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Abstract: This paper addresses the port-Hamiltonian modeling of the Rayleigh beam, which
bridges the gap between the Euler-Bernoulli and Timoshenko beam theories. This balance
makes the Rayleigh model particularly suitable for scenarios where Euler-Bernoulli assumptions
are insufficient, but Timoshenko’s complexity is unnecessary, such as in cases of moderate
oscillations. The originality of the approach lies in deriving the Rayleigh beam model from
the displacement field of the Timoshenko beam and incorporating an algebraic constraint
consistent with Rayleigh beam theory. The resulting model is formulated as an infinite-
dimensional port-Hamiltonian differential-algebraic equation (PH-DAE). A structure-preserving
spatial discretization strategy is developed using the mixed finite element method, ensuring the
preservation of the PH-DAE structure in the finite-dimensional setting. Numerical simulations
demonstrate the accuracy and effectiveness of the proposed model and discretization approach.
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1. INTRODUCTION

The port-Hamiltonian (PH) framework offers a modu-
lar approach to modeling physical systems while pre-
serving energy and passivity, making it well-suited for
passivity-based control and Lyapunov-based stability anal-
ysis (Duindam et al., 2009). Its structure effectively sepa-
rates interconnection laws from constitutive relations and
accommodates differential-algebraic equation (DAE) rep-
resentations, which efficiently manage constraints (van der
Schaft, 2000; Mehrmann and Unger, 2023).

Beam theories are fundamental for modeling slender struc-
tures in engineering, with applications in structural me-
chanics, robotics, and aerospace. The FEuler-Bernoulli,
Rayleigh and Timoshenko models provide varying lev-
els of accuracy in beam dynamics. The Rayleigh model
builds upon the Euler-Bernoulli theory by incorporating
rotational inertia, making it suitable for moderate os-
cillations where Euler-Bernoulli assumptions are insuffi-
cient but Timoshenko’s complexity is unnecessary. On the
other hand, the Timoshenko model accounts for shear
deformation and rotational inertia, offering a more pre-
cise description for thick beams or high-frequency vibra-
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tions (Labuschagne et al., 2009; Nguyen, 2017). In addi-
tion, reliable simulations and control design favor models
that exhibit energy and passivity, such as PH representa-
tions, which are available for both Timoshenko and Euler-
Bernoulli beams (Macchelli and Melchiorri, 2004; Cardoso-
Ribeiro et al., 2016; Warsewa et al., 2021).

In terms of kinematics, the Timoshenko beam employs
n = 2 generalized displacements and m = 2 generalized
strains, leading to a first-order differential operator of
size m x n = 2 X 2. The Euler-Bernoulli beam simplifies
to n = 1 displacement and m = 1 strain due to its
assumptions, resulting in a second-order operator of size
mxn = 1x1. For the Rayleigh beam, a PH model has been
proposed in (Ponce et al., 2023, Appendix D.8), where
the kinematic relation involves a second-order operator of
size m x n = 1 x 2. However, the direct application of
this model complicates spatial discretization, particularly
in ensuring stability and physical validity during finite
element implementation. Mixed finite element methods
(FEM) are effective for discretizing PHS by simultaneously
treating energy and co-energy variables while preserving
structure (Golo et al., 2004; Thoma and Kotyczka, 2022;
Kinon et al., 2024). However, applying mixed FEM to
the Rayleigh beam presents challenges; the stability and
physical validity of approximate solutions require that
the strain field dimension m be at least equal to the
displacement field dimension n (Zienkiewicz et al., 2005,
Chapter 10.4.3), a condition not satisfied by the Rayleigh



model in (Ponce et al., 2023, Appendix D.8). Moreover,
first-order operators are preferred for FEM discretization
to mitigate numerical issues, such as spurious oscillations,
poor convergence, and high computational costs (Christie
et al., 1976; Suri, 1990; Engel et al., 2002).

