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Abstract

Optimizing supplier selections is an open ended problem, relevant to the operational performance of both
individual companies and entire supply chains. Considering the prediction of future occurrences of delays
in the optimization of supplier selections is still an under covered problem. Unlike existing literature, this
article suggests a more collaborative and integrated workflow to improve the visibility and involvement
of multiple stakeholders in the supplier selection decision-making processes. This is achieved through
enhanced collaboration between multiple stakeholders (suppliers, customers, decision-makers from differ-
ent departments, in addition to data sources from information systems), and better integration between
data analysis and decision-making, through data-driven-machine-learning and optimization. The speci-
ficities of a French company in the furniture industry are considered. A workflow model is designed to
support information sharing and to streamline knowledge and interactions between multiple stakeholders
from different expertise domains. A Collaborative Predictive Optimization System (CPOS) is designed
to classify expected occurrences of delays, to optimize order allocations, and to enable stakeholder col-
laboration. Delay prediction involves Decision Trees, Random Forests, and eXtreme Gradient Boosting
(XGBoost). Supplier selection is solved using mathematical programming, while considering the classifi-
cation of expected occurrences of delays. Stakeholder collaboration relies on information systems and uses
prediction and optimization to support finding satisfactory agreements. The approach is validated using
a real 3.5-year dataset, including 139 suppliers, 7,934 products and 89,080 purchase orders. A detailed
experimentation, including sensitivity analysis, best-worst case analysis, and a larger scale analysis on
company datasets, shows that the suggested approach enhances collaboration and achieves delay reduction
and total procurement cost savings. Valuable managerial insights are collected, including the necessity
to adopt digital technologies, to adapt company workflows, and to improve upstream negotiations and

supplier commitments to yearly plannings.
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1. Introduction

It has been estimated that purchase/procurement costs represent 50% to 90% of the total cost of a
manufactured product (De Boer et al., 2001). Therefore, the supplier selection problem (SSP) (Dickson,
1966) requires relevant management decisions to improve the overall performance and competitiveness of
manufacturing companies (Mukherjee, 2017; Taherdoost and Brard, 2019). SSP have been widely studied
in literature (Resende et al., 2021). It consists in assigning purchase orders to available suppliers, in such
a way as to optimize one or several criteria (Memari et al., 2019) related to each supplier’s capability and
capacity to provide materials of varying types, qualities, quantities, costs, supply durations, supply chain

risks, etc.

1.1. General Context

A significant factor in the selection process is the supplier’s capability to deliver products and/or to
provide services at the time agreed (Cavalcante et al., 2019). On-time supply enforces the adopted inven-
tory and production strategies and expected plans and ensures cost reduction, compliance with deadlines
and other contractual terms with customers (e.g., avoiding penalties due to delays), and ultimately, cus-
tomer satisfaction (Steinberg et al., 2023). Inaccurate assumptions about supply durations may lead to
bad supplier selections that cause delivery delays a posteriori, involving direct losses in terms of costs
that can be measured, and indirect losses that can have greater long-term impacts and damage to the
company’s brand and image (Wani et al., 2022).

Unfortunately, existing approaches tend to tackle SSP according to “divide and conquer” strategies
that lack overall efficiency and effectiveness, and that miss the added value of digitalization technologies.
In most traditional approaches to SSP, the supplier selection process is usually compartmentalized into
sequential steps (prediction, evaluation, ranking, selection, allocation, and order release). SSP is then
solved through a series of local optimizations, where each local optimization does not necessarily take
into account or use the outcomes of the previous steps (i.e. lack of integration). Some gap between aca-
demic research and industrial practice emphasizes this observation. For example, in academic research,
data-driven (Li et al., 2022) and Machine Learning (Wani et al., 2022) approaches were successfully used
to predict delays. However, these works stop at the prediction level and do not explain how predicted
delays could be used in downstream supplier selection and order allocation decision-making. In industrial

practice, a procurement module, integrated within an Enterprise Resource Planning (ERP) information
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system (Karlina et al., 2019), selects suppliers and assigns purchase orders to each supplier. The trend
is to rely on ERP analytics (Jawad and Baldzs, 2024), combined with human expertise, to process raw
data and estimate various parameters, including delays. Estimated parameters are sent to the ERP pro-
curement module, and some are handled by heuristic allocation rules and/or evaluation scores according
to predefined criteria (Mondal et al., 2020). As the handling of estimated parameters often involves a
human expert, supplier selection outcomes are often biased. The use of heuristics and rules leads to local
optimal solutions, instead of global optimal ones if a more integrated optimization approach is considered
within a streamlined process.

Moreover, the traditional supplier selection process is often based on the single perspective of the
purchase/procurement department and does not consider the added value, interests, and/or potential
contributions of several stakeholders involved in the decision-making processes: logistics and transporta-
tion, inventory and warehousing, production and sales/delivery. Decisions are made unilaterally by the
purchase/procurement department based on its expertise, without sharing information on delays with
other stakeholders, and without considering field/contextual appreciation or alternative solutions that
could have been suggested by field experts and expertise domains other than the purchase/procurement
department, if they were involved in the decision process. This lack of both visibility and collaboration
can severely impact decision efficiency and effectiveness (Timonen and Vuori, 2018). The consideration of
multiple perspectives enables information sharing with several stakeholders (suppliers, customers, decision
makers from different departments), who are given the opportunity to express their viewpoints and pro-
vide feedback, suggestions and decision alternatives to influence and complement the decisions considered
by the procurement department. In a digital era, where information and communication technologies
contribute to a better integration of information management and decision-making processes, a better
collaboration between stakeholders within a multiple perspective process enables taking full advantage of

synergies between information systems, data analytics and optimization to achieve better performance.

1.2. Case study specificities

The furniture industry has a global market of US$766.20 billion in 2024, with a Compound Annual
Growth Rate (CAGR) of 5.02% (Statista, 2024b). France is the seventh-largest market worldwide for
furniture. In 2024, the revenue in the furniture market in France amounted to US$26.28 billion. It is
projected that the market will experience a CAGR of 1.74% over the period 2024-2029 (Statista, 2024a).
The French furniture market is fragmented, having a mix of small and major businesses. Some of the
major global players currently dominate the French market. However, with technological advancement
and product innovation, small to midsize enterprises (SMEs) are increasing their market shares by securing

new contracts and tapping new markets (MordorIntelligence, 2024). It is in this SME context that the
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specificities of a French company are considered.

