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Abstract

Optimizing supplier selections is an open ended problem, relevant to the operational performance of both

individual companies and entire supply chains. Considering the prediction of future occurrences of delays

in the optimization of supplier selections is still an under covered problem. Unlike existing literature, this

article suggests a more collaborative and integrated workflow to improve the visibility and involvement

of multiple stakeholders in the supplier selection decision-making processes. This is achieved through

enhanced collaboration between multiple stakeholders (suppliers, customers, decision-makers from differ-

ent departments, in addition to data sources from information systems), and better integration between

data analysis and decision-making, through data-driven-machine-learning and optimization. The speci-

ficities of a French company in the furniture industry are considered. A workflow model is designed to

support information sharing and to streamline knowledge and interactions between multiple stakeholders

from different expertise domains. A Collaborative Predictive Optimization System (CPOS) is designed

to classify expected occurrences of delays, to optimize order allocations, and to enable stakeholder col-

laboration. Delay prediction involves Decision Trees, Random Forests, and eXtreme Gradient Boosting

(XGBoost). Supplier selection is solved using mathematical programming, while considering the classifi-

cation of expected occurrences of delays. Stakeholder collaboration relies on information systems and uses

prediction and optimization to support finding satisfactory agreements. The approach is validated using

a real 3.5-year dataset, including 139 suppliers, 7,934 products and 89,080 purchase orders. A detailed

experimentation, including sensitivity analysis, best-worst case analysis, and a larger scale analysis on

company datasets, shows that the suggested approach enhances collaboration and achieves delay reduction

and total procurement cost savings. Valuable managerial insights are collected, including the necessity

to adopt digital technologies, to adapt company workflows, and to improve upstream negotiations and

supplier commitments to yearly plannings.
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1. Introduction1

It has been estimated that purchase/procurement costs represent 50% to 90% of the total cost of a2

manufactured product (De Boer et al., 2001). Therefore, the supplier selection problem (SSP) (Dickson,3

1966) requires relevant management decisions to improve the overall performance and competitiveness of4

manufacturing companies (Mukherjee, 2017; Taherdoost and Brard, 2019). SSP have been widely studied5

in literature (Resende et al., 2021). It consists in assigning purchase orders to available suppliers, in such6

a way as to optimize one or several criteria (Memari et al., 2019) related to each supplier’s capability and7

capacity to provide materials of varying types, qualities, quantities, costs, supply durations, supply chain8

risks, etc.9

1.1. General Context10

A significant factor in the selection process is the supplier’s capability to deliver products and/or to11

provide services at the time agreed (Cavalcante et al., 2019). On-time supply enforces the adopted inven-12

tory and production strategies and expected plans and ensures cost reduction, compliance with deadlines13

and other contractual terms with customers (e.g., avoiding penalties due to delays), and ultimately, cus-14

tomer satisfaction (Steinberg et al., 2023). Inaccurate assumptions about supply durations may lead to15

bad supplier selections that cause delivery delays a posteriori, involving direct losses in terms of costs16

that can be measured, and indirect losses that can have greater long-term impacts and damage to the17

company’s brand and image (Wani et al., 2022).18

Unfortunately, existing approaches tend to tackle SSP according to “divide and conquer” strategies19

that lack overall efficiency and effectiveness, and that miss the added value of digitalization technologies.20

In most traditional approaches to SSP, the supplier selection process is usually compartmentalized into21

sequential steps (prediction, evaluation, ranking, selection, allocation, and order release). SSP is then22

solved through a series of local optimizations, where each local optimization does not necessarily take23

into account or use the outcomes of the previous steps (i.e. lack of integration). Some gap between aca-24

demic research and industrial practice emphasizes this observation. For example, in academic research,25

data-driven (Li et al., 2022) and Machine Learning (Wani et al., 2022) approaches were successfully used26

to predict delays. However, these works stop at the prediction level and do not explain how predicted27

delays could be used in downstream supplier selection and order allocation decision-making. In industrial28

practice, a procurement module, integrated within an Enterprise Resource Planning (ERP) information29
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system (Karlina et al., 2019), selects suppliers and assigns purchase orders to each supplier. The trend30

is to rely on ERP analytics (Jawad and Balázs, 2024), combined with human expertise, to process raw31

data and estimate various parameters, including delays. Estimated parameters are sent to the ERP pro-32

curement module, and some are handled by heuristic allocation rules and/or evaluation scores according33

to predefined criteria (Mondal et al., 2020). As the handling of estimated parameters often involves a34

human expert, supplier selection outcomes are often biased. The use of heuristics and rules leads to local35

optimal solutions, instead of global optimal ones if a more integrated optimization approach is considered36

within a streamlined process.37

Moreover, the traditional supplier selection process is often based on the single perspective of the38

purchase/procurement department and does not consider the added value, interests, and/or potential39

contributions of several stakeholders involved in the decision-making processes: logistics and transporta-40

tion, inventory and warehousing, production and sales/delivery. Decisions are made unilaterally by the41

purchase/procurement department based on its expertise, without sharing information on delays with42

other stakeholders, and without considering field/contextual appreciation or alternative solutions that43

could have been suggested by field experts and expertise domains other than the purchase/procurement44

department, if they were involved in the decision process. This lack of both visibility and collaboration45

can severely impact decision efficiency and effectiveness (Timonen and Vuori, 2018). The consideration of46

multiple perspectives enables information sharing with several stakeholders (suppliers, customers, decision47

makers from different departments), who are given the opportunity to express their viewpoints and pro-48

vide feedback, suggestions and decision alternatives to influence and complement the decisions considered49

by the procurement department. In a digital era, where information and communication technologies50

contribute to a better integration of information management and decision-making processes, a better51

collaboration between stakeholders within a multiple perspective process enables taking full advantage of52

synergies between information systems, data analytics and optimization to achieve better performance.53

1.2. Case study specificities54

The furniture industry has a global market of US$766.20 billion in 2024, with a Compound Annual55

Growth Rate (CAGR) of 5.02% (Statista, 2024b). France is the seventh-largest market worldwide for56

furniture. In 2024, the revenue in the furniture market in France amounted to US$26.28 billion. It is57

projected that the market will experience a CAGR of 1.74% over the period 2024-2029 (Statista, 2024a).58

The French furniture market is fragmented, having a mix of small and major businesses. Some of the59

major global players currently dominate the French market. However, with technological advancement60

and product innovation, small to midsize enterprises (SMEs) are increasing their market shares by securing61

new contracts and tapping new markets (MordorIntelligence, 2024). It is in this SME context that the62
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specificities of a French company are considered.63

The company manufactures furniture in kits and deals with 139 suppliers to purchase 7,934 items.64

Each supplier has a finite capacity to deliver a given type of item within each procurement planning65

period. For each item, each supplier provides a price offer scale, where prices decrease in stages function66

of increasing ordered quantities. For each item, each supplier has a fixed delivery time (independent of67

ordered quantities) and predefined purchase costs representing the acquisition cost paid by the company68

to acquire the item (price offer scale includes purchase and transportation costs).69

For safety and quality reasons, the company has an inventory management strategy, where purchase70

orders (PO) have to be received, and purchased items have to be stored in the warehouse for at least 1071

days prior to being able to release them into production. Delays further than 10 days are exceptional (more72

than 90% of delays are less than 10 days, see section 3.2.1). When such delays occur, they are subject not73

only to case-by-case tight monitoring and follow up with suppliers, but also to important penalties, because74

they heavily disturb commitments to customers, logistics (transportation and warehousing), production75

plans, and quality requirements. At the end of each year, such exceptional delays are reviewed with76

the suppliers, and contractual arrangements are made to encourage anticipation and to strictly avoid77

their occurrence. However, delays of less than 10 days are more problematic to avoid, because less strict78

arrangements can be made with suppliers to control them, although they disturb production. Therefore,79

they have to be managed on the company side by looking for ways to anticipate the occurrence of such80

delays to better plan production, and better meet quality requirements. Delays of less than 10 days have81

fixed costs that are irrespective of time, such as administrative costs, mobilization/demobilization costs,82

and certain equipment and auxiliary material costs (Pricing Contractor Delay Costs). These delays and83

delay costs are due to several contextual causes (that are controllable on the company side), such as the84

type of ordered item, quantity, and day or week within which orders are placed. The same supplier may85

cause delays for one order in some contexts with certain attributes and be on time for a similar order in86

a different context with different attributes. Hence, for the company, it makes sense to predict whether87

or not a PO is likely to experience a delay of less than 10 days. The provision of such delay classification88

facilitates the implementation of proactive measures across diverse departments to mitigate the resultant89

impacts.90

The company uses an Enterprise Resource Planning (ERP) system to manage its flows and processes.91