To address these challenges, we propose a novel approach
to derive the Rayleigh beam model based on the Timo-
shenko beam’s kinematic assumptions and introducing an
algebraic constraint consistent with Rayleigh beam theory.
The resulting model is a PH-DAE system that captures
the kinematics and energy assumptions of the Rayleigh
beam while being described by a first-order differential
operator. This approach also satisfies the dimensionality
requirements essential for the stability and physical valid-
ity of approximate solutions obtained using mixed FEM.
Our contributions are twofold. First, we derive an infinite-
dimensional PH-DAE model for the Rayleigh beam us-
ing the extended Hamilton’s principle (Bedford, 1985),
leveraging the structural advantages of the PH framework
while overcoming the limitations of traditional Rayleigh
formulations. Second, we extend the Hellinger-Reissner
(H-R) principle-based approach proposed in (Thoma and
Kotyczka, 2022) for the structure-preserving mixed FEM
discretization of the PH-DAE, integrating the constraint
directly within the FEM framework. This ensures that the
finite-dimensional model retains the PH-DAE structure
and defines appropriate boundary conditions (BCs).

The paper is structured as follows: Section 2 provides
background on PH beam models. Section 3 discusses the
modeling of the Rayleigh beam as a PH-DAE system and
its structure-preserving spatial discretization. Section 4
presents simulations to validate the proposed approach.
Finally, Section 5 concludes and discusses future work.

2. PRELIMINARIES

In this section we provide an overview of the fundamental
physical principles that will be employed in later sections,
along with definitions related to infinite-dimensional PHS.
For simplicity, dependencies on spatial and temporal vari-
ables will frequently be omitted to improve readability.

2.1 Foundations of beam models

In linear elasticity, the displacement field u(X,t) =
[u; uz uz]" € R? describes the small displacements of
each point X = {(1,(2,(3} in a body of volume V C R?
relative to a reference configuration. For small strains, the
deformation is characterized by the symmetric, infinitesi-
mal strain tensor (X, t) € R3*3 with components:

eij:;("’“w*’“f), with i,j = (1,2,3). (1)

¢, a¢;

Assuming Hooke’s law under linear isotropic elastic ma-
terial, the stress-strain relationship is given by o(X,t) =
C : e(X,t), where o(X,t) € R3*3 is the stress tensor and
C : R3%3 — R3%3 ig the fourth-order constitutive tensor,
characterized by two independent parameters, Young’s
modulus E and Poisson’s ratio v. The Voigt-strain vector
is defined as ¢ = [e17 c90 €33 2612 213 2e23]" (Be-
lytschko et al., 2014, Appendix 1). In linear elasticity with
constraints, the extended Hamilton’s principle provides a
systematic way to derive the equations of motion by incor-
porating constraints into the variational formulation. This

principle states that the evolution of the displacement field
u(X,t) between two specific times t; and o is a stationary
point of an action functional, leading to (Bedford, 1985):
to
6/(T—U—|—WE—CA)dt:O, @)
ty

subject to du(X,t1) = du(X,t2) = 0 for all X € V,
and ou(S,t) = 0 for S € T'p, with I'p the Dirichlet
boundary surface of the volume V. To be more concise, the
expressions for the kinetic energy T, the elastic energy U,
the external work Wg and the constraint functional C' will

be introduced later. For a more comprehensive review on
these topics, refer to (Bedford, 1985; Reddy, 2013, 2017).

2.2 Infinite-dimensional port-Hamiltonian beam models

The infinite-dimensional PH representations of beam mod-
els presented here belong to the class of PHS described in
(Ponce et al., 2024).

Definition 1 (Ponce et al., 2024). Let x={(1,...,(}
be orthogonal coordinate axes, 2 C R® an open set, and
v(x) € R™ and w(x) € R™ two smooth fields with compact
support in 2. The differential operator F : L?(Q) — L?(f2)
and its formal adjoint F* are given by:
14 N N\ A
Fw(x) =Fow(x) + Y 1 > _q Fr(i) 0} w(x), (3)
« é . . .
Fro(x) =Fy v(0) + Thoy DL () Fili) 10} v(x), ()

with 9, = 8'/9Ci, Fo, Fi(i) € R™*™ and N the order of
the highest derivative with respect to any (k.