The company manufactures furniture in kits and deals with 139 suppliers to purchase 7,934 items.
Each supplier has a finite capacity to deliver a given type of item within each procurement planning
period. For each item, each supplier provides a price offer scale, where prices decrease in stages function
of increasing ordered quantities. For each item, each supplier has a fixed delivery time (independent of
ordered quantities) and predefined purchase costs representing the acquisition cost paid by the company
to acquire the item (price offer scale includes purchase and transportation costs).

For safety and quality reasons, the company has an inventory management strategy, where purchase
orders (PO) have to be received, and purchased items have to be stored in the warehouse for at least 10
days prior to being able to release them into production. Delays further than 10 days are exceptional (more
than 90% of delays are less than 10 days, see section 3.2.1). When such delays occur, they are subject not
only to case-by-case tight monitoring and follow up with suppliers, but also to important penalties, because
they heavily disturb commitments to customers, logistics (transportation and warehousing), production
plans, and quality requirements. At the end of each year, such exceptional delays are reviewed with
the suppliers, and contractual arrangements are made to encourage anticipation and to strictly avoid
their occurrence. However, delays of less than 10 days are more problematic to avoid, because less strict
arrangements can be made with suppliers to control them, although they disturb production. Therefore,
they have to be managed on the company side by looking for ways to anticipate the occurrence of such
delays to better plan production, and better meet quality requirements. Delays of less than 10 days have
fixed costs that are irrespective of time, such as administrative costs, mobilization/demobilization costs,
and certain equipment and auxiliary material costs (Pricing Contractor Delay Costs). These delays and
delay costs are due to several contextual causes (that are controllable on the company side), such as the
type of ordered item, quantity, and day or week within which orders are placed. The same supplier may
cause delays for one order in some contexts with certain attributes and be on time for a similar order in
a different context with different attributes. Hence, for the company, it makes sense to predict whether
or not a PO is likely to experience a delay of less than 10 days. The provision of such delay classification
facilitates the implementation of proactive measures across diverse departments to mitigate the resultant
impacts.

The company uses an Enterprise Resource Planning (ERP) system to manage its flows and processes.
For each planning period, the ERP procurement module generates the material requirements in terms of
purchase orders (PO). Each PO relates to a single item and determines the requested quantity and planned
delivery date for that item. Each PO suggests a list of potential suppliers that have the capabilities to

meet the quantity and delivery requirements of the item. The supplier selection is based on a priority
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rule, where a PO is assigned to the supplier who offers the lowest price for the stage of the requested PO
quantity in the price offer scale.

The supplier selection decision is made through the ERP procurement module. It is validated uni-
laterally by the purchase department, and this validation is enacted without considering any feedback
from other departments with respect to potential delivery delays that could stem from the decision made.
This is problematic, because other departments, like the sales and the logistics (for outgoing customer
deliveries) departments, may have several types of commitments that can be put into question due to bad
supplier selection decisions. Also, other departments, like the logistics (for incoming supplier deliveries),
inventory/warehouse management and production departments, may have previous or recent contextual
and field experiences with the suppliers, and their appreciations could greatly influence the supplier se-
lection decision. Thus, considering their appreciations before validating the decisions can better preserve

the interests of the company.

1.8. Structure of the article

This article adopts a different approach to the SSP, both with respect to literature, and with respect
to the current practice in the considered industry. The main contribution is to suggest a more collabo-
rative and integrated workflow to improve the visibility and involvement of multiple stakeholders from
multiple expertise domains in the decision-making processes. This is achieved through (i) the consid-
eration of multiple perspectives from multiple stakeholders (suppliers, customers, decision makers from
different departments, in addition to data sources from information systems), (ii) enhanced collaboration
between stakeholders through an improved workflow, and (iii) better integration between data analysis
and decision-making, through data driven-machine-learning and optimization.

Therefore, the remainder of this article is organized as follows. Section 2 reviews the literature related
to several aspects of SSP and positions the contribution of this article. Section 3 describes the suggested
methodology, workflow model, and the developed Collaborative Predictive-Optimization System (CPOS).
Section 4 presents the numerical experiments on a real dataset, analyses sensitivity and best-worst case
performance, and discusses results on different scales. Section 5 highlights the managerial insights of this
work. Finally, section 6 summarizes and discusses the main findings and outlines insights as well as future

research directions.

2. Related Work

In industrial practice, supplier selection is a task typically carried out by a procurement department
(Taherdoost and Brard, 2019), where the procurement/purchase manager is the ultimate person and the

only decision maker in command to validate supplier selections and order allocations. The importance of
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involving multiple internal and external stakeholders in SSP was highlighted in (Chai and Ngai, 2015).
In (Xu et al., 2023), it was recognized that sharing information with suppliers improves the performance
of the supplier selection process.

In existing SSP literature, indeed, some references addressed the topic of group decision-making by
considering the opinions of multiple experts (Calik, 2021; Banaeian et al., 2018; Boran et al., 2009). How-
ever, the decision-making process involves more than one expert, but from only one expertise domain
(typically many experts from the procurement department), and does not consider the opinions of ex-
perts from many expertise domains (typically from different departments, other than the procurement
department). This article particularly addresses this gap by considering a more collaborative approach
that enables several experts from different expertise domains to express their opinions and provide their
appreciation and feedback, and therefore be involved in the SSP decision-making process.

To select suppliers, several criteria can be considered separately or simultaneously, leading to a multi-
criteria decision-making problem. Quality criteria include supplier failure rates, product quality indicators
(Cabrita and Frade, 2016), warranty period, and reputation indicators (Stevi¢ et al., 2017). Financial
criteria include purchase prices (Xia and Wu, 2007), transportation costs (Cabrita and Frade, 2016),
and volume discounts (Stevié¢ et al., 2017). Sustainability concerns are reflected in economic, social,
and environmental criteria (Azadnia et al., 2012; Jabbarzadeh et al., 2018; Liou et al., 2021). Finally,
time-related criteria, such as delivery times, delivery delays (Haeri and Rezaei, 2019), on-time indicators
(Thanaraksakul and Phruksaphanrat, 2009), and reliability indicators (Taherdoost and Brard, 2019) are
being applied.

Several recent publications reviewed frameworks and suggested classifications of strategies, approaches
and techniques to solve SSP (Saputro et al., 2022; Naqvi and Amin, 2021; Chai and Ngai, 2020; Aouadni
et al., 2019). Fig. 1 synthesizes the main groups of SSP approaches and includes recent references, while
being compliant with existing classifications.

