxyz a—ll, (41)
X
’ ,7OHY
=B . 42
Ya d 5yl ( )
This leads to a power exchange equal to
2
HY = (uf )Ty, + > (uhy) vy + (uh) "yl + () "y
i=1

3.4 Nacelle, Rotor and Blades

Finally, the second lumped system does not have any
special interaction thus the energy of the system is given
by the kinematic component. Thus the energy variables of
this system are

2 ¢ ¢ ¢ T
X2 = (Mgva ey, Mavr| Tor 5FO:LO) . (43)
and the Hamiltonian is given by
1
Hf = §(x2)THSx27 (44)
where
MY = diag (M§ ML IE) . (45)

By applying Hamilton’s principle to (44) the dynamic
equations for x? are obtained. It is possible to notice that
the J matrix is 03 and the ODEs are

X = By usp, +ug (46)
where
F,
Big, =1Is, usp, =— (03 I)yy, ug = |Fr|. (47)
.
Finally, the output can be expressed as
T OHS
nga = BSRQ 78)(227 (48)

This leads to the energy balance

Hy = (uzp, ) Yar, + (ue) ye

3.5 Gravity Interaction

To include the effects of gravity in the model the state
space can be extended to add an energy variable repre-
senting the vertical displacement of a point. By adding
the potential gravitational energy to the Hamiltonian, the
skew-adjoint structure of the operator is preserved. This
leads to an input mapping modulated by the angle of
the floating platform a. One of the benefits of including
the gravity effects through this method is when designing
control strategies with energy based methodologies, such
as energy shaping (Rodriguez et al., 2001), it is possible to
attenuate disturbances caused by variations in the input

mapping.

Table 1. Parameters for PDE described sys-
tems

String Parameters

pi | 1630 kg/m3 | A; | 72500e-6 m?
E; 10.4€9 Pa G; 1.39¢9 Pa
L; 750 m Zi +858 m

Beam Parameters

po | 7800 kg/m? | Ag | m(—2.08e-2£10 +3.17) m?
Ep | 210e9 Pa Go | 80e9 Pa

Lo | 80m Io | 7f(&f®) kg-m2

F(EF0) = —2.426-6670° 4+ 1.26e-360% — 1.93e-1670 4+ 9.91

Table 2. Parameters for ODE described sys-
tems

Floating Platform
108 m | M{ | 1.04e6 kg
h 24m If | 1.06€9 kg - m?
Nacelle, Rotor and Blades
Lg | 35m M{ | 67.4e3 kg
ky | 2.12e-1 | I& 17.5e6 kg - m?2

3.6 Damping incorporation

Internal damping is added to reflect the behavior of
the real system and for numerical consistency. For this
purpose, a Rayleigh dissipation function is considered, i.e.

Ro=g [ (€7D (49)

2
for i = {0,1, 2} leading to a damping term in the PDEs of
the form

Di — (PliT a(-)

il ; 0() i i
ser — B8 )De (Pl + P04, (50)

— D‘ZO
D'r‘—(o 0)7

the damping matrix D, being proportional to the stiffness
matrix.

where

4. SIMULATION AND CONTROL PERSPECTIVES

In this section we discuss some numerical simulations and
control perspectives.

4.1 Simulations

For the numerical implementation of the proposed model
(and future control design using an early lumping ap-
proach), a structure preserving spatial discretisation scheme
is required. In this work, a variation of the finite-difference
discretisation scheme presented in Trenchant et al. (2018)
is used to include the non-differentiated terms of the
Timoshenko beam model, given by P{ in (31). This spa-
tial discretisation leads to a discrete system that keeps a
port Hamiltonian structure and reflects the exchanges of
energy with the system and with the environment. The
parameters that have been used for the simulations can
be found in Table 1 and Table 2. We also considered
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Fig. 2. Example of numerical simulation

g = 9.81(m/s?), pw = 1000 (kg/m3) and some damping
matrices equal to 5% of the stiffness ones. With this set
of parameters, stable simulations over 1000 seconds are
obtained for a range of initial configurations with null
inputs. An example of such simulation is given for initial
values of p, = —=30(m), a = {rad and p. = —15(m).
Every momentum is set to 0, the strains of the strings
are the constant spatial derivatives obtained from dividing
the difference between (4) and (3) by L;, and finally, the
strains of the beam system have every spatial derivative
equal to 0. In Figure 2 it is possible to see that the vertical
position and the angle converge to an equilibrium in about
400 seconds, while the horizontal position converges with
a slower rate. These convergence rates could be influenced
by the water-structure interactions, which do not include
the viscous damping of the water or the added mass effect.

4.2 Control Perspectives

In this paper we have propose a modular approach for the
modelling of a quite complex Floating Wind Turbine lead-
ing to a small set of PDEs and ODEs consistent with en-
ergy balances that should help to develop control strategies
for disturbance rejection or vibration suppression. A key
benefit of formulating the proposed model within a port-
Hamiltonian (PH) framework is that the well-posedness
of and control design of systems described by PDEs like
(31) has already been studied (Jacob and Zwart, 2018;
Macchelli et al., 2017). Even if the aerodynamics of the
NRB system or the hydrodynamics of the floating platform
are modelled with greater precision, these effects can be en-
capsulated by the external inputs, or the lumped systems
can be replaced by energy-preserving distributed systems.

Another advantage of the FWT model proposed in this
work is its modularity. This enables the incorporation of
modular models for the nacelle, rotor and blade system
that include more precise effects of the control inputs. In
the same fashion, it also allows to include more precise
actuators like moving inertias or smaller propellers to
stabilise the platform. In both cases, the energy-preserving
structure can be leveraged to prove stability of proposed
control strategies.

5. CONCLUSION

In this paper, we have presented a port-Hamiltonian sys-
tem for a floating wind turbine that includes a Timoshenko
beam model with axial and transverse deformation for
the wind generator tower model, two-dimensional string
models for the mooring system and lumped systems for the
top of the tower and the floating platform. The presented
system has a power preserving structure and is passive,
leading to convergent simulations through a discretisa-
tion strategy that preserves the energy balance. In future
work, the control perspectives should be applied and prove
the stability of the proposed system while implement-
ing disturbance rejection and vibration reduction con-
trol strategies. Additionally, more complete models of the
aerodynamics or hydrodynamics could coupled through
the system’s modularity to better capture the complex
environment.
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