Lemma 1 (Ponce et al., 2024). Let Q C R be an (-
dimensional domain, its boundary 02 and Q = Q U 99

the closure, such that x €  and s € 9. Then for any
v(x) € R™ and w(x) € R™ defined in 2 we have that:

/ (v Fw—w'F*v)dx = /B(w)TQa B(v)ds, (5)
Q o0
where B(-) is a linear differential operator defined as:
B() =[() 81 = 0:() 93() = 32() = o 1) = 0¥ 1)), (6)
and Qp(s) € RPN —Dnéxmt(N=1)ml i 5 matrix given by:
Fp(s)  —Wa(s) Wa(s) -~ (=1)" "W (s)
Va(s)  —As(s) Aals) -~ 0
Qao(s)=| L ' (7)
Vn-1(s) —An(s) © :
Vi (s) 0 0o .- 0

with Fp(s) € R™™ W;(s) € R™*™E Vi(s) € R™*™ and
A;(s) € R**™E defined as:
Fo(s) =30, Fu(1) A(s) , Wi(s) =[F1(i) i(s) - Fe() fe(s)]

Fl(i)—r'ﬁl(s) Fl(i)T’ﬁl(S) 0 (8)
: . Ai(s)= B
)

Vi(s) = : .
Fo(i) e(s) 0 Fo(i) (s

where 7i(s) is the component of the outward unit normal
vector to the boundary projected on the axis (k.

Corollary 1 (Ponce et al., 2024). When the differential
operator F is of first order (N = 1), (5) reduces to:

)
/(UT}'w - wT}'*v) dx = /wTFavds. 9)
Q o)



Note that (5) and (9) are some of the many manifestations
of the integration by parts rule.

Theorem 1 (Ponce et al., 2024). The dynamics of the
beams define infinite-dimensional linear PHS of the form:

H-EAE

(10)
i T==T* 6, H(x)
H(z) = %/ (pT/\/l_lp—i— eTICe) dx, (11)
Q
H= /B(ep)TQaB(ee) ds = /ygua ds, (12)
o0 o0
where J = —J* is the skew-adjoint linear differential

operator (interconnection operator), d,H (z) denotes the
variational derivative of H(x) with respect to z(x,t),
and H is the energy balance with ug(s,t), ya(s,t) €
R™ the power-conjugated boundary input and output,
respectively. The total energy is given by the Hamiltonian
H(z), where M(x) = M(x)T > 0 € R™" is the mass
density matrix, and K(x) = K(x)T > 0 € R™*™ is the
stiffness density matrix. From energy variables, p(x,t) =
M(x)7(x,t) € R™ is the generalized momentum with
r(x,t) € R" the generalized displacement, and e(x,t) =
Fr(x,t) € R™ is the generalized strain (kinematics,
strain-displacement relation). From co-energy variables,
ep(x,t) = M(x)"tp(x,t) = 7(x,t) is the generalized
velocity, and e (x,t) = K(x) e(x,t) is the generalized stress
(Hooke’s law, stress-strain relation).

In the following, we present the key variables of the PHS
representations for the Timoshenko, Fuler-Bernoulli, and
Rayleigh beam models. For further details, please refer to
(Ponce et al., 2024) and (Ponce et al., 2023, Appendix D).

Timoshenko beam: The displacement field of the Timo-
shenko beam is given by:

—G3 0
. v, )
uxn = | 0 ﬂ[wd&ﬂ} (13)
———

> r(x,t)

My
where (x,t) represents the rotation angle of the cross
section and wq (x, t) is the vertical displacement. Using (13)

together with (1) lead to the nonzero Voigt-strains:
)R
2613(X,t) B 0 1 -1 (91 U)()(X,t) ’
—_———
Mo F r(x,t)
where €(x,t) = Fr(x,t) € R? being €(x,t) = 017 the
generalized bending strain, and es(x,t) = dywe — ¢ the

generalized shearing strain. The mass and stiffness density
matrices are obtained from:

M(x) = p(x) / NIT NI dA = [f’<

(14)

x)1(x) 0
0 MMA&J’““

K(x) = / MJA [ﬁ &;} My dA = {EIO(X) K;ng(x)} , (16)
A —

c
where p(x) is the density of the material, A(x) is the cross

section area, I(x) is the second moment of inertia of the
cross section, C' is the constitutive matrix, G = ﬁ is

the shear modulus, and & is a correction factor.