Four major SS approaches categories can be distinguished : Multi-criteria Decision-Making (MCDM),
Mathematical Programming (MP), Artificial Intelligence (AI) and Hybrid approaches. MCDM techniques
are used to select the best option from a set of alternatives by taking into account multiple competing
criteria. MP approaches are applied to solve well-structured SS problems that can be expressed math-
ematically. AI techniques have also been adopted according to four subcategories: (i) Metaheuristics
for complex SS optimization problems by efficiently exploring large search spaces; (ii) Data driven and
Machine Learning for pattern detection and prediction from big and unstructured data; (iii) Symbolic
AT for SS problems by handling imprecise/subjective information through linguistic variables and fuzzy

sets and /or by embedding human knowledge and reasoning; (iv) Hybrid AI where two or more techniques
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from these Al subcategories are jointly used. Finally, in the fourth category of Hybrid approaches, most
works combine the main categories MCDM, MP and Al. Some other underexplored hybridizations are
also proposed (Saputro et al., 2022). Within this category, each technique solves the different problem
aspects for which it is most suitable.

This is particularly the case in this article, where the focus is on both the classification of expected
occurrences of potential delays and the assignment of purchase orders to suppliers so as to minimize the
total procurement costs. To handle large volume of unstructured data and extract dynamic features which
influence delay predictions, data-driven approaches and machine learning algorithms are advocated due
to their capability to identify trends, model complex relations, and predict future behaviors (Sutharssan
et al., 2015; Olaoye and Potter, 2024). On the other hand, mathematical programming optimally solves
well-structured optimization problems. This hybridization combines the predictive power of ML with the

optimization capabilities of MP to enhance supplier selection decision-making.

2.1. Machine Learning and data analytics for SSP

In the literature, Machine Learning (ML) is mainly used for four different purposes in SSP.

e Clustering suppliers: in this category, the problem is to classify suppliers in order to put them into
groups based on some criteria of similarity. Then, for each cluster/class/group, a different treatment

is considered (Azadnia et al., 2012; Jabbarzadeh et al., 2018).

e Ranking suppliers: in this category, the problem is to find an ordering so that a list of available
suppliers are prioritized according to some criteria of interest (Nepal and Yadav, 2015; Du et al.,

2015; Tavana et al., 2016; Hosseini and Barker, 2016; Zhao et al., 2021).

e Ranking and selecting evaluation criteria: in this category, the problem is to set priorities among a
set of available and competing criteria, in order to enable a downstream decision-making process,

such as supplier ranking and/or supplier selection (Liou et al., 2021).

e Estimating unknown parameters: in this category, the problem is to quantify some parameters, such
as risk factors (e.g., port congestion, price inflation, labor strikes, and supplier quality) (Nepal and
Yadav, 2015) or product demand (Islam et al., 2022, 2024), and then use them in a downstream

decision-making process.

A delay occurs when the actual delivery date exceeds the planned delivery date (promised delivery
date by the supplier) (Brintrup et al., 2020). As such, delays are unknown parameters that need to be

estimated during the supplier selection process, and before releasing the purchase orders, in order to
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eventually make further arrangements for downstream logistics, warehousing, production, and delivery to
customers.

To handle delays in SSP, researchers use metrics, such as on-time delivery rate (Islam et al., 2024),
delivery delay rate (Jahangoshai Rezaee et al., 2017), or delivery lead-time (Pamucar et al., 2023), either
in isolation or in conjunction with other criteria, such as costs. These metrics are not predicted, but
calculated as ratios from historical data, and then used to make delay estimations. However, considering
these metrics alone as criteria to select suppliers, without considering any contextual information, and
without updating them dynamically when making decisions, can yield erroneous results. In fact, as the
efficiency of suppliers depends on various dynamic factors, such as types of products, period of the year
(e.g. seasonality), and pricing campaigns, a supplier who performed poorly in a period of the year that is
unfavorable to him may not be selected in the following period, that might be more favorable to him, even
if he outperforms all other suppliers. Therefore, predicting whether any delays will occur (classification
problem), and estimating the duration of delays (regression problem) are important issues for which
businesses are increasingly relying on data analytics to make more informed supplier selection decisions
(Li et al., 2022).

Due to case study specificities, we are interested in delay classification approaches (predicting whether
any delays will occur). Therefore, Table 1 shows the results of a literature review process that we
conducted to find references related to delay classification. The review provides rationales for us to
select the data analytics tools that are most promising and adapted to our case study. From Table 1, it
appears that the most used ML models to predict supplier delays are decision trees, random forests, and
XGBoost. From the analysis of the references in Table 1, it comes out that, although existing studies solve
the delay classification problem, they do not address downstream challenges, neither to have collaborative
approaches by sharing delay information among multiple stakeholders, nor to optimize supplier selections.
Additionally, the prediction of supplier delays, with its two facets, classification and regression, remains
under-explored in the furniture manufacturing industry.

Consequently, to the best of the author’s knowledge, no previous work has addressed the specific
problem considered in this article, which is the optimization of supplier selections while considering

predictions on whether there will be supplier delays or not (classification problem).
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Figure 1: Supplier selection approaches with illustrative works
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2.2. ERP supplier selection workflows

Enterprise Resource Planning (ERP) software is a cross-functional enterprise information system that
streamlines and enhances a company’s business processes and flows, promoting profitability and efficiency
(Hadidi et al., 2020). ERP systems consist of several integrated modules that support business functions
and processes, notably the supplier selection function of the procurement module. However, the supplier
selection is usually based on predefined evaluation, ranking scores, and heuristic rules (Mondal et al.,
2020).

In addition to their substantial role as a data warehouse (Steinberg et al., 2023), the capabilities of
ERP systems are increasingly extended with intelligent modules based on machine learning and data
analytics, to help users identify data patterns (Okanga and Groenewald, 2019) and better deal with
unknown parameters (Babu and Sastry, 2014). The integration of data analytics in ERP systems is a
pivotal catalyst for companies towards Industry 4.0 (Majstorovic et al., 2020) and digital transformation
(Bodemer, 2023). It demonstrates efficiency in overcoming challenges inherent to ERPs (Yathiraju, 2022).
Integrating data analytics into ERP systems enables companies to gain a competitive advantage, optimize
operations, increase productivity, and drive informed decision-making (Jawad and Baldzs, 2024; Bawa,
2023; Goundar et al., 2021). Commercial ERP systems use data analytics tools such as Epicor Data
Analytics (Epicor, 2024a) and Forecast Pro (Epicor, 2024b) for Epicor ERP, S/4AHANA (SAP, 2024b)
and Analytics Cloud (SAP, 2024a) for SAP ERP, and AI Apps for Oracle ERP (Oracle, 2024). These tools
enable data visualization and reporting but remain black boxes for users that cannot solve downstream
optimization problems.