For each planning period, the ERP procurement module generates the material requirements in terms of92

purchase orders (PO). Each PO relates to a single item and determines the requested quantity and planned93

delivery date for that item. Each PO suggests a list of potential suppliers that have the capabilities to94

meet the quantity and delivery requirements of the item. The supplier selection is based on a priority95
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rule, where a PO is assigned to the supplier who offers the lowest price for the stage of the requested PO96

quantity in the price offer scale.97

The supplier selection decision is made through the ERP procurement module. It is validated uni-98

laterally by the purchase department, and this validation is enacted without considering any feedback99

from other departments with respect to potential delivery delays that could stem from the decision made.100

This is problematic, because other departments, like the sales and the logistics (for outgoing customer101

deliveries) departments, may have several types of commitments that can be put into question due to bad102

supplier selection decisions. Also, other departments, like the logistics (for incoming supplier deliveries),103

inventory/warehouse management and production departments, may have previous or recent contextual104

and field experiences with the suppliers, and their appreciations could greatly influence the supplier se-105

lection decision. Thus, considering their appreciations before validating the decisions can better preserve106

the interests of the company.107

1.3. Structure of the article108

This article adopts a different approach to the SSP, both with respect to literature, and with respect109

to the current practice in the considered industry. The main contribution is to suggest a more collabo-110

rative and integrated workflow to improve the visibility and involvement of multiple stakeholders from111

multiple expertise domains in the decision-making processes. This is achieved through (i) the consid-112

eration of multiple perspectives from multiple stakeholders (suppliers, customers, decision makers from113

different departments, in addition to data sources from information systems), (ii) enhanced collaboration114

between stakeholders through an improved workflow, and (iii) better integration between data analysis115

and decision-making, through data driven-machine-learning and optimization.116

Therefore, the remainder of this article is organized as follows. Section 2 reviews the literature related117

to several aspects of SSP and positions the contribution of this article. Section 3 describes the suggested118

methodology, workflow model, and the developed Collaborative Predictive-Optimization System (CPOS).119

Section 4 presents the numerical experiments on a real dataset, analyses sensitivity and best-worst case120

performance, and discusses results on different scales. Section 5 highlights the managerial insights of this121

work. Finally, section 6 summarizes and discusses the main findings and outlines insights as well as future122

research directions.123

2. Related Work124

In industrial practice, supplier selection is a task typically carried out by a procurement department125

(Taherdoost and Brard, 2019), where the procurement/purchase manager is the ultimate person and the126

only decision maker in command to validate supplier selections and order allocations. The importance of127
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involving multiple internal and external stakeholders in SSP was highlighted in (Chai and Ngai, 2015).128

In (Xu et al., 2023), it was recognized that sharing information with suppliers improves the performance129

of the supplier selection process.130

In existing SSP literature, indeed, some references addressed the topic of group decision-making by131

considering the opinions of multiple experts (Çalık, 2021; Banaeian et al., 2018; Boran et al., 2009). How-132

ever, the decision-making process involves more than one expert, but from only one expertise domain133

(typically many experts from the procurement department), and does not consider the opinions of ex-134

perts from many expertise domains (typically from different departments, other than the procurement135

department). This article particularly addresses this gap by considering a more collaborative approach136

that enables several experts from different expertise domains to express their opinions and provide their137

appreciation and feedback, and therefore be involved in the SSP decision-making process.138

To select suppliers, several criteria can be considered separately or simultaneously, leading to a multi-139

criteria decision-making problem. Quality criteria include supplier failure rates, product quality indicators140

(Cabrita and Frade, 2016), warranty period, and reputation indicators (Stević et al., 2017). Financial141

criteria include purchase prices (Xia and Wu, 2007), transportation costs (Cabrita and Frade, 2016),142

and volume discounts (Stević et al., 2017). Sustainability concerns are reflected in economic, social,143

and environmental criteria (Azadnia et al., 2012; Jabbarzadeh et al., 2018; Liou et al., 2021). Finally,144

time-related criteria, such as delivery times, delivery delays (Haeri and Rezaei, 2019), on-time indicators145

(Thanaraksakul and Phruksaphanrat, 2009), and reliability indicators (Taherdoost and Brard, 2019) are146

being applied.147

Several recent publications reviewed frameworks and suggested classifications of strategies, approaches148

and techniques to solve SSP (Saputro et al., 2022; Naqvi and Amin, 2021; Chai and Ngai, 2020; Aouadni149

et al., 2019). Fig. 1 synthesizes the main groups of SSP approaches and includes recent references, while150

being compliant with existing classifications.151

Four major SS approaches categories can be distinguished : Multi-criteria Decision-Making (MCDM),152

Mathematical Programming (MP), Artificial Intelligence (AI) and Hybrid approaches. MCDM techniques153

are used to select the best option from a set of alternatives by taking into account multiple competing154

criteria. MP approaches are applied to solve well-structured SS problems that can be expressed math-155

ematically. AI techniques have also been adopted according to four subcategories: (i) Metaheuristics156

for complex SS optimization problems by efficiently exploring large search spaces; (ii) Data driven and157

Machine Learning for pattern detection and prediction from big and unstructured data; (iii) Symbolic158

AI for SS problems by handling imprecise/subjective information through linguistic variables and fuzzy159

sets and/or by embedding human knowledge and reasoning; (iv) Hybrid AI where two or more techniques160
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from these AI subcategories are jointly used. Finally, in the fourth category of Hybrid approaches, most161

works combine the main categories MCDM, MP and AI. Some other underexplored hybridizations are162

also proposed (Saputro et al., 2022). Within this category, each technique solves the different problem163

aspects for which it is most suitable.164

This is particularly the case in this article, where the focus is on both the classification of expected165

occurrences of potential delays and the assignment of purchase orders to suppliers so as to minimize the166

total procurement costs. To handle large volume of unstructured data and extract dynamic features which167

influence delay predictions, data-driven approaches and machine learning algorithms are advocated due168

to their capability to identify trends, model complex relations, and predict future behaviors (Sutharssan169

et al., 2015; Olaoye and Potter, 2024). On the other hand, mathematical programming optimally solves170

well-structured optimization problems. This hybridization combines the predictive power of ML with the171

optimization capabilities of MP to enhance supplier selection decision-making.172

2.1. Machine Learning and data analytics for SSP173

In the literature, Machine Learning (ML) is mainly used for four different purposes in SSP.174

• Clustering suppliers: in this category, the problem is to classify suppliers in order to put them into175

groups based on some criteria of similarity. Then, for each cluster/class/group, a different treatment176

is considered (Azadnia et al., 2012; Jabbarzadeh et al., 2018).177

• Ranking suppliers: in this category, the problem is to find an ordering so that a list of available178

suppliers are prioritized according to some criteria of interest (Nepal and Yadav, 2015; Du et al.,179

2015; Tavana et al., 2016; Hosseini and Barker, 2016; Zhao et al., 2021).180

• Ranking and selecting evaluation criteria: in this category, the problem is to set priorities among a181

set of available and competing criteria, in order to enable a downstream decision-making process,182

such as supplier ranking and/or supplier selection (Liou et al., 2021).183

• Estimating unknown parameters: in this category, the problem is to quantify some parameters, such184

as risk factors (e.g., port congestion, price inflation, labor strikes, and supplier quality) (Nepal and185

Yadav, 2015) or product demand (Islam et al., 2022, 2024), and then use them in a downstream186

decision-making process.187

A delay occurs when the actual delivery date exceeds the planned delivery date (promised delivery188

date by the supplier) (Brintrup et al., 2020). As such, delays are unknown parameters that need to be189

estimated during the supplier selection process, and before releasing the purchase orders, in order to190
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eventually make further arrangements for downstream logistics, warehousing, production, and delivery to191

customers.192

To handle delays in SSP, researchers use metrics, such as on-time delivery rate (Islam et al., 2024),193

delivery delay rate (Jahangoshai Rezaee et al., 2017), or delivery lead-time (Pamucar et al., 2023), either194

in isolation or in conjunction with other criteria, such as costs. These metrics are not predicted, but195

calculated as ratios from historical data, and then used to make delay estimations. However, considering196

these metrics alone as criteria to select suppliers, without considering any contextual information, and197

without updating them dynamically when making decisions, can yield erroneous results. In fact, as the198

efficiency of suppliers depends on various dynamic factors, such as types of products, period of the year199

(e.g. seasonality), and pricing campaigns, a supplier who performed poorly in a period of the year that is200

unfavorable to him may not be selected in the following period, that might be more favorable to him, even201

if he outperforms all other suppliers. Therefore, predicting whether any delays will occur (classification202

problem), and estimating the duration of delays (regression problem) are important issues for which203

businesses are increasingly relying on data analytics to make more informed supplier selection decisions204

(Li et al., 2022).205

Due to case study specificities, we are interested in delay classification approaches (predicting whether206

any delays will occur). Therefore, Table 1 shows the results of a literature review process that we207

conducted to find references related to delay classification. The review provides rationales for us to208

select the data analytics tools that are most promising and adapted to our case study. From Table 1, it209

appears that the most used ML models to predict supplier delays are decision trees, random forests, and210

XGBoost. From the analysis of the references in Table 1, it comes out that, although existing studies solve211

the delay classification problem, they do not address downstream challenges, neither to have collaborative212

approaches by sharing delay information among multiple stakeholders, nor to optimize supplier selections.213