Euler-Bernoulli beam:  The displacement field of the
Euler-Bernoulli beam is given by:

=68 01 19 g (x, 1)
mxw[gﬂ[w&@}7 (7
——
M,

where 0ywo(x, t) represents the rotation angle of the cross
section (always normal to the neutral line) and wo(x,t)
is the vertical displacement. Using (13) together with (1)
lead to the nonzero Voigt-strain:

en (X, t) = =G 0fwo(x, 1), (18)

where the generalized displacement is identified as r(x,t) =
wo(x,t). Thus, €(x,t) = Fr(x,t) € R, with F = 92
and €(x,t) = 0?wy, the latter representing the generalized
bending strain. The mass density matrix for the Euler-
Bernoulli beam is derived from (15) by disregarding the
rotary inertia term p(x)I(x), and the stiffness density
matrix accounts solely for the bending strain. Thus:

M(x) = p(®)A(x), K(x) = EI(x).

Remark 1 The Euler-Bernoulli beam model is a simpli-
fied (degenerate) model because it neglects rotary inertia.
In contrast, the Rayleigh beam includes it, providing a
more accurate, and energy-consistent representation.

(19)

Rayleigh beam:  The displacement field u(X,t), the
nonzero strain e11(X,t), and the mass density matrix
M(x) of the Rayleigh beam are the same as defined in
(17), (18), and (15), respectively. The nonzero strain can
be written equivalently as:

0 t
st = -5 o of) k)|
L "]

M; r(x,t)

(20)

which leads to the generalized strain e(x,t) = Fr(x,t) =
2 0%wy(x,t). The stiffness density matrix is obtained from:

K(x) = /MJEMQ A= (21)
A

Notice that F is a m x n = 1 x 2 second-order differential
operator. This results in the previously discussed chal-
lenges, including difficulties in ensuring numerical stability
and physical validity when applying mixed FEM.

3. MODELING AND DISCRETIZATION OF THE
RAYLEIGH BEAM

First, we derive the infinite-dimensional PH-DAE model
for the Rayleigh beam using the Timoshenko beam model
as starting point. Next, we propose a structure-preserving
discretization using a mixed FEM approach, allowing for
the discretization of both the dynamic equations and the
algebraic constraint.

8.1 Infinite-dimensional Rayleigh beam model as PH-DAFE

First of all, assume that 092 = 9Qp U 00y and 90p N
00N = {0} with {0} the empty set, where 9Qp and 90y
are the boundary portions where Dirichlet and Neumann
BC are imposed, respectively. For the Timoshenko beam
model, the generalized displacement field is defined as



r = [ we]T, with kinetic energy T, elastic energy U,
and external work Wg expressed as follows:

T = %/fTMv*dx, U= %/GTKGdX, Wg :/T;rds,

Q Q O
where Ty(s,t) € R™ is the generalized boundary traction

imposed on 9y, representing the Neumann BC. Accord-
ing with the Rayleigh beam’s kinematic assumptions, the
constraint imposed is:

y(r) =0wy —p = Lr =0, (22)

where £ = [-1 04] is a first-order differential oper-
ator of the same class as defined in Definition 1. This
constraint is equivalent to set the generalized shearing
strain e = 0wy — ¥ = 0. With the above, the con-
straint functional is written as: C) = fQ'y - AdS), where
A(x,t) € R is the Lagrange multiplier introduced to impose
the constraint v(r) = 0 on Q. In the next proposition, we
state the infinite-dimensional PH-DAE representation of
the Rayleigh beam.