To the best of the author’s knowledge, only one reference (Kohli, 2017) considered using ML with ERP
to solve SSP. The author used decision trees and support vector machines (SVM) to rank a new supplier
based on historical data of similar suppliers. The ERP serves as a data source for ML model training,
and the outcomes of supplier rankings are subsequently fed back to the ERP system to support the order
allocation process. Decisions are then made for each PO separately by expert judgment according to
the best rank, leading to locally optimal decisions, and introducing potential bias into supplier selection

outcomes.

2.3. Position and contributions

The literature review shows that

e Existing approaches are often based on the single perspective of the purchase/procurement depart-
ment and do not consider the added value of several stakeholders from multiple expertise domains

involved in the decision-making processes. In this article, a collaborative workflow is suggested to
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take advantage of feedback from all involved stakeholders (decision-makers from different depart-
ments in the company, suppliers, and customers). This is enabled through the use of industrial
ERP systems as a backbone asset to integrate and streamline the supplier selection process, and to

involve all interested /impacted stakeholders.

e Existing approaches tend to compartmentalize the supplier selection process and solve it through
a series of local optimizations, which are mainly based on expert judgment, heuristics, and rules
in industrial practice. In this article, a more integrated and streamlined supplier selection process
is suggested to avoid local optima and improve supplier selection quality through an improved
synergy between data analytics and machine learning for delay classification, and mathematical

programming for optimization.

e To deal with delays, existing references determine time-related metrics that are not predicted, but
calculated as ratios from historical data, and then used to make delay estimations. Calculations
are made in a static way that does not consider any context or dynamics. This article focuses on
delay predictions as a classification problem to predict whether there will be delays or not, based on
data analytics and machine learning to account for historical context and dynamics. Classifications
of expected occurrences of delays are then used in a mathematical programming optimization of

supplier selections, to achieve an overall supplier selection optimization.

3. Methodology

This section designs a methodology to solve the limitations presented in the previous sections and
develops a system to implement this methodology into the existing enterprise information systems and

decision-making processes.

3.1. Workflow model

In order to enable collaboration between several stakeholders from different expertise domains (i.e.
several decision-makers from different enterprise departments, in addition to suppliers and customers),
and to have a more integrated and streamlined supplier selection process, a new Collaborative Predictive
Optimization System (CPOS) architecture is suggested (see Fig. 2). The CPOS aims at (i) predicting
whether there will be delays or not (classification of expected occurrences of delays), based on data
analytics and machine learning to account for the historical context of previous purchase orders, and (ii)
determining an order allocation plan to optimize purchase costs considering the classification of expected
occurrences of delays. The CPOS enables the company to analyze data, identify patterns, classify expected

occurrences of delays, and optimize collaboratively, not unilaterally, and globally (with mathematical
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programming), not locally (with rules and heuristics), the assignment of a set of purchase orders to

suppliers. This is achieved through three main use cases, explained as follows.

3.1.1. Use case 1: prediction model training
The black arrows in Fig. 2 show the process of training the prediction models using historical data
from the ERP. The learning outcomes of the training of the prediction models (e.g. hyper-parameters)

are stored in the ERP to be reused.

8.1.2. Use case 2: CPOS decision support to supplier selection

The red arrows in Fig. 2 show the decision support process that CPOS provides to stakeholders to
advise their decision-making. Purchase orders are created by the ERP system according to the production
plan. These orders show available suppliers that meet the quantity and quality requirements. The gener-
ated purchase orders undergo classification of occurrences of delays and optimization of order allocations

to suppliers. Classification and optimization results are submitted to stakeholders for approval.

3.1.8. Use case 3: Stakeholder collaboration

The blue arrows in Fig. 2 show the CPOS-supported collaboration process between stakeholders
(decision-makers from different departments in the company, suppliers, and customers) until they reach
an agreement and approve the supplier selection and order allocation plan. The classified expected delays,
supplier selections, and order assignments are shared with stakeholders for approval or review.

For decision-makers from different expertise domains (i.e. different departments) in the company,
having information in advance about expected late deliveries allows them to anticipate and propose new
alternatives with revised parameters based on their expertise (Li et al., 2010). For example, they can
suggest new suppliers (Chai et al., 2013; Chai and Ngai, 2020), adapt or outsource part of the production
plans, revise (e.g., postpone, split) releases of production orders and prioritize resource dispatching (Singh
et al., 2019). The ERP supports such collaboration by providing complementary information on available
alternatives.

External stakeholders are also involved, as the new suggested workflow enables submitting new requests
to suppliers and/or customers. In return, suppliers/customers can accept the proposals or suggest new
alternatives. Available options and/or revised parameters are fed back to the CPOS. Feedback is assessed
to determine at which step of decision support it should be taken into account. Interactions between the

CPOS and stakeholders continue until some consensus is reached.
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Once the supplier selections and order allocations are approved, they are transmitted to the ERP
procurement module, which will release purchase orders to suppliers (Peksa and Grabis, 2018) according
to the approved plan. It is worth noting that the procurement department will play the role of coordinator
in the suggested new workflow, for example, to plan meetings and discussions with stakeholders, to collect

alternatives and suggestions, and to feed them as alternatives and/or revised parameters into the CPOS.

3.2. Collaborative Predictive-Optimization System

In addition to collaboration, which is mainly an interactive process (more details will be provided
on this aspect in section 4.2.3), the CPOS is architectured around three main computational processes,

which will be described in the following subsections: data preprocessing, prediction and optimization.

3.2.1. Data preprocessing

A three-and-a-half (3.5) year purchase history of the company is available, including data about
released purchase orders, purchased items, suppliers, quantities, costs (planned and realized), and delivery
dates (planned and realized). A 6-step data pre-processing pipeline is proposed to better understand the

data and create a structured dataset to be processed by the machine learning algorithms.

(a) Outliers handling
In the period 2018 to 2021, the company placed 89,080 POs, among which 41,690 POs were subject
to delays, thus late deliveries represent 46.8% of total deliveries. A preliminary analysis of these
delays (see Fig. 3) shows that 94.4% of delays fall within the interval [-10;10] days. Delays that
exceed 10 days are subject to penalties and to contractual terms with suppliers, who do all their
possible to avoid them. Such delays are subject to dedicated procedures, and are considered as
outliers so they are not considered in this article. Positive delays that are less than 10 days are
more problematic, because they disturb production, cannot be handled by contractual terms, and
have to be managed on the company side. Therefore, this article focuses mainly on the classification

of released POs to determine whether or not there will be a late delivery of less than 10 days.