Additionally, the prediction of supplier delays, with its two facets, classification and regression, remains214

under-explored in the furniture manufacturing industry.215

Consequently, to the best of the author’s knowledge, no previous work has addressed the specific216

problem considered in this article, which is the optimization of supplier selections while considering217

predictions on whether there will be supplier delays or not (classification problem).218
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Figure 1: Supplier selection approaches with illustrative works
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2.2. ERP supplier selection workflows219

Enterprise Resource Planning (ERP) software is a cross-functional enterprise information system that220

streamlines and enhances a company’s business processes and flows, promoting profitability and efficiency221

(Hadidi et al., 2020). ERP systems consist of several integrated modules that support business functions222

and processes, notably the supplier selection function of the procurement module. However, the supplier223

selection is usually based on predefined evaluation, ranking scores, and heuristic rules (Mondal et al.,224

2020).225

In addition to their substantial role as a data warehouse (Steinberg et al., 2023), the capabilities of226

ERP systems are increasingly extended with intelligent modules based on machine learning and data227

analytics, to help users identify data patterns (Okanga and Groenewald, 2019) and better deal with228

unknown parameters (Babu and Sastry, 2014). The integration of data analytics in ERP systems is a229

pivotal catalyst for companies towards Industry 4.0 (Majstorovic et al., 2020) and digital transformation230

(Bodemer, 2023). It demonstrates efficiency in overcoming challenges inherent to ERPs (Yathiraju, 2022).231

Integrating data analytics into ERP systems enables companies to gain a competitive advantage, optimize232

operations, increase productivity, and drive informed decision-making (Jawad and Balázs, 2024; Bawa,233

2023; Goundar et al., 2021). Commercial ERP systems use data analytics tools such as Epicor Data234

Analytics (Epicor, 2024a) and Forecast Pro (Epicor, 2024b) for Epicor ERP, S/4HANA (SAP, 2024b)235

and Analytics Cloud (SAP, 2024a) for SAP ERP, and AI Apps for Oracle ERP (Oracle, 2024). These tools236

enable data visualization and reporting but remain black boxes for users that cannot solve downstream237

optimization problems.238

To the best of the author’s knowledge, only one reference (Kohli, 2017) considered using ML with ERP239

to solve SSP. The author used decision trees and support vector machines (SVM) to rank a new supplier240

based on historical data of similar suppliers. The ERP serves as a data source for ML model training,241

and the outcomes of supplier rankings are subsequently fed back to the ERP system to support the order242

allocation process. Decisions are then made for each PO separately by expert judgment according to243

the best rank, leading to locally optimal decisions, and introducing potential bias into supplier selection244

outcomes.245

2.3. Position and contributions246

The literature review shows that247

• Existing approaches are often based on the single perspective of the purchase/procurement depart-248

ment and do not consider the added value of several stakeholders from multiple expertise domains249

involved in the decision-making processes. In this article, a collaborative workflow is suggested to250
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take advantage of feedback from all involved stakeholders (decision-makers from different depart-251

ments in the company, suppliers, and customers). This is enabled through the use of industrial252

ERP systems as a backbone asset to integrate and streamline the supplier selection process, and to253

involve all interested/impacted stakeholders.254

• Existing approaches tend to compartmentalize the supplier selection process and solve it through255

a series of local optimizations, which are mainly based on expert judgment, heuristics, and rules256

in industrial practice. In this article, a more integrated and streamlined supplier selection process257

is suggested to avoid local optima and improve supplier selection quality through an improved258

synergy between data analytics and machine learning for delay classification, and mathematical259

programming for optimization.260

• To deal with delays, existing references determine time-related metrics that are not predicted, but261

calculated as ratios from historical data, and then used to make delay estimations. Calculations262

are made in a static way that does not consider any context or dynamics. This article focuses on263

delay predictions as a classification problem to predict whether there will be delays or not, based on264

data analytics and machine learning to account for historical context and dynamics. Classifications265

of expected occurrences of delays are then used in a mathematical programming optimization of266

supplier selections, to achieve an overall supplier selection optimization.267

3. Methodology268

This section designs a methodology to solve the limitations presented in the previous sections and269

develops a system to implement this methodology into the existing enterprise information systems and270

decision-making processes.271

3.1. Workflow model272

In order to enable collaboration between several stakeholders from different expertise domains (i.e.273

several decision-makers from different enterprise departments, in addition to suppliers and customers),274

and to have a more integrated and streamlined supplier selection process, a new Collaborative Predictive275

Optimization System (CPOS) architecture is suggested (see Fig. 2). The CPOS aims at (i) predicting276

whether there will be delays or not (classification of expected occurrences of delays), based on data277

analytics and machine learning to account for the historical context of previous purchase orders, and (ii)278

determining an order allocation plan to optimize purchase costs considering the classification of expected279

occurrences of delays. The CPOS enables the company to analyze data, identify patterns, classify expected280

occurrences of delays, and optimize collaboratively, not unilaterally, and globally (with mathematical281
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programming), not locally (with rules and heuristics), the assignment of a set of purchase orders to282

suppliers. This is achieved through three main use cases, explained as follows.283

3.1.1. Use case 1: prediction model training284

The black arrows in Fig. 2 show the process of training the prediction models using historical data285

from the ERP. The learning outcomes of the training of the prediction models (e.g. hyper-parameters)286

are stored in the ERP to be reused.287

3.1.2. Use case 2: CPOS decision support to supplier selection288

The red arrows in Fig. 2 show the decision support process that CPOS provides to stakeholders to289

advise their decision-making. Purchase orders are created by the ERP system according to the production290

plan. These orders show available suppliers that meet the quantity and quality requirements. The gener-291

ated purchase orders undergo classification of occurrences of delays and optimization of order allocations292

to suppliers. Classification and optimization results are submitted to stakeholders for approval.293

3.1.3. Use case 3: Stakeholder collaboration294

The blue arrows in Fig. 2 show the CPOS-supported collaboration process between stakeholders295

(decision-makers from different departments in the company, suppliers, and customers) until they reach296

an agreement and approve the supplier selection and order allocation plan. The classified expected delays,297

supplier selections, and order assignments are shared with stakeholders for approval or review.298

For decision-makers from different expertise domains (i.e. different departments) in the company,299

having information in advance about expected late deliveries allows them to anticipate and propose new300

alternatives with revised parameters based on their expertise (Li et al., 2010). For example, they can301

suggest new suppliers (Chai et al., 2013; Chai and Ngai, 2020), adapt or outsource part of the production302

plans, revise (e.g., postpone, split) releases of production orders and prioritize resource dispatching (Singh303

et al., 2019). The ERP supports such collaboration by providing complementary information on available304

alternatives.305

External stakeholders are also involved, as the new suggested workflow enables submitting new requests306

to suppliers and/or customers. In return, suppliers/customers can accept the proposals or suggest new307

alternatives. Available options and/or revised parameters are fed back to the CPOS. Feedback is assessed308

to determine at which step of decision support it should be taken into account. Interactions between the309

CPOS and stakeholders continue until some consensus is reached.310
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Once the supplier selections and order allocations are approved, they are transmitted to the ERP311

procurement module, which will release purchase orders to suppliers (Pekša and Grabis, 2018) according312

to the approved plan. It is worth noting that the procurement department will play the role of coordinator313

in the suggested new workflow, for example, to plan meetings and discussions with stakeholders, to collect314

alternatives and suggestions, and to feed them as alternatives and/or revised parameters into the CPOS.315

3.2. Collaborative Predictive-Optimization System316

In addition to collaboration, which is mainly an interactive process (more details will be provided317

on this aspect in section 4.2.3), the CPOS is architectured around three main computational processes,318

which will be described in the following subsections: data preprocessing, prediction and optimization.319

3.2.1. Data preprocessing320

A three-and-a-half (3.5) year purchase history of the company is available, including data about321

released purchase orders, purchased items, suppliers, quantities, costs (planned and realized), and delivery322

dates (planned and realized). A 6-step data pre-processing pipeline is proposed to better understand the323

data and create a structured dataset to be processed by the machine learning algorithms.324

(a) Outliers handling325

In the period 2018 to 2021, the company placed 89,080 POs, among which 41,690 POs were subject326

to delays, thus late deliveries represent 46.8% of total deliveries. A preliminary analysis of these327

delays (see Fig. 3) shows that 94.4% of delays fall within the interval [-10;10] days. Delays that328

exceed 10 days are subject to penalties and to contractual terms with suppliers, who do all their329

possible to avoid them. Such delays are subject to dedicated procedures, and are considered as330

outliers so they are not considered in this article. Positive delays that are less than 10 days are331

more problematic, because they disturb production, cannot be handled by contractual terms, and332

have to be managed on the company side. Therefore, this article focuses mainly on the classification333

of released POs to determine whether or not there will be a late delivery of less than 10 days.334

In addition, as illustrated in Fig. 4, the COVID-19 lockdown period of 2020 presents a significant335

drop in the number of deliveries, against an exceptional rise in the percentage of supply delays. The336

deliveries in the 2020 period are considered as outliers, and the orders related to this period are337

discarded.338

339
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Figure 3: Distribution of delays per duration

Figure 4: Number of delays (blue) and percentage of delays (red) during the period 2018 to 2021.