Proposition 1 Let x = [p € R+ be the
energy variables, and Z(z) = [e] e/ A]T € R"*™¥1 be the
effort function. The system’s dynamics define an infinite-
dimensional linear PH-DAE of the form:

T €T )\]T

I, 0 01 [p 0 —F* —L*7 [ep
l01m0§':]-"0 O]EC]
0 0 0] |A £ 0 0 ||\ (23)
— ~——
T T==T* Z(z)
ug =[xy vpl', yo=[vxN TH]", (24)
H(z) = é/ (p" M7 'p + €' Ke) dx, (25)

Q
where I, eER™*" [, eR™*™ are identity matrices, and:

{?11 (;)J ’ M[%I p(ll] ’ K{E(’)I KlgA:| :
(s, t), Tn(s,t) and vp(s,t), vy (s,t) € R™ are the gen-
eralized boundary tractions and velocities, defined as:
T~ = Fpee+ LoX, vn =ep, (both on 0Qy),
0 = Fpe. + LoA, vp =e, (both on 0Qp),

with Ly = [0 71]" as the boundary matrix associated with
L according to Lemma 1.

L=[-101], F=

(26)

Proof. The proof consists in applying the extended Hamil-
ton’s principle in (2). From the expression for kinetic

energy we have: 5ftt12Tdt = :12 Jo 07T Midx dt, where
integrating by parts w.r.t. time we obtain: (5f:12 Tdt =

ftQ Jo 0rT Midxdt — [, 0rT Mrdx|;?, where the last
term vanishes due to or(x,t;) = 61"()( t2) = 0 for all
x € Q. From the expression for elastic energy U we
have: U = fQ ed For dx, where applying Lemma 1 we
obtain: 6U = [, or" F*e. dx+ fBQN(SrTFa e. ds. From the
expression for the external virtual work we obtain: dWg =
fBQNérTTN ds. From the expression for the constraint
functional we have: 6C = [, AT Lrdx + [, AT Lordx,
where applying Lemma 1 to the second term we obtain:
6C\ = [N Lrdx + [,6r"L*Ndx + fagN(SrTLa)\ ds.
Applying the extended Hamilton’s principle we obtain:

ta
/ [6r T (—Mi — Frec — L*X) =X Lr] dx ...

t1 Q

/ or (Fpec + Lo\ — 7v) ds | dt = 0.
AN
Recalling that p = Mr,e = Fr,r =e,, ¥ = LF =0, and
applying the fundamental lemma of variational calculus to
the previous expression, it leads to the infinite-dimensional
PH-DAE stated in (23). Since §,H(z) = E'Z(x) =
[e; el 0], from the energy balance we get: H =
Jo@ 6. HdQ = Joq yaupds, with up and yp defined in
(24) and (26). =
Observe that the kinetic energy can be separated into T' =
T.+T;, the rotational and translational parts, respectively:

T, = /ﬁd /php dx = f/pl(81w0)2dx

Q
T, = /;’Zd /pAwo dx,

Q Q

and the elastic energy into U = U, + Us, the bending and
shearing parts, respectively:

- %/Efe‘f dx = %/EI(61¢)2d
Q Q

U, = %/RGAE% dx = %/KGA (D100 —1/1)de —0,
Q Q
which is energetically consistent with the Rayleigh beam.

/EI 81w0 X,

8.2 Finite-dimensional Rayleigh beam model as PH-DAE

The structure-preserving mixed FEM scheme proposed
here builds on the work of (Thoma and Kotyczka,
2022), which addresses the structure-preserving spatial
discretization of linear PHS with first-order differential
operators. This approach incorporates mixed boundary
conditions and uses €(x,t) = Cc(x)ec(x, 1), where C.(x) =
K(x)~! is the compliance density matrix. Before present-
ing the weak form of (23) and its finite-dimensional ap-
proximation, key concepts from FEM are reviewed.