In addition, as illustrated in Fig. 4, the COVID-19 lockdown period of 2020 presents a significant
drop in the number of deliveries, against an exceptional rise in the percentage of supply delays. The

deliveries in the 2020 period are considered as outliers, and the orders related to this period are

discarded.
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(b) Missing values

340

Missing data is a common problem in the data acquisition process (Garcia et al., 2016). In our case,
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18



342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

239 instances with missing data were detected. As this number represents only 0.28% of the total

number of observations, the instances with missing values were discarded.

Data labeling
The instances are labeled so that they can be introduced to supervised learning algorithms. A

binary feature is created to label the delay of each purchase order.

e 1: if the PO realized delivery date exceeds the planned delivery date by 1 to 10 days.

e (: otherwise.

Such labeling enables classifying data into 2 classes: late and early deliveries.

Data sampling

In the available dataset, early deliveries represent 56% of total deliveries. Therefore, there is an
imbalance between the two labeling classes. Data imbalance leads to false training results in su-
pervised learning applications (Brintrup et al., 2020). Therefore, a solution needs to be found to

balance the data. Two different sampling techniques were tested to balance the two labeling classes.

e Random over-sampling (Mohammed et al., 2020) consists of randomly duplicating samples

from the minority class until it has the same number of samples as the majority class.

e Entitled random under-sampling (Mohammed et al., 2020) consists of removing random sam-

ples from the majority class until the two classes become balanced.

After testing the two techniques, the random under-sampling technique is retained, as it gives better

performances during the training process (see section 4.1.3).

Feature engineering

Administrative data, such as the PO number or the person in charge of order release and follow-
up, and features carrying the same information, such as the product ID and its name, have been
removed. Then, for each PO in the available dataset, the week, the day of the month, and the
day of the week of the planned delivery date have been added, since the number of delays shown
in Fig. 4 is not uniform and depends strongly on these variables. Note that the end of the year
always witnesses a high ratio of late deliveries. Additionally, after brainstorming sessions with the

company’s experts, it was decided to add the feature ‘supply time’ given by Eq. (1):

19



372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

delay = Maz(0; real delivery date - planned delivery date) (1)

This feature describes the level of flexibility given to a supplier, as a higher supply time means that

the supplier has a sufficient margin to deliver the product.

(f) Data encoding
Categorical variables, representing the Supplier_ID and the Product_ID, are a challenge for machine
learning algorithms, which typically operate on numerical data. Through the categorical encoding
techniques, these alphanumeric variables are transformed into a numerical format that can be in-
terpreted by tree-based models (Seger, 2018). The label encoding technique was used, by assigning

a unique numerical label to each distinct category.

Table 2 details the selected features from the used dataset.

Table 2: Selected and created features from the available dataset

Feature Format Description

Supplier ID Alpha Numeric Unique supplier identifier

Product 1D Alpha Numeric Unique code identifying the purchased product

Purchase_Cost Float The purchase cost of the order

Quantity Float The quantity of concerned product in the purchase order

Week Integer The week of the planned delivery date

Supply_Time Integer Difference between order date and planned delivery date

Day of the month Integer The day of the month of the planned delivery date

Day of the week Integer The day of the week of the planned delivery date

Delay Binary The status of the order, whether it is delayed or received on-time.

3.2.2. Prediction models

Three tree-based ML models, namely decision trees, random forests, and XGBoost, were developed

to classify the occurrences of delays. These algorithms were selected because:
e They have shown interesting results in predicting delays in literature (see section 2.1 and table 1).
e They are able to handle numerical as well as categorical variables.
e They provide a feature importance analysis of predictions (Mirkouei et al., 2014).
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The models take as inputs the purchase orders, where each purchase order PO; is characterized by the

ss0 8 preprocessed features in Table 2. The models are trained to perform a binary classification (de Krom,

300 2021) of outcome f; ; to predict whether order PO; will be delayed or not if it is assigned to supplier S;.
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e (3;; = 1if order PO; will experience a delay in the interval [1;10] days if PO; is assigned to supplier

Si
Bi,j = 0 otherwise.

Decision Tree

A Decision Tree (DT) is a classification model presented as a tree structure (Ferreira and Vasilyev,
2015). To train the DT model, the entire dataset containing the 8 selected features (Table 2)
and their corresponding labels (on-time or delayed) are taken as inputs. The algorithm selects the
feature that best divides the data into distinct classes. The split is done by calculating the Gini
impurity measure for each feature (Daniya et al., 2020) and selecting the one that gives the lowest

Gini measure (Eq. (2)):

A
Gini=1-) pr; (2)
i=1

with:

A is the number of classes. A=2.

pr; is the probability of selecting an item from class i.

After deciding which feature is the best, the algorithm splits the data based on the selected feature.
Thus, the nodes of the tree represent tests on a specific variable from the training features, branches
correspond to the results of the tests, and leaf nodes represent the PO class. The splitting process
is repeated recursively until one of two stopping criteria is met: the depth of the tree or the number

of leaf nodes reaches a predefined maximum number.

Random Forest

A random forest is a machine-learning algorithm, which is based on an assembly of a predefined
number Nmax of independent decision trees (Parmar et al., 2019). Training a random forest starts
by creating a random subset of the training dataset for every decision tree to capture the data
variability. This process is done using the bootstrap aggregating technique (Bagging) (Breiman,

1996). It consists of selecting data samples randomly from a population with replacement. For
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each tree, a random subset of the feature set is used to add diversity to trees (Breiman, 2001).

Each individual decision tree is grown, as explained in subsection 3.2.2(a), using the Gini impurity

measure (Eq. (2)) and the maximum depth as a stopping criterion.

The decision trees are grown and used for the classification of new purchase orders. To achieve this,

the features of a new PO are introduced into each tree to make a prediction, and the final decision

of the Random Forest is given by the majority voting technique (Fawagreh et al., 2014).

(¢) eXtreme Gradient Boosting

eXtreme Gradient Boosting (XGBoost) is an ensemble learning algorithm that has achieved good

performances in various predictive modeling tasks (Chen and Guestrin, 2016). It is specifically de-

signed to optimize model performance by iteratively combining the predictions of multiple decision

trees. XGBoost uses a boosting technique instead of bagging.

The boosting technique starts by creating an initial tree and training it using the same process

detailed in subsection 3.2.2(a).