(b) Missing values340

Missing data is a common problem in the data acquisition process (Garćıa et al., 2016). In our case,341
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239 instances with missing data were detected. As this number represents only 0.28% of the total342

number of observations, the instances with missing values were discarded.343

344

(c) Data labeling345

The instances are labeled so that they can be introduced to supervised learning algorithms. A346

binary feature is created to label the delay of each purchase order.347

• 1: if the PO realized delivery date exceeds the planned delivery date by 1 to 10 days.348

• 0: otherwise.349

Such labeling enables classifying data into 2 classes: late and early deliveries.350

351

(d) Data sampling352

In the available dataset, early deliveries represent 56% of total deliveries. Therefore, there is an353

imbalance between the two labeling classes. Data imbalance leads to false training results in su-354

pervised learning applications (Brintrup et al., 2020). Therefore, a solution needs to be found to355

balance the data. Two different sampling techniques were tested to balance the two labeling classes.356

• Random over-sampling (Mohammed et al., 2020) consists of randomly duplicating samples357

from the minority class until it has the same number of samples as the majority class.358

• Entitled random under-sampling (Mohammed et al., 2020) consists of removing random sam-359

ples from the majority class until the two classes become balanced.360

After testing the two techniques, the random under-sampling technique is retained, as it gives better361

performances during the training process (see section 4.1.3).362

363

(e) Feature engineering364

Administrative data, such as the PO number or the person in charge of order release and follow-365

up, and features carrying the same information, such as the product ID and its name, have been366

removed. Then, for each PO in the available dataset, the week, the day of the month, and the367

day of the week of the planned delivery date have been added, since the number of delays shown368

in Fig. 4 is not uniform and depends strongly on these variables. Note that the end of the year369

always witnesses a high ratio of late deliveries. Additionally, after brainstorming sessions with the370

company’s experts, it was decided to add the feature ‘supply time’ given by Eq. (1):371
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delay = Max(0; real delivery date - planned delivery date) (1)

This feature describes the level of flexibility given to a supplier, as a higher supply time means that372

the supplier has a sufficient margin to deliver the product.373

374

(f) Data encoding375

Categorical variables, representing the Supplier ID and the Product ID, are a challenge for machine376

learning algorithms, which typically operate on numerical data. Through the categorical encoding377

techniques, these alphanumeric variables are transformed into a numerical format that can be in-378

terpreted by tree-based models (Seger, 2018). The label encoding technique was used, by assigning379

a unique numerical label to each distinct category.380

Table 2 details the selected features from the used dataset.381

Table 2: Selected and created features from the available dataset

Feature Format Description

Supplier ID Alpha Numeric Unique supplier identifier

Product ID Alpha Numeric Unique code identifying the purchased product

Purchase Cost Float The purchase cost of the order

Quantity Float The quantity of concerned product in the purchase order

Week Integer The week of the planned delivery date

Supply Time Integer Difference between order date and planned delivery date

Day of the month Integer The day of the month of the planned delivery date

Day of the week Integer The day of the week of the planned delivery date

Delay Binary The status of the order, whether it is delayed or received on-time.

3.2.2. Prediction models382

Three tree-based ML models, namely decision trees, random forests, and XGBoost, were developed383

to classify the occurrences of delays. These algorithms were selected because:384

• They have shown interesting results in predicting delays in literature (see section 2.1 and table 1).385

• They are able to handle numerical as well as categorical variables.386

• They provide a feature importance analysis of predictions (Mirkouei et al., 2014).387
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The models take as inputs the purchase orders, where each purchase order POi is characterized by the388

8 preprocessed features in Table 2. The models are trained to perform a binary classification (de Krom,389

2021) of outcome βi,j to predict whether order POi will be delayed or not if it is assigned to supplier Sj .390

• βi,j = 1 if order POi will experience a delay in the interval [1;10] days if POi is assigned to supplier391

Sj392

• βi,j = 0 otherwise.393

(a) Decision Tree394

A Decision Tree (DT) is a classification model presented as a tree structure (Ferreira and Vasilyev,395

2015). To train the DT model, the entire dataset containing the 8 selected features (Table 2)396

and their corresponding labels (on-time or delayed) are taken as inputs. The algorithm selects the397

feature that best divides the data into distinct classes. The split is done by calculating the Gini398

impurity measure for each feature (Daniya et al., 2020) and selecting the one that gives the lowest399

Gini measure (Eq. (2)):400

Gini = 1−
A∑
i=1

pri (2)

with:401

A is the number of classes. A=2.402

pri is the probability of selecting an item from class i.403

After deciding which feature is the best, the algorithm splits the data based on the selected feature.404

Thus, the nodes of the tree represent tests on a specific variable from the training features, branches405

correspond to the results of the tests, and leaf nodes represent the PO class. The splitting process406

is repeated recursively until one of two stopping criteria is met: the depth of the tree or the number407

of leaf nodes reaches a predefined maximum number.408

409

(b) Random Forest410

A random forest is a machine-learning algorithm, which is based on an assembly of a predefined411

number Nmax of independent decision trees (Parmar et al., 2019). Training a random forest starts412

by creating a random subset of the training dataset for every decision tree to capture the data413

variability. This process is done using the bootstrap aggregating technique (Bagging) (Breiman,414

1996). It consists of selecting data samples randomly from a population with replacement. For415
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each tree, a random subset of the feature set is used to add diversity to trees (Breiman, 2001).416

Each individual decision tree is grown, as explained in subsection 3.2.2(a), using the Gini impurity417

measure (Eq. (2)) and the maximum depth as a stopping criterion.418

The decision trees are grown and used for the classification of new purchase orders. To achieve this,419

the features of a new PO are introduced into each tree to make a prediction, and the final decision420

of the Random Forest is given by the majority voting technique (Fawagreh et al., 2014).421

422

(c) eXtreme Gradient Boosting423

eXtreme Gradient Boosting (XGBoost) is an ensemble learning algorithm that has achieved good424

performances in various predictive modeling tasks (Chen and Guestrin, 2016). It is specifically de-425

signed to optimize model performance by iteratively combining the predictions of multiple decision426

trees. XGBoost uses a boosting technique instead of bagging.427

The boosting technique starts by creating an initial tree and training it using the same process428

detailed in subsection 3.2.2(a). Based on the results obtained from this first model, weights are429

given to misclassified instances. Then, a second tree is built to attempt to correct the errors present430

in the first model. It is trained using the weighted data obtained in the first stage. This procedure431

continues and models are added until the number of trees reaches a predefined number Nmax. The432

correction is performed by calculating the gradient (Friedman, 2001) and using a learning rate.433

Unlike the Random Forest model, the trees created by the XGBoost model are highly dependent.434

The prediction of delay for a new PO is a weighted linear combination of the predictions provided435

by all tree models.436

437

(d) Evaluation metrics438

The outputs from the prediction models are categorized into four distinct classes:439

• True Positive (TP): represents instances where delays are accurately predicted;440

• True Negative (TN): represents instances where on-time deliveries are correctly predicted;441

• False Positive (FP): represents instances where on-time deliveries are erroneously classified as442

delays;443

• False Negative (FN): represents instances where delays are inaccurately classified as on-time444

deliveries.445

The evaluation metrics, presented in Table 3, were used to evaluate the performances of the predic-446

tion models.447
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Table 3: Classification evaluation metrics

Evaluation

Metric
Formula Interpretation

Accuracy (TP + TN) / (TP + TN + FP + FN)

Assess how well each prediction

model performs overall in predicting

the two class labels.

Precision TP / (TP + FP)
Determine how many of the predicted

delays turned out to be true delays.

Recall TP / (TP + FN)
Determine how many effective delays

are predicted correctly.

F1-score (2 x Recall x Precision) / (Recall + Precision)

Determine how well a prediction

model manages both false positives

and false negatives.