3.2.1. Finite element method

Consider a mesh with n. elements, NN¢ number of nodes
per element ¢ C €, and the local approximations:
€= Ne( x)é(t), el = NE(x)ec(t), A° = N5(x) X(t),
7—N* ( )AJ%() Ue :N'UD( )UD(t)7
where N"( ), N (s), N& (s) € RN Ne(x) €
R™>mNN® " and N)\( x) € R™N" are the local shape
functions; €5 (t) € RN and ¢¢ € RNV are the local co-
energy variables on ¢, \¢ € R™" is the local Lagrange
multiplier on Q¢ and 7% (t) and 9%, (t) € R™™N" are the
local BC on 094, and 02%,, respectively. Denoting NNgq,
NNaq, and NNpq, as the total number of nodes on 2,
0N and 0Qp, respectively; Ng = nNNq, Mo = mNNgq,
NaQN = ’I’LNN@QN and NaQD = nNNagD define the
dimension of the approximated variables on €, 9Q 5 and
09 p. Lastly, consider the relations:
ep(t) = Lyep(t), ec(t) = Leéc(t),
n(t) = Ly in (1), 05(t) = L5, 0p(t),

A(t) = L5 A(),



where é,(t) € RN2, é.(t) € RMo, \(t) € RNNo 7y (1) €
RMoon and 0p(t) € RNo2p are the global vectors; and
L; c IRTLNNeXNg7 LZ c ]Rm,NNeXMQ7 Le;,\ c RNNEXNNgZ’

L:, € RN xNoay  and L, € RN “xNoap are the
location (assembly) matrices of FEM.

3.2.2. Structure-preserving mized FEM

The local weak form of (23) (defined in each element) is
given by:

OP; (ep,ec, %) = /56; (P Frel + LTA) dx... (27)
Qe
.+ /5@2 < (Fyel + LoA® — 1) ds,

o0,
OP ey, ec,\°) = /66 ¢ — Fep)dx... (28)
et - FJ (e, — ) ds,
08,
OP5(ep,ec, %) = /(5)\6 Le,dx... (29)

Lg(e; —v})ds,

/5)\5

90,
where each term 6Py, 6P7, and 0Py represent the local
virtual power due to 1ndependent variations of ep, ef and

¢, respectively.

Proposition 2 The mixed FEM discretization of (23)
based on the weak formulation (27)-(29), using the local
approximations presented in Section 3.2.1, leads to the
finite-dimensional PH-DAE of the form:

P 0 —FT ~LT7&] [By 0.
[E][él=|F 0 0 [|é|+| 0 Bp L}ﬂ
A L 0 0 A 0 Byle—

~—~ —/_’.A - NV — Uy

i J=—JT Z(2) G
S B By A 0
o = GT2(2) NEép T Dy Al _ [?fN} 7
BD éc ™D
(@)= 5p N+ ;e Cole, (31)
where p(t) = Mé,(t) and é(t) = C. é.(t) are the discrete

generalized momentum and strain variables, respectively.
The involved matrices are defined as:

E= diag (INQ, IMQ, ONNG) 5 (32)

N = ZLe )T M(x) Ny (x) dx L, (33)
Qe

C. = ZLe /Ne (%) "Ce(x)NE (x) dx L (34)

L T
o0,

B =Y (L) [Ne() Fale) N, (s) ds L, (30)
e=1 Qe

By =Y (5)7 /N§<s>TLa<s>TN5 (s)ds L, (37)

o0,

Ne

BT =Y )| [ (N 0) Ve o (33)
e=1 Qe
- [Np) Fafe)Nee)ds | 2.
003,
Pt =T [ (e85 0)T N5 ) dn (39)
e=1 Qe
= [Ni(e) La(o)Ns (o) ds | L5,
o%,

where Iy, € RNeXNe and I,

fo € RMaxMa are identity
matrices and Onn, € RMNexNNa ig o zero matrix.

Proof. Using Lemma 1 we obtain:

/(5e;)T.7-'*e§ dx = /(]—'562)Te6 dx —/((56;)TF366 ds...