Based on the results obtained from this first model, weights are

given to misclassified instances. Then, a second tree is built to attempt to correct the errors present

in the first model. It is trained using the weighted data obtained in the first stage. This procedure

continues and models are added until the number of trees reaches a predefined number Nmax. The

correction is performed by calculating the gradient (Friedman, 2001) and using a learning rate.

Unlike the Random Forest model, the trees created by the XGBoost model are highly dependent.

The prediction of delay for a new PO is a weighted linear combination of the predictions provided

by all tree models.

(d) Ewvaluation metrics

The outputs from the prediction models are categorized into four distinct classes:

e True Positive (TP): represents instances where delays are accurately predicted;

e True Negative (TN): represents instances where on-time deliveries are correctly predicted;

e False Positive (FP): represents instances where on-time deliveries are erroneously classified as

delays;

e False Negative (FN): represents instances where delays are inaccurately classified as on-time

deliveries.

The evaluation metrics, presented in Table 3, were used to evaluate the performances of the predic-

tion models.
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Table 3: Classification evaluation metrics

Evaluation
Formula Interpretation
Metric
Assess how well each prediction
Accuracy (TP + TN) / (TP + TN + FP + FN) model performs overall in predicting

the two class labels.

o Determine how many of the predicted
Precision TP / (TP + FP)

delays turned out to be true delays.

Determine how many effective delays

Recall TP / (TP + FN)

are predicted correctly.

Determine how well a prediction
Fl-score (2 x Recall x Precision) / (Recall + Precision) model manages both false positives

and false negatives.

as  3.3. Optimization model

449 A Supplier Selection Optimization Model (SSOM) given by an integer linear programming model
w0 is developed to assign all suggested purchase orders to potential suppliers so as to minimize the total

ss1 purchase and delay costs. Let us consider the following notations:

452 e PO;: Purchase Order i (i=1, 2, ..., n).

453 e N: Set of all purchase orders indexes N= 1,2,..., n.
454 e Sj: Supplier j (j=1, ..., m).
455 e Py: Product type k (k=1, ..., ).

456 e Vi: Set of purchase order indexes of the product type k.

457 e ();: Quantity of product in purchase order i.

458 e Capj;: Maximum capacity of supplier j to deliver product type k.

459 e Cu;;: Product unit purchase cost of the purchase order i by the supplier ;.
460 e (C's;: Product unit delay cost of the purchase order .

461 e [3; j: Predicted delay of PO; by supplier j.
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— Bi; = 1, if order PO; will experience a delay in the interval [1..10] days if PO; is assigned to

supplier S;

— Bi,j = 0 otherwise
e (;: Total procurement cost.
e X; ;: decision variable

— X;,; = 1, if PO; is assigned to supplier S;

— X, ; = 0 otherwise

e (), : Total purchase cost given by Eq. (3)

Cp =Y (Qi-Cuij) Xi;
i=1 j=1
e (C; : Total delay cost given by Eq. (4)
n m
Ca=> > (Bij-Qi-Csi)- Xi
i=1 j=1

e (; : Total procurement cost

Then, the SSOM is given by the following mathematical programming model:

Objective function:

n m

Minimize Cy = Z Z(Ql Cuij+ Pij-Qi-Cs;) - Xij

i=1 j=1

Subject to the following constraints:
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Qi Xiy<Capjp; k=1,2,...1 j=1,2,..,m (7)
1€V

Xi;e{01};i=12n j=12..m (8)

The objective is to minimize the total procurement cost (Eq.(5)) given by the sum of the purchase
costs Cp (Eq.(3)) and delay costs Cd (Eq.(4)). Eq.(6) ensures that each order is assigned to only one
supplier. Eq.(7) specifies that the total quantity delivered of each product type does not exceed the

supplier’s capacity. Finally, Eq.(8) imposes the binarity condition on the decision variables.

4. Experiments and validation

In this section, the prediction models are first trained, and then the CPOS performance is evaluated

on real case studies.

4.1. Prediction results and analysis
The prediction models are trained, and their performance is evaluated based on the metrics introduced

in Table 3. The importance of the features is evaluated to determine which features are most impactful

on predictive analytics.

4.1.1. Test and training datasets

The complete dataset includes 89,080 (planned and realized) purchase orders over the period 2018 to
2021. After data preprocessing (see section 3.2.1), the preprocessed dataset (84,041 purchase order) was
divided into two subsets using the stratification technique (Liberty et al., 2016) to ensure that the class

distribution in each subset matches the class distribution in the original dataset:
e A testing set, constituting 20% of the preprocessed dataset (17,816 of POs)

e A training set, comprising 80% of the preprocessed dataset (71,264 of POs)

4.1.2. Hyperparameters of prediction models

The Python programming language, and the Pandas, Numpy, and Sklearn libraries were used to pro-
cess data and perform ML predictive analysis. The training process was conducted on a computer with
Intel(R) Core(TM) i5-8350U CPU at 1.70GHz and 16GO of RAM. In order to fine-tune the hyperpa-

rameters of the prediction models, the grid search algorithm (Lerman, 1980) was used to explore possible
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combinations of hyperparameters, evaluate each combination using the accuracy metric, and select the

best-performing combination. Table 4 shows the obtained hyperparameters for each prediction model.

Table 4: Machine learning model hyperparameters

eXtreme Gradient

Model Decision Tree Random Forest
Boosting
- Tree depth: 30
- Number of trees: 300
- Max leaf nodes: 500 - Number of trees: 300
- Maximum depth: 30
Parameters - Split quality measure: Gini - Maximum depth: 30
- Split quality measure: Gini
impurity - Learning rate = 0.1
impurity

- Split strategy: Best

4.1.8. Selection of a predictive model

Prediction models were trained and validated using cross-validation on the training set. The testing
dataset was kept separate and was used only after model training to evaluate the training (using the
evaluation metrics) and validate performance. During training, the 10-fold cross-validation (Wong and
Yeh, 2019) was used to evaluate the overfitting of the models on the training dataset. The training dataset
was split into ten equal folds and the model was trained using nine folds, while the last fold was used to
test the training. This process was repeated 10 times. For each iteration, a different fold was used to test
the training. Finally, the model cross-validation score was calculated as the average of the ten accuracies
measured in the testing folds.

Table 5 shows that obtained metrics are above 88% for all metrics for all three algorithms. The decision
tree model presents the lowest results for all metrics. On the other hand, the ensemble algorithms perform
better, given their ability to reduce learning bias, generalize training results, and improve robustness. The
XGBoost model achieves the highest results, with an improvement of 1% over the random forest model
and 2% over the decision tree model. In terms of precision, more than 91% of the predicted delays are
effective delays, compared to 90.21% for random forest and 89.37% for decision tree. For the recall metric,
the XGBoost model achieves a score of 93.52%, meaning that more than 93% of true positive delays were
detected. It is worth noting that the cross-validation scores closely match the accuracy on the testing
sets, indicating that all models are not overfitting.