3.3. Optimization model448

A Supplier Selection Optimization Model (SSOM) given by an integer linear programming model449

is developed to assign all suggested purchase orders to potential suppliers so as to minimize the total450

purchase and delay costs. Let us consider the following notations:451

• POi: Purchase Order i (i= 1, 2, . . . , n).452

• N : Set of all purchase orders indexes N= 1,2,. . . , n.453

• Sj : Supplier j (j=1, . . . , m).454

• Pk: Product type k (k=1, . . . , l).455

• Vk: Set of purchase order indexes of the product type k.456

• Qi: Quantity of product in purchase order i.457

• Capj,k: Maximum capacity of supplier j to deliver product type k.458

• Cui,j : Product unit purchase cost of the purchase order i by the supplier j.459

• Csi: Product unit delay cost of the purchase order i.460

• βi,j : Predicted delay of POi by supplier j.461
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– βi,j = 1, if order POi will experience a delay in the interval [1..10] days if POi is assigned to462

supplier Sj463

– βi,j = 0 otherwise464

• Ct: Total procurement cost.465

• Xi,j : decision variable466

– Xi,j = 1, if POi is assigned to supplier Sj467

– Xi,j = 0 otherwise468

• Cp : Total purchase cost given by Eq. (3)469

470

Cp =

n∑
i=1

m∑
j=1

(Qi · Cui,j) ·Xi,j (3)

• Cd : Total delay cost given by Eq. (4)471

472

Cd =
n∑

i=1

m∑
j=1

(βi,j ·Qi · Csi) ·Xi,j (4)

• Ct : Total procurement cost473

Then, the SSOM is given by the following mathematical programming model:474

475

Objective function:476

Minimize Ct =
n∑

i=1

m∑
j=1

(Qi · Cui,j + βi,j ·Qi · Csi) ·Xi,j (5)

Subject to the following constraints:477

m∑
j=1

Xi,j = 1; i = 1, 2, ..., n (6)
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∑
i∈Vk

Qi ·Xi,j ≤ Capj,k; k = 1, 2, ..., l; j = 1, 2, ...,m (7)

Xi,j ∈ {0, 1} ; i = 1, 2, ..., n; j = 1, 2, ...,m (8)

The objective is to minimize the total procurement cost (Eq.(5)) given by the sum of the purchase478

costs Cp (Eq.(3)) and delay costs Cd (Eq.(4)). Eq.(6) ensures that each order is assigned to only one479

supplier. Eq.(7) specifies that the total quantity delivered of each product type does not exceed the480

supplier’s capacity. Finally, Eq.(8) imposes the binarity condition on the decision variables.481

4. Experiments and validation482

In this section, the prediction models are first trained, and then the CPOS performance is evaluated483

on real case studies.484

4.1. Prediction results and analysis485

The prediction models are trained, and their performance is evaluated based on the metrics introduced486

in Table 3. The importance of the features is evaluated to determine which features are most impactful487

on predictive analytics.488

4.1.1. Test and training datasets489

The complete dataset includes 89,080 (planned and realized) purchase orders over the period 2018 to490

2021. After data preprocessing (see section 3.2.1), the preprocessed dataset (84,041 purchase order) was491

divided into two subsets using the stratification technique (Liberty et al., 2016) to ensure that the class492

distribution in each subset matches the class distribution in the original dataset:493

• A testing set, constituting 20% of the preprocessed dataset (17,816 of POs)494

• A training set, comprising 80% of the preprocessed dataset (71,264 of POs)495

4.1.2. Hyperparameters of prediction models496

The Python programming language, and the Pandas, Numpy, and Sklearn libraries were used to pro-497

cess data and perform ML predictive analysis. The training process was conducted on a computer with498

Intel(R) Core(TM) i5-8350U CPU at 1.70GHz and 16GO of RAM. In order to fine-tune the hyperpa-499

rameters of the prediction models, the grid search algorithm (Lerman, 1980) was used to explore possible500
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combinations of hyperparameters, evaluate each combination using the accuracy metric, and select the501

best-performing combination. Table 4 shows the obtained hyperparameters for each prediction model.502

Table 4: Machine learning model hyperparameters

Model Decision Tree Random Forest
eXtreme Gradient

Boosting

Parameters

- Tree depth: 30

- Max leaf nodes: 500

- Split quality measure: Gini

impurity

- Split strategy: Best

- Number of trees: 300

- Maximum depth: 30

- Split quality measure: Gini

impurity

- Number of trees: 300

- Maximum depth: 30

- Learning rate = 0.1

4.1.3. Selection of a predictive model503

Prediction models were trained and validated using cross-validation on the training set. The testing504

dataset was kept separate and was used only after model training to evaluate the training (using the505

evaluation metrics) and validate performance. During training, the 10-fold cross-validation (Wong and506

Yeh, 2019) was used to evaluate the overfitting of the models on the training dataset. The training dataset507

was split into ten equal folds and the model was trained using nine folds, while the last fold was used to508

test the training. This process was repeated 10 times. For each iteration, a different fold was used to test509

the training. Finally, the model cross-validation score was calculated as the average of the ten accuracies510

measured in the testing folds.511

Table 5 shows that obtained metrics are above 88% for all metrics for all three algorithms. The decision512

tree model presents the lowest results for all metrics. On the other hand, the ensemble algorithms perform513

better, given their ability to reduce learning bias, generalize training results, and improve robustness. The514

XGBoost model achieves the highest results, with an improvement of 1% over the random forest model515

and 2% over the decision tree model. In terms of precision, more than 91% of the predicted delays are516

effective delays, compared to 90.21% for random forest and 89.37% for decision tree. For the recall metric,517

the XGBoost model achieves a score of 93.52%, meaning that more than 93% of true positive delays were518

detected. It is worth noting that the cross-validation scores closely match the accuracy on the testing519

sets, indicating that all models are not overfitting.520

In the particular case of XGBoost, Table 6 shows that random under sampling enables reaching a high521

cross validation score of 0.9285, which confirms that the XGBoost model is not overfitting. Hence, the522

model is able to generalize on new data and to predict supplier delays. Its results can be transmitted to523

the downstream optimization model and used with high confidence. Accordingly, the XGBoost is selected524
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Table 5: Evaluation of prediction model performances

Algorithm

10-folds cross

validation score

Evaluation metrics scores

on the testing dataset

on the training dataset Accuracy Precision Recall F1-score

Decision Tree Model 0.9005 0.8900 0.8937 0.8871 0.8904

Random Forest Model 0.9213 0.9162 0.9021 0.9351 0.9183

XGBoost Model 0.9285 0.9243 0.9163 0.9352 0.9257

Table 6: Results of different sampling techniques for XGBoost model

Sampling technique 10-folds cross-validation score Accuracy

No sampling 0.7195 0.9264

Random oversampling 0.7712 0.9341

Random undersampling 0.9285 0.9243

to be used for the remainder of the study.525

4.1.4. Feature importance analysis526

A feature importance analysis is conducted to determine the significant factors that most influence527

delays using the XGBoost model. Whereas in its current practice, the company did not consider the528

day of the week and the supply time as influential or important features, Fig 5 shows that they are529

indeed the most influential features, since they impact by 60.66% the final predictions. Identifying the530

importance of such parameters would help the company pay more attention to them, and improve its531

processes accordingly. The supplier, the ordered product, the week, and the day of the month of the532

planned delivery date are also of great importance, since they impact by 31.41% the final predictions.533

These results show that the proposed engineered features have an impact of 77.17% on provided decisions.534

It is, therefore, strongly recommended, to consider those variables to predict late deliveries.535
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Figure 5: Feature importance analysis for XGBoost model

4.2. Optimization of supplier selection536

The company practice is based on weekly plannings, where production and procurement plans are537

established at the end of the current week for the next coming week. The company is hardly willing to538

change this practice. Consequently, experimentation and validation of the suggested approach involved539

an analysis of available data to determine typical profiles of production and procurement work weeks in540

terms of typical numbers of suppliers, products, purchase orders and quantities. These profiles determine541

the size and scale of the numerical analysis. Five case studies were established, involving six suppliers,542

five products and varying in purchase order products, suppliers and periods. This allows assessing the543

suggested methodology and system performance under different conditions. First, the case studies are544

introduced. Then, the predictive optimization system (POS) to support decision-making is assessed545

without collaboration. Finally, the collaborative predictive optimization system (CPOS) is assessed,546

where collaboration occurs based on decision support from the predictive optimization system.547

4.2.1. Presentation of the case studies548

The case studies cover 5 to 30 purchase orders placed at different periods of the year. Table 7 shows549

the involved products, suppliers and purchase orders for each case study.550

Table 8 shows supplier capacities, unit purchase costs and delay costs collected from the ERP system.551
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Table 7: Details of the case studies

Case

study

number

Number of

purchase

orders

Suppliers

involved

Products

involved
Period of the year

1 5 S1, S2, S3 P1, P2 11th week of the year

2 8 S1, S2, S3 P1, P2 10th week of the year

3 15 S1, S2, S3, S4 P1, P2, P3 29th week of the year

4 20 S1, S2, S3, S4, S5 P1, P2, P3, P4 23th week of the year

5 30 S1, S2, S3, S4, S5, S6 P1, P2, P3, P4, P5 41th week of the year

Table 8: Capacities and costs per supplier

Supplier capacity per product
Unit purchase cost (€)

per product

Unit delay cost (€)

per product

Supplier S1 S2 S3 S4 S5 S6 S1 S2 S3 S4 S5 S6 Any supplier

P1 450 300 300 250 350 200 3.2 3 3 3 3.1 3.2 3.2

P2 350 250 300 200 300 200 2.4 2.6 2.5 2.5 2.4 2.4 3

P3 350 300 300 250 250 150 2 2.2 2 2 2.1 2 2.8

P4 400 200 300 200 100 150 3 2.8 3 3 2.8 2.9 2.9

P5 450 250 350 400 300 250 2.7 2.8 2.9 2.8 2.7 2.9 3.1

For each product Pk, the maximum quantity QMax(Sj, Pk) that supplier Sj can deliver in a procure-552

ment planning period is given by Eq. (9):553

QMax(Sj , Pk) = Min(Capj,k ; Total demand of Pk) (9)