Qe Qe 00
f/(éeg)TFaee ds,
o0,
/(5e;)T,c*Ae dx :/(&se;;)v dx —/(6e;)TL3)\ ds...
Qe Qe o0,
—/(5e;)TLaAds.
ane,

Then, replacing the above expressions into (27) and us-
ing Fdep(x,t) = (FNS(x))dés(t), éq(t) = Lyép(t) with
é,(t) the global vector (analogously the same for the
other varlables) the global form of (27) becomes P, =
doecy 0P (e5, e, M%) = 0 and is given by:

pr e

5P, =d¢) [Mé, + FTée.— L™ A — Byin] =0.  (40)

Similarly, 0P, = Y.<, 0P¢(e5,ef,\°) = 0 and 0P\ =
doecy 0P5 (5, e, A°) = 0 are given by:

6P, = 6¢][C.é. — Fé, — Bpip] =0, (41)

6Py = — 6AT[Lé, + Brip] = 0. (42)

The Hamiltonian in each element is expressed as:

1
He(ep, ec) = 3 / (e )TMe + (€9) " Ceet] dx,
Qe
then, the total energy of the system is H = "<, H¢, and
the discrete Hamiltonian is given by:

N a A 1.T %~ 1.1 A A

H(ép, é.) = ge;Mep + EeZCEee. (43)
Finally, with the definitions of the discrete generalized
momentum and strain variables, equations (40)-(42) define

the finite-dimensional PH-DAE in (30), while equation
(43) defines the Hamiltonian function in (31). =

4. SIMULATIONS

For time integration, we use the implicit midpoint rule. For
a finite-dimensional DAE system in the form: Sz = f(z,t),
where S is a square singular matrix, we have:

Szk + hf (Zm7 tm) )
where 2, = 3(z + 2k41) and t,, = to + kh + % represent
the midpoint values, with ty as the initial time, h as the

time step, and k € N, an integer. Applying this rule to
the PH-DAE in (30) gives:
h A

0= <E + JQ)a:k - (E - fJQ)ka + hGaa(t), (44)

Sz =



where Q = diag(Mfl, C’;l, Inn,, ) with Iny, € RVNaxNNa
an identity matrix. We solve (44) for iy, for all k.

Simulations are conducted with the following parameters:
p = 7800 [kg/m3], E = 210[GPa), v = 0.3[-], L =
50 [em], A = 30 [mm?], I = 2.5[mm?], kK = 5/6]—]. The
beam’s BCs are: fixed at ¢; = 0, (i.e., vp = 0), and a
vertical force applied at (; = L, given by:

5 0
™= [1 sin(5mt)

The discretization uses n, = 10 finite elements with first-
order Lagrange polynomials as shape functions, and a time
step of h = 0.01[s]. Results are shown in Fig. 1.

}, for: 0 <t <0.5 [s].

g x10%

C 1 [Cr;s] 5 o

Fig. 1. Simulation results: Rayleigh beam

As shown in Fig. 1, the constraint v = 0 is effectively
satisfied throughout the spatial domain ¢; € Q and for
all time instances, ensuring that the elastic energy contri-
bution due to shear strain, U, is negligible. Additionally,
the total energy is conserved, and the evolution of the
vertical displacement wg results in a consistent deformed
configuration for the beam.

5. CONCLUSIONS

This paper has introduced a novel infinite-dimensional
PH-DAE model for the Rayleigh beam, along with a
structure-preserving mixed FEM discretization approach.
By building on the Timoshenko beam model and Hellinger-
Reissner-based methods, the proposed framework enables
the development of models suitable for both simulation
and control design across continuous and discrete do-
mains. The presented simulations demonstrate physically
consistent dynamics while satisfying the algebraic con-
straint. Future directions include investigation of well-
posedness, extending this methodology to the Kirchhoff-
Rayleigh plate, and leveraging these models in reduced-
order energy-based control design, using, for instance, the
approaches for PH-DAEs presented in (Wu et al., 2014;
Macchelli, 2014; Mehrmann and Unger, 2023).

REFERENCES

Bedford, A. (1985). Hamilton’s principle in continuum mechanics,
volume 139. Springer.

Belytschko, T., Liu, W., Moran, B., and Elkhodary, K. (2014).
Nonlinear finite elements for continua and structures. John wiley
& sons.

Cardoso-Ribeiro, F., Matignon, D., and Pommier-Budinger, V.
(2016). Piezoelectric beam with distributed control ports: a
power-preserving discretization using weak formulation. IFAC-
PapersOnLine, 49(8), 290-297.