In the particular case of XGBoost, Table 6 shows that random under sampling enables reaching a high
cross validation score of 0.9285, which confirms that the XGBoost model is not overfitting. Hence, the
model is able to generalize on new data and to predict supplier delays. Its results can be transmitted to

the downstream optimization model and used with high confidence. Accordingly, the XGBoost is selected
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Table 5: Evaluation of prediction model performances

10-folds cross Evaluation metrics scores

Algorithm validation score on the testing dataset

on the training dataset Accuracy Precision Recall F1l-score

Decision Tree Model 0.9005 0.8900 0.8937 0.8871 0.8904
Random Forest Model 0.9213 0.9162 0.9021 0.9351 0.9183
XGBoost Model 0.9285 0.9243 0.9163 0.9352 0.9257

Table 6: Results of different sampling techniques for XGBoost model

Sampling technique 10-folds cross-validation score Accuracy
No sampling 0.7195 0.9264
Random oversampling 0.7712 0.9341
Random undersampling 0.9285 0.9243

to be used for the remainder of the study.

4.1.4. Feature tmportance analysis

A feature importance analysis is conducted to determine the significant factors that most influence
delays using the XGBoost model. Whereas in its current practice, the company did not consider the
day of the week and the supply time as influential or important features, Fig 5 shows that they are
indeed the most influential features, since they impact by 60.66% the final predictions. Identifying the
importance of such parameters would help the company pay more attention to them, and improve its
processes accordingly. The supplier, the ordered product, the week, and the day of the month of the
planned delivery date are also of great importance, since they impact by 31.41% the final predictions.
These results show that the proposed engineered features have an impact of 77.17% on provided decisions.

It is, therefore, strongly recommended, to consider those variables to predict late deliveries.
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Figure 5: Feature importance analysis for XGBoost model

4.2. Optimization of supplier selection

The company practice is based on weekly plannings, where production and procurement plans are
established at the end of the current week for the next coming week. The company is hardly willing to
change this practice. Consequently, experimentation and validation of the suggested approach involved
an analysis of available data to determine typical profiles of production and procurement work weeks in
terms of typical numbers of suppliers, products, purchase orders and quantities. These profiles determine
the size and scale of the numerical analysis. Five case studies were established, involving six suppliers,
five products and varying in purchase order products, suppliers and periods. This allows assessing the
suggested methodology and system performance under different conditions. First, the case studies are
introduced. Then, the predictive optimization system (POS) to support decision-making is assessed
without collaboration. Finally, the collaborative predictive optimization system (CPOS) is assessed,

where collaboration occurs based on decision support from the predictive optimization system.

4.2.1. Presentation of the case studies
The case studies cover 5 to 30 purchase orders placed at different periods of the year. Table 7 shows
the involved products, suppliers and purchase orders for each case study.

Table 8 shows supplier capacities, unit purchase costs and delay costs collected from the ERP system.

28



Table 7: Details of the case studies

Case Number of
Suppliers Products .
study purchase Period of the year
involved involved
number orders
1 5 S1, S2, S3 P1, P2 11th week of the year
2 8 S1, S2, S3 P1, P2 10th week of the year
3 15 S1, S2, S3, S4 P1, P2, P3 29th week of the year
4 20 S1, S2, S3, S4, S5 P1, P2, P3, P4 23th week of the year
5 30 S1, S2, S3, S4, S5, S6  P1, P2, P3, P4, P5 41th week of the year

Table 8: Capacities and costs per supplier

Supplier capacity per product Unit purchase cost (€) Unit delay cost (€)
per product per product
Supplier | S1 S2 S3 S4 S5 S6 | S1 S2 S3 S4 S5 S6 Any supplier
P1 450 300 300 250 350 200 |32 3 3 3 31 32 3.2
P2 350 250 300 200 300 200 |24 26 25 25 24 24 3
P3 350 300 300 250 250 150 2 22 2 2 21 2 2.8
P4 400 200 300 200 100 150 3 28 3 3 28 29 2.9
P5 450 250 350 400 300 250 |27 2.8 29 28 27 29 3.1
552 For each product Py, the maximum quantity QMaz(Sj, Pk) that supplier S; can deliver in a procure-
ss3 ment planning period is given by Eq. (9):
QMazx(S;, Py) = Min(Capj, ; Total demand of Py) 9)
ssa  4.2.2. Predictive optimization of supplier selection
555 An analysis is conducted to compare four approaches on the five suggested case studies. The total

556 procurement costs and number of delays for each case study and each approach are illustrated in Fig. 6:

557 e Approach 1 (which results are shown under the label “Existing APP” in Fig. 6): the existing
558 approach of the company, which relies on the ERP classical procurement module to assign orders to

550 suppliers based on the minimum purchase cost heuristic rule, not considering the predicted delays;
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e Approach 2 (which results are shown under the label “Opt APP” in Fig. 6): the optimization
approach, in which orders are assigned to suppliers using the suggested linear programming model,

but without considering the predicted delays;

e Approach 3 (which results are shown under the label “Predictive APP” in Fig. 6): an improved
version of the company approach, which relies on the ERP procurement module to assign orders to
suppliers based on the minimum cost heuristic rule, where cost includes both purchase and delay

costs;

e Approach 4 (which results are shown under the label “POS” in Fig. 6): The predictive optimization
approach, where the decision support process combining prediction and optimization is applied, but

without collaboration (i.e. the red colored process in Fig. 2).;

In Fig. 6, the POS approach outperforms all other approaches in reducing the total procurement
costs for all cases. The difference in total procurement costs between the POS and the Existing APP
varies between 16.36% (case 3) and 32.73% (case 1). The results show that using an optimization model
based only on costs and supplier capacities does not systematically reduce the total procurement costs.
For cases 2, 3, and 5, using the linear programming model (Opt APP) resulted in an increase in the
total procurement costs compared to the Predictive APP and POS. By considering supplier delays, the
Predictive APP approach becomes more efficient than the Opt APP in terms of the resulting number of
delays and the procurement costs. However, by combining the mathematical optimization model with the
predicted delays (POS), the number of delays decreases up to 100% in case 1. It should be noted that the
minimum reduction of number of delays is 50% recorded in case 3. In other words, in the worst scenario,
the use of the POS helps avoid at least half of the delays, with a 16.36% reduction in total costs.