4.2.2. Predictive optimization of supplier selection554

An analysis is conducted to compare four approaches on the five suggested case studies. The total555

procurement costs and number of delays for each case study and each approach are illustrated in Fig. 6:556

• Approach 1 (which results are shown under the label “Existing APP” in Fig. 6): the existing557

approach of the company, which relies on the ERP classical procurement module to assign orders to558

suppliers based on the minimum purchase cost heuristic rule, not considering the predicted delays;559
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• Approach 2 (which results are shown under the label “Opt APP” in Fig. 6): the optimization560

approach, in which orders are assigned to suppliers using the suggested linear programming model,561

but without considering the predicted delays;562

• Approach 3 (which results are shown under the label “Predictive APP” in Fig. 6): an improved563

version of the company approach, which relies on the ERP procurement module to assign orders to564

suppliers based on the minimum cost heuristic rule, where cost includes both purchase and delay565

costs;566

• Approach 4 (which results are shown under the label “POS” in Fig. 6): The predictive optimization567

approach, where the decision support process combining prediction and optimization is applied, but568

without collaboration (i.e. the red colored process in Fig. 2).;569

In Fig. 6, the POS approach outperforms all other approaches in reducing the total procurement570

costs for all cases. The difference in total procurement costs between the POS and the Existing APP571

varies between 16.36% (case 3) and 32.73% (case 1). The results show that using an optimization model572

based only on costs and supplier capacities does not systematically reduce the total procurement costs.573

For cases 2, 3, and 5, using the linear programming model (Opt APP) resulted in an increase in the574

total procurement costs compared to the Predictive APP and POS. By considering supplier delays, the575

Predictive APP approach becomes more efficient than the Opt APP in terms of the resulting number of576

delays and the procurement costs. However, by combining the mathematical optimization model with the577

predicted delays (POS), the number of delays decreases up to 100% in case 1. It should be noted that the578

minimum reduction of number of delays is 50% recorded in case 3. In other words, in the worst scenario,579

the use of the POS helps avoid at least half of the delays, with a 16.36% reduction in total costs.580

Case 4 and case 5 show that, even for procurement plans with a high number of purchase orders and581

higher involved suppliers and products, the POS succeeded in reducing total costs by 29.73% (case 4) and582

23.67% (case 5).583
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(a) Total procurement costs (€)

(b) Number of delays

Figure 6: Performance assessment of the case studies.

To further illustrate the proposed POS approach, cases 1 and 2 are discussed in more detail. As the584

two cases involve a close number of purchase orders, which are released in two successive weeks, to order585

the same products from the same suppliers, the prediction of delays is almost the same (see Table 9).The586

supplier selection obtained by POS and existing approaches are presented in Table 10.587

The distributions of order allocations to suppliers obtained with the company’s existing approach588

(Existing APP) versus the POS approach are presented in Fig. 7.589
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Table 9: Predicted occurrences of delays for case 1 and case 2

Case 1

PO1 PO2 PO3 PO4 PO5

S1 (0) (0) (0) (0) (0)

S2 (1) (0) (0) (1) (0)

S3 (1) (0) (0) (1) (0)

Case 2

PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8

S1 (0) (0) (0) (0) (0) (0) (0) (0)

S2 (1) (1) (0) (1) (0) (0) (0) (1)

S3 (1) (1) (0) (1) (0) (0) (0) (1)

(0): On-time order, (1): Delayed order

(a) Case1 (b) Case2

Figure 7: Distributions of order allocations to suppliers with the existing approach Vs. the POS approach
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Table 10: Supplier selection with POS, and existing approaches for case 1 and case 2

Case 1 Case 2

Purchase order

(Product, Quantity)
Existing APP POS

Purchase order

(Product, Quantity)
Existing APP POS

PO1

(P1,200)
S2(1) S1(0)

PO1

(P1,150)
S2(1) S2(1)

PO2

(P2,100)
S1(0) S3(0)

PO2

(P1,100)
S2(1) S1(0)

PO3

(P2,150)
S1(0) S3(0)

PO3

(P2,100)
S1(0) S1(0)

PO4

(P1,250)
S3(1) S1(0)

PO4

(P1,150)
S3(1) S1(0)

PO5

(P2,300)
S3(0) S1(0)

PO5

(P2,90)
S1(0) S1(0)

PO6

(P2,150)
S1(0) S1(0)

PO7

(P2,210)
S3(0) S3(0)

PO8

(P1,200)
S1(0) S1(0)

(0): On-time order, (1): Delayed order

Comparing POS to Existing APP on both case 1 and case 2, Figure 7 shows that the number of orders590

allocated to supplier S1 is greater than the number of orders allocated to supplier S2 in both cases. The591

number of orders allocated to supplier S3 remains unchanged in case 1, whereas it decreases in case 2.592

To explain these results, it is worth noticing that supplier S1 is known from historical data to process593

all orders in the same way in general, and prediction model training tends to confirm predictions that594

this supplier will not be late for new orders. For supplier S2, the Existing APP maintains approximately595

the same proportion (around 20%) of allocations in both cases, as this supplier offers the lowest purchase596

cost for product P1. This is no longer valid using the POS approach to allocate orders to supplier S2,597

where the selection of supplier S2 is no more systematic (0% order allocations in case 1 compared to598

12.5% order allocations in case 2), and this despite S2 being the cheapest supplier for product P1. This is599

due to the fact that the POS predicts delays with supplier S2, and tends to allocate less orders to reduce600
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delay costs and therefore better optimize total cost. It is also worth noticing that for case 1, supplier S3601

is considered better than supplier S2, since supplier S3 was allocated 40% of purchase orders compared602

to 0% for supplier S2 using POS. This observation is no longer valid in case 2, where S2 and S3 are603

considered similar with 12.5% of order allocations each using POS. Thus, by not focusing solely on the604

purchase cost aspect, and taking into account delay considerations, the POS is able to make more balanced605

decisions, which is better adapted to the context of the case study. The obtained results highlight that606

the large streams of data stored in the ERP, which exceed human capabilities to fully grasp them without607

the support of digital technologies, are better exploited and valued using predictive analytics to extract608

actionable information and to make suitable tradeoffs.609

4.2.3. Collaborative predictive optimization610

As illustrated in section 4.2.2, the POS approach allows minimizing procurement costs and reducing611

the number of delays, given the characteristics of the suppliers and the predicted delays. In some cases,612

zero delay costs and zero delays cannot be achieved, and this is where the importance of a collaborative613

approach is recognized. Based on the proposed workflow model given in Fig. 2, the POS outcomes are614

shared with stakeholders, who can consider different alternatives, as illustrated in Fig. 8, to prevent615

delays and reduce their inconveniences.616

Figure 8: Examples of proactive actions to manage delays

The final decision is made collaboratively among involved stakeholders. In Table 11, a comparison is617
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made between on the one hand the POS approach (without collaboration, i.e. only the red arrows process618

in Fig. 2), and on the other hand a collaborative approach (CPOS), which involves collaboration between619

stakeholders after the results of a POS approach are presented to them (i.e. processes with both red and620

blue arrows in Fig. 2). Examples of alternatives applied to the case studies and their consequences are621

presented in Table 11.622

Case 1 generated an allocation without delay costs using the POS. Thus, decision-makers can validate623

the resulting order allocations without downstream intervention. However, for the remaining cases, the624

available alternatives allowed a further reduction of the number of delays and total procurement costs.625

In case 2, by intervening at the purchasing department level and negotiating with the supplier who was626

predicted to be late, a new allocation is proposed with zero predicted delays. In addition, in case 3,627

re-assigning raw materials by the production department allowed to mitigate delay costs of product P3628

and, therefore, further decrease procurement costs proposed by the POS. This emphasizes that proactive629

measures are robust to delays without incurring any extra costs.630

The results show that collaboration between several stakeholders results in a reduction of up to 20%631

in procurement costs.632
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4.3. Sensitivity analysis633

The suggested CPOS system combines ML based delay prediction with linear programming to optimize634

order allocations. The linear programming technique ensures the optimality of the solution. However,635

since the accuracy of the upstream prediction model is 92%, false predictions can be generated with a636

probability of 8% and subsequently distort the optimization process. An analysis of the prediction results637

shows that the false-negative rate (a delay predicted incorrectly as an on-time delivery) is 3%. A margin638

of error of 3% represents, at most, a delay that was not predicted. In cases 1 and 2, as this translates to639

half a delay (“half occurrence of a delay” does not make sense), half occurrences are replaced with full640

occurrences. Therefore, the prediction results are adjusted accordingly, assuming that supplier forecasts641

for on-time deliveries may be erroneous, resulting in the conversion of every (0) to a (1) to encompass642

all potential scenarios. Then, to perform the sensitivity analysis, the worst, best and median cases were643

retained in terms of total procurement costs (Ct).644

For each case study, the deviation of total procurement costs of the POS and CPOS are calculated645

using Eq. (10).646

Dev(%) =
Cd
t − Ct

Ct
· 100 (10)

with:647

Ct: Total procurement costs of the initial obtained solution (Table 11)648

Cd
t : Total procurement costs with added delays to the initial obtained solution649