Christie, I., Griffiths, D., Mitchell, A., and Zienkiewicz, O. (1976). Fi-
nite element methods for second order differential equations with
significant first derivatives. International Journal for Numerical
Methods in Engineering, 10(6), 1389-1396.

Duindam, V., Macchelli, A., Stramigioli, S., and Bruyninckx, H.
(2009). Modeling and control of complex physical systems: the
port-Hamiltonian approach. Springer Science & Business Media.

Engel, G., Garikipati, K., Hughes, T., Larson, M., Mazzei, L.,
and Taylor, R. (2002). Continuous/discontinuous finite element
approximations of fourth-order elliptic problems in structural and
continuum mechanics with applications to thin beams and plates,
and strain gradient elasticity. Computer Methods in Applied
Mechanics and Engineering, 191(34), 3669-3750.

Golo, G., Talasila, V., van der Schaft, A., and Maschke, B. (2004).
Hamiltonian discretization of boundary control systems. Auto-
matica, 40(5), 757-771.

Kinon, P., Thoma, T., Betsch, P., and Kotyczka, P. (2024). Gen-
eralized Maxwell viscoelasticity for geometrically exact strings:
Nonlinear port-Hamiltonian formulation and structure-preserving
discretization. IFAC-PapersOnLine, 58(6), 101-106.

Labuschagne, A., van Rensburg, N., and van der Merwe, A. (2009).
Comparison of linear beam theories. Mathematical and Computer
Modelling, 49(1-2), 20-30.

Macchelli, A. (2014). Passivity-based control of implicit port-
Hamiltonian systems. SIAM Journal on Control and Optimiza-
tion, 52(4), 2422-2448.

Macchelli, A. and Melchiorri, C. (2004). Modeling and control of the
Timoshenko beam. The distributed port Hamiltonian approach.
SIAM journal on control and optimization, 43(2), T43-767.

Mehrmann, V. and Unger, B. (2023). Control of port-Hamiltonian
differential-algebraic systems and applications. Acta Numerica,
32, 395-515.

Nguyen, A. (2017). Comparative spectral analysis of flexible struc-
ture models: the FEuler-Bernoulli beam model, the Rayleigh beam
model, and the Timoshenko beam model. Master’s thesis, Univer-
sity of New Hampshire.

Ponce, C., Wu, Y., Le Gorrec, Y., and Ramirez, H. (2023). Port-
Hamiltonian modeling of multidimensional flexible mechanical
structures defined by linear elastic relations. arXiv preprint
arXiv:2311.03796.

Ponce, C., Wu, Y., Le Gorrec, Y., and Ramirez, H. (2024). A system-
atic methodology for port-Hamiltonian modeling of multidimen-
sional flexible linear mechanical systems. Applied Mathematical
Modelling.

Reddy, J.N. (2013). An introduction to continuum mechanics.
Cambridge university press.

Reddy, J.N. (2017). Energy principles and variational methods in
applied mechanics. John Wiley & Sons.

Suri, M. (1990). On the stability and convergence of higher-order
mixed finite element methods for second-order elliptic problems.
Mathematics of computation, 54(189), 1-19.

Thoma, T. and Kotyczka, P. (2022). Explicit port-Hamiltonian
FEM-models for linear mechanical systems with non-uniform
boundary conditions. IFAC-PapersOnLine, 55(20), 499-504.

van der Schaft, A. (2000). Implicit port-controlled Hamiltonian
systems.  Journal of the Society of Instrument and Control
Engineers, 39(6), 410—418.

Warsewa, A., B6hm, M., Sawodny, O., and Tarin, C. (2021). A
port-Hamiltonian approach to modeling the structural dynamics
of complex systems. Applied Mathematical Modelling.

Wu, Y., Hamroun, B., Le Gorrec, Y., and Maschke, B. (2014). Port-
Hamiltonian system in descriptor form for balanced reduction:
Application to a nanotweezer. IFAC Proceedings Volumes, 47(3),
11404-114009.

Zienkiewicz, O., Taylor, R., and Zhu, J. (2005). The finite element
method: its basis and fundamentals. Sixth edition. Elsevier.