Case 4 and case 5 show that, even for procurement plans with a high number of purchase orders and
higher involved suppliers and products, the POS succeeded in reducing total costs by 29.73% (case 4) and
23.67% (case 5).
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Figure 6: Performance assessment of the case studies.

To further illustrate the proposed POS approach, cases 1 and 2 are discussed in more detail. As the
two cases involve a close number of purchase orders, which are released in two successive weeks, to order
the same products from the same suppliers, the prediction of delays is almost the same (see Table 9).The
supplier selection obtained by POS and existing approaches are presented in Table 10.

The distributions of order allocations to suppliers obtained with the company’s existing approach

(Existing APP) versus the POS approach are presented in Fig. 7.
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Table 9: Predicted occurrences of delays for case 1 and case 2

Case 1
PO1 PO2 PO3 PO4 POS5
st (0 (0 () (0) (0)
sz @1 (0 (0 (1) (0
s3 (1) (0 (0 @) (0
Case 2
PO1 PO2 PO3 PO4 PO5 PO6 PO7 POS8
St (o) (0 (0 (0 (© (0 (0 (0
s2 1 @ (© @O © ©© O @)
s3 1 @) (0 @ (© © 0 1)
(0): On-time order, (1): Delayed order
msSl ms2 = S3 =Sl ms2
60.0%
60.0% 80.0%
] 40.0% 60.0% 50.0%
40.0%
25.0% 25.0%
20.0% o0
0.0%
0.0% 0.0%
Existing_APP POS Existing_APP
(a) Casel (b) Case2

S3
75.0%

12.5%12.5%

POS

Figure 7: Distributions of order allocations to suppliers with the existing approach Vs. the POS approach
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Table 10: Supplier selection with POS, and existing approaches for case 1 and case 2

Case 1 Case 2
Purchase order Purchase order
Existing APP POS Existing APP POS
(Product, Quantity) (Product, Quantity)
PO1 PO1
S2(1) S1(0) S2(1) S2(1)
(P1,200) (P1,150)
PO2 PO2
S1(0) S3(0) S2(1) S1(0)
(P2,100) (P1,100)
PO3 PO3
S1(0) S3(0) S1(0) S1(0)
(P2,150) (P2,100)
PO4 PO4
S3(1) S1(0) S3(1) S1(0)
(P1,250) (P1,150)
PO5 PO5
S3(0) S1(0) S1(0) S1(0)
(P2,300) (P2,90)
PO6
S1(0) S1(0)
(P2,150)
PO7
S3(0) S3(0)
(P2,210)
POS8
S1(0) S1(0)
(P1,200)

(0): On-time order, (1): Delayed order

Comparing POS to Existing APP on both case 1 and case 2, Figure 7 shows that the number of orders
allocated to supplier S1 is greater than the number of orders allocated to supplier S2 in both cases. The
number of orders allocated to supplier S3 remains unchanged in case 1, whereas it decreases in case 2.

To explain these results, it is worth noticing that supplier S1 is known from historical data to process
all orders in the same way in general, and prediction model training tends to confirm predictions that
this supplier will not be late for new orders. For supplier S2, the Existing APP maintains approximately
the same proportion (around 20%) of allocations in both cases, as this supplier offers the lowest purchase
cost for product P1. This is no longer valid using the POS approach to allocate orders to supplier S2,
where the selection of supplier S2 is no more systematic (0% order allocations in case 1 compared to
12.5% order allocations in case 2), and this despite S2 being the cheapest supplier for product P1. This is
due to the fact that the POS predicts delays with supplier S2, and tends to allocate less orders to reduce
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delay costs and therefore better optimize total cost. It is also worth noticing that for case 1, supplier S3
is considered better than supplier S2, since supplier S3 was allocated 40% of purchase orders compared
to 0% for supplier S2 using POS. This observation is no longer valid in case 2, where S2 and S3 are
considered similar with 12.5% of order allocations each using POS. Thus, by not focusing solely on the
purchase cost aspect, and taking into account delay considerations, the POS is able to make more balanced
decisions, which is better adapted to the context of the case study. The obtained results highlight that
the large streams of data stored in the ERP, which exceed human capabilities to fully grasp them without
the support of digital technologies, are better exploited and valued using predictive analytics to extract

actionable information and to make suitable tradeoffs.

4.2.8. Collaborative predictive optimization

As illustrated in section 4.2.2, the POS approach allows minimizing procurement costs and reducing
the number of delays, given the characteristics of the suppliers and the predicted delays. In some cases,
zero delay costs and zero delays cannot be achieved, and this is where the importance of a collaborative
approach is recognized. Based on the proposed workflow model given in Fig. 2, the POS outcomes are
shared with stakeholders, who can consider different alternatives, as illustrated in Fig. 8, to prevent

delays and reduce their inconveniences.

Warehouse department :
o Adjust raw materials reservations
o Adjust inventory plans

Collaborative

Decision-making

¥ay

Purchase department :
Validate purchase orders
Revise purchase orders

Communicate and negotiate with
suppliers

Look for new suppliers

Figure 8: Examples of proactive actions to manage delays

The final decision is made collaboratively among involved stakeholders. In Table 11, a comparison is
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made between on the one hand the POS approach (without collaboration, i.e. only the red arrows process
in Fig. 2), and on the other hand a collaborative approach (CPOS), which involves collaboration between
stakeholders after the results of a POS approach are presented to them (i.e. processes with both red and
blue arrows in Fig. 2). Examples of alternatives applied to the case studies and their consequences are
presented in Table 11.

Case 1 generated an allocation without delay costs using the POS. Thus, decision-makers can validate
the resulting order allocations without downstream intervention. However, for the remaining cases, the
available alternatives allowed a further reduction of the number of delays and total procurement costs.
In case 2, by intervening at the purchasing department level and negotiating with the supplier who was
predicted to be late, a new allocation is proposed with zero predicted delays. In addition, in case 3,
re-assigning raw materials by the production department allowed to mitigate delay costs of product P3
and, therefore, further decrease procurement costs proposed by the POS. This emphasizes that proactive
measures are robust to delays without incurring any extra costs.

The results show that collaboration between several stakeholders results in a reduction of up to 20%

in procurement costs.
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4.8. Sensitivity analysis

The suggested CPOS system combines ML based delay prediction with linear programming to optimize
order allocations. The linear programming technique ensures the optimality of the solution. However,
since the accuracy of the upstream prediction model is 92%, false predictions can be generated with a
probability of 8% and subsequently