650

Eq. (11) presents the difference between the number of delays (NDelays) given by the initial obtained651

solution (Table 11) and the number of delays given by the disturbed initial solution with added delays652

(Nd
Delays):653

Delayvariation = Nd
Delays −NDelays (11)

Table 12 illustrates the results of the sensitivity analysis for the POS and CPOS when applying the654

same alternatives from stakeholders for each case study.655

The results show that, even for the worst cases, the variation in total procurement costs does not656

exceed 10.22%. These results confirm the objective of the sensitivity analysis, where it is proved that for657

each case study (typical procurement week), the initial solution remains robust even if some disturbances,658

due to prediction errors, occur.659
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Table 12: Results of the sensitivity analysis

POS CPOS

Delayvariation Ct(€) Dev(%) Delayvariation Ct(€) Dev(%)

Case 1

Minimum deviation 0 2,785 0 0 2,785 0

Median deviation 0 2,785 0 0 2,785 0

Maximum deviation 0 2,840 1.98 0 2,840 1.98

Case 2

Minimum deviation 0 3,711 0 0 3,231 0

Median deviation 0 3,732 0.57 0 3,252 0.65

Maximum deviation 0 3,770 1.59 0 3,280 1.52

Case 3

Minimum deviation 0 6,290 0 0 5,030 0

Median deviation 0 6,350 0.95 0 5,090 1.19

Maximum deviation 1 6,740 7.15 1 5,480 8.94

Case 4

Minimum deviation 0 10,287 0.49 0 9,637 0.52

Median deviation 2 10,824 5.73 2 10,174 6.12

Maximum deviation 2 11,217 9.57 2 10,567 10.22

Case 5

Minimum deviation 1 17,380 2.48 1 15,380 2.53

Median deviation 1 17,760 4.72 1 15,760 5.07

Maximum deviation 2 18,350 8.20 2 16,350 8.26

Ct: Total procurement costs

4.4. Best-Worst case analysis660

The prediction model can generate up to 8% false predictions 4.1.3, with 5% being false positives661

(incorrectly predicting on-time deliveries as delays) and 3% being false negatives (incorrectly predict-662

ing delays as on-time deliveries). The sensitivity analysis emphasized a pessimistic scenario, where the663

predicted number of delays was rounded up to a greater number to account for fractional delays. To664

provide a more balanced assessment and account for decision-maker attitude, a best-worst case analysis665

is performed across three scenarios. In the Pessimistic Scenario, 3% of predicted on-time deliveries are666

considered as delays, converting each predicted on-time delivery (0) to a delay (1). In the Optimistic667

Scenario, 5% of predicted delays are considered as on-time deliveries, converting each delay prediction668

(1) to an on-time delivery (0). In the Neutral Scenario, 8% of predictions are randomly flipped, altering669

both on-time and delayed delivery predictions (with respect to false positive and false negative rates).670

These scenarios are applied to each case study, with the minimum, median, and maximum deviations671
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recorded. The deviations in total procurement costs (Eq. (10)) and the number of delays (Eq. (11)) are672

analyzed considering additional measures, namely the mean measure (Eq. (12) (Kiely et al., 2011) and673

its deviation (Eq. (13) and the min-max range measure (Eq. (14) (Kiely et al., 2011) and its deviation674

from the minimal case (Eq. (15)).675

Mean =

∑Na
b=1C

d
t,b

Na
(12)

DevM(%) =
Mean− Ct

Ct
· 100 (13)

Range = Max
Na

(Cd
t,b)−Min

Na
(Cd

t,b) (14)

DevR(%) =
Range−Min

Na
(Cd

t,b)

Min
Na

(Cd
t,b)

· 100 (15)

with:676

Ct: Total procurement costs of the initial obtained solution (Table 11)677

Cd
t,b: Total procurement costs of alternative b (b=1,...,Na)678

Na : Number of alternatives.679

As presented in Table 13, an increase in delays (pessimistic scenario) consistently results in higher total680

purchase costs, ranging from 0% to 9.57% across various case studies. Conversely, the optimistic scenario681

predicts substantial cost reductions between 2.56% and 15.58%. The neutral scenario, which represents a682

more balanced approach, results in cost deviations that can either increase or decrease, reflecting a more683

realistic assessment of prediction uncertainty. The mean deviation across all case studies ranges from684

-5.07% to 2.06%, suggesting that the initial allocation yields balanced outcomes with potential minor685

gains or losses due to prediction errors. This is further illustrated in Fig.9, which shows box plots of total686

procurement costs for case study 4 across different scenarios, indicating that the initial allocation falls687

between the first and third quartiles of possible costs and is close to the mean cost for the neutral scenario.688

Hence, the generated solution was selected, as it provides benefits when deliveries are on time and the689

maximum deviation is within acceptable limits. The optimistic scenario can be opted for, assuming fewer690

delays, but this choice entails greater deviations if false positive predictions occur, as the maximum range691

is 26.93%. Alternatively, the pessimistic scenario, which anticipates more delays than predicted, leads692

to higher procurement costs and unnecessary collaborative actions that could be avoided. This confirms693

that the POS generated allocation balances the costs associated with prediction uncertainties.694
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Table 13: Best-Worst case analysis results

Pessimistic

Scenario

Optimistic

Scenario

Neutral

Scenario
Mean

(€)

DevM

(%)

Range

(€)

DevR

(%)
Ct

(€)

Dev

(%)

Ct

(€)

Dev

(%)

Ct

(€)

Dev

(%)

Case 1

(5 PO)

Min 2,785 0 2,735 -1.8 2,735 -1.8

2,781 -0.14 105 3.84Med 2,810 0.9 2,735 -1.8 2,785 0

Max 2,840 1.97 2,735 -1.8 2,840 1.97

Case 2

(8 PO)

Min 3,711 0 3,201 -13.74 3,201 -13.74

3,523 -5.07 569 17.78Med 3,732 0.67 3,201 -13.74 3,711 0

Max 3,770 1.59 3,201 -13.74 3,770 1.59

Case 3

(15 PO)

Min 6,290 0 5,310 -15.58 5,310 -15.58

6,116.36 -2.76 1,430 26.93Med 6,350 0.95 5,590 -11.13 6,290 -0.48

Max 6,740 7.15 6,290 0 6,740 7.15

Case 4

(20 PO)

Min 10,287 0.49 9,527 -6.94 9,577 -6.45

10,298.85 0.60 1,690 17.74Med 10,797 5.47 9,792 -4.35 10,312 0.73

Max 11,217 9.57 10,207 -0.29 11,187 9.28

Case 5

(30 PO)

Min 17,380 2.48 16,310 -3.83 16,510 -2.65

17,308.63 2.06 2,040 12.51Med 17,800 4.95 16,525 -2.56 17,320 2.12

Max 18,350 8.2 16,920 -0.24 18,310 7.96

Min: Minimum deviation, Med: Median deviation, Max: Maximum deviation

Figure 9: Box Plot of total procurement costs for case study 4 with different scenarios
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4.5. Larger scale application695

In the conducted experiments, the largest number of purchase orders (POs) within a single case study696

is 30. With respect to the used dataset, this represents the upper limit of POs per week that can be697

incorporated into a case study involving multiple suppliers and products. In this section, a synthetic698

case study was constructed in order to evaluate the approach on a larger scale. This is achieved by699

aggregating purchase orders over four procurement weeks, specifically those involving the same suppliers700

and products as in case study 5 (cases details presented in Table 14). The aggregated purchase orders701

are then consolidated into a single procurement plan consisting of 110 POs. To simulate a month’s worth702

of orders, the capacities of the suppliers are multiplied by a factor of four. The results of the large-scale703

experiments are presented in Table 15.704

Table 14: Cases details for large-scale analysis

Procurement week Number of PO Suppliers involved Products involved

Case 1 41th week 30 S1,S2,S3,S4,S5,S6 P1,P2,P3,P4,P5

Case 2 42th week 27 S1,S2,S3,S4,S5,S6 P1,P2,P3,P4,P5

Case 3 44th week 24 S1,S2,S3,S4,S5,S6 P1,P2,P3,P4,P5

Case 4 45th week 29 S1,S2,S3,S4,S5,S6 P1,P2,P3,P4,P5

Table 15 demonstrates that, for a relatively large number of purchase orders, the proposed POS705

significantly reduces total purchase costs and the number of delays compared to existing optimization706

and predictive approaches. Furthermore, by implementing three actions collaboratively, the number of707

delays was reduced by 75%, resulting in an allocation without delay costs. It should also be noted that the708

execution time of the optimization module remains low, around 1 second, which means that the suggested709

approach is scalable with respect to the considered company size and operational requirements.710
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Table 15: Large-scale case study results with different approaches

Cp (€) Cd (€) Ct (€) NDelays

Existing APP 54,915 30,830 86,745 59

Opt APP 54,850 30,040 84,890 57

Predictive APP 56,190 5,765 61,955 14

POS 56,260 3,500 59,760 8

CPOS 56,300 0 56,300 2

CPOS Applied Actions

1- Communicate and negotiate with S1

2- Communicate and negotiate with S4

3- Adjust raw materials reservations

Consequences

1- An increase in S1 capacities to deliver P3 (+200), P5 (+300)

2- An increase in S4 capacities to deliver P1 (+350), P4 (+200), P5 (+400)

3- Delays of P2 will not have delay costs

5. Managerial insights711

The ”experimentation and validation” section was conducted within the company, with approval and712

iterative and incremental improvements from company experts. The outcome is an operational system713

that has acceptance and brings value to users. This study supports the company, similar manufacturers714

and similar industrial sectors, in restructuring their conventional supplier selection process to take better715

advantage of the collaboration and integration offered by digitalization technologies and trends. The out-716

comes of the experimentation and validation section highlight the managerial and functional implications717

of the proposed framework. A summary of these implications is as follows:718

• The feature importance analysis (section 4.1.4) sheds light on influential features that were not719

paid attention to, and not considered, in company practice before this study, although they impact720

decision-making significantly. Combined awareness of these features (including the day of the week721

and the supply time), and of delay predictions, impacts future decisions about when to release722

purchase orders, and how to select suppliers based on the flexibility they need to avoid delays.723

• As a corollary, the previous insight, as well as the best-worst case (section 4.4) and larger scale724

(section 4.5) analyses influence strategic relations with suppliers and customers. The suggested725

methodology (workflow) and system (CPOS) influence strategic, long-term relations with suppli-726

ers, through improved negotiation of annual reviews of performance, and contractual terms and727
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conditions. They influence operational settings, like safety storage levels, inventory replenishment728

strategies, downstream warehouse management (e.g. mobilization of necessary and sufficient logis-729

tics workforce), and production planning and control, for example through advised decision-making730

with respect to the choice of planning horizons and production order releases. On the customer731

side, being aware of potential delays can improve the quality of commitments to customers in terms732

of negotiated quantities and delivery conditions.733

• In the large-scale analysis, it is important to note that the suggested approach is scalable with734

respect to company operational requirements, because it was able to adapt to consolidating orders735

and extending the planning horizon. Although this consolidation contributes to reducing costs and736

delays, such an approach may not always be feasible due to constraints such as suppliers’ capacities,737

storage locations, storage costs, and the risks of spoilage. Therefore, companies must seek an optimal738

compromise that balances these factors. The suggested approach provides decision support tools739

to reach advised agreements when negotiating quantities and discussing annual procurement plans740

with suppliers.741

• The suggested study offers a sound basis to roadmap strategic digital transformation projects.742

Whereas the current trend is to endow ERP systems with extra layers to enable them perform data743

analytics, without necessarily linking data analytics to decision-making, the suggested methodol-744

ogy and system go a step further by streamlining data analytics to optimization and collaborative745

decision-making processes. Such empowerment is a step forward towards the virtual enterprise746

paradigm, where several stakeholders and interested parties in different geographical locations (like747

suppliers and customers), and different functional affiliations and responsibilities (like different de-748

partments), interact to achieve common business goals (for instance, just in time deliveries).749

6. Conclusions750

This article addressed some aspects of the supplier selection problem that are not well covered both751

in literature and industrial practice. Two main limitations were addressed, namely (i) the unilateral,752

single perspective of the purchase/procurement department, who usually does not consider the added753

value of involving several stakeholders from multiple expertise domains (decision makers from different754

departments, suppliers, and customers) in the decision-making processes, and does not consider collab-755

oration to solve the supplier selection and order allocation problem; (ii) the under use of digitalization756

technologies, such as enterprise information systems, data analytics and optimization, to streamline the757

supplier selection and order allocation decision-making processes.758
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To deal with these limitations, a collaborative workflow was developed to take advantage of feedback759

and alternatives from all involved stakeholders. The workflow relies on industrial ERP systems as a760

backbone asset to integrate and streamline the supplier selection process. The workflow also involves a761

collaborative predictive optimization system (CPOS) that was developed to coordinate knowledge and762

interactions between several stakeholders from multiple expertise domains. The CPOS uses data from763

industrial ERP systems to predict occurrences of delays, based on data analytics and machine learning764

to account for historical context and dynamics. Classifications of occurrences of delays are then used in765

a mathematical programming optimization of supplier selections, to achieve an overall supplier selection766

optimization.767

To assess performance and validate the CPOS, the specificities of a French company in the furniture768

industry were considered. The company is facing supplier selection problems under capacity constraints,769

and is suffering from a significant number of supplier delays. An experimental numerical assessment shows770

that delays are tied to dynamic factors, like order release and delivery dates, product and purchase costs,771

and that evaluating delays with metrics that do not take these dynamic factors into account can yield772

unsatisfactory results. The integration of predictive analytics into ERP systems improves results, but not773

enough compared to the proposed predictive-optimization approach, in which the mathematical model774

capitalizes on the predictive module outcomes to achieve a global optimal allocation. The collaborative775

decision-making process further improves results, allowing significant cost savings, delays reduction and776

realistic solutions with well-designed and practical budgets.777

As managerial insights, the outcomes of this research help managers better understand, explain and778

deal with delays to find optimal decisions and improve operational performance. Data analytics, informa-779

tion sharing and collaborative decision-making with all impacted stakeholders promote collective efforts780

to prevent and actively mitigate the negative consequences of possible delays. Instead of traditionally781

fragmented architecture and compartmentalized processes, where only the purchase department deals782

with the selection of suppliers, the suggested approach and system promote more transparent, effective783

and efficient (material, information and financial) flows across all involved processes and actors, thus784

consolidating the foundations for a successful digital transformation.785

To the best of the authors’ knowledge, no previous work has investigated the above-mentioned limita-786

tions using a data-driven, collaborative, predictive-optimization approach. Our findings can be leveraged787

by other companies facing similar challenges. The modular and flexible architecture of the proposed788

methodology and system enable for an easy implementation of different possible extensions for other in-789

dustrial case studies, unknown/uncertain parameters and/or various objectives to be handled separately790

or simultaneously.791
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Future research directions to improve this work, to overcome some of its limitations, and to deal with792

problems that are challenging both scientific research and industrial practice include considering solving793

the prediction problem as multiple regression problems, where the duration of delays, the variable costs794

of delays, and eventually other quantifiable supply chain risks are predicted and proactively considered795

in the supplier selection process. Fuzzy logic can be considered to better deal with uncertainty and796

ambiguity in data. Multi-agent systems can be considered to automate and support the collaboration797

process. Knowledge based systems can be considered to reuse knowledge about similar previous supplier798

selections and order allocations.799
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Aouadni, S., Aouadni, I., and Rebäı, A. (2019). A systematic review on supplier selection and order808

allocation problems. Journal of industrial engineering international, 15:267–289.809

Asthana, N. and Gupta, M. (2015). Supplier selection using artificial neural network and genetic algorithm.810

International Journal of Indian Culture and Business Management, 11(4):457–472.811

Azadnia, A. H., Saman, M. Z. M., Wong, K. Y., Ghadimi, P., and Zakuan, N. (2012). Sustainable supplier812

selection based on self-organizing map neural network and multi criteria decision making approaches.813

Procedia-Social and Behavioral Sciences, 65:879–884.814

Babu, M. P. and Sastry, S. H. (2014). Big data and predictive analytics in erp systems for automating815

decision making process. In 2014 IEEE 5th international conference on software engineering and service816

science, pages 259–262. IEEE.817

Banaeian, N., Mobli, H., Fahimnia, B., Nielsen, I. E., and Omid, M. (2018). Green supplier selection818

using fuzzy group decision making methods: A case study from the agri-food industry. Computers &819

Operations Research, 89:337–347.820

45



Baryannis, G., Dani, S., and Antoniou, G. (2019). Predicting supply chain risks using machine learning:821

The trade-off between performance and interpretability. Future Generation Computer Systems, 101:993–822

1004.823

Bassiouni, M. M., Chakrabortty, R. K., Sallam, K. M., and Hussain, O. K. (2024). Deep learning824

approaches to identify order status in a complex supply chain. Expert Systems with Applications,825

250:123947.826

Bawa, S. S. (2023). How business can use erp and ai to become intelligent enterprise. vol, 8:8–11.827

Bodaghi, G., Jolai, F., and Rabbani, M. (2018). An integrated weighted fuzzy multi-objective model for828

supplier selection and order scheduling in a supply chain. International Journal of Production Research,829

56(10):3590–3614.830

Bodemer, O. (2023). Revolutionizing enterprise resource planning: Integrating java and ai to propel831

web-based erp systems into the future. Authorea Preprints.832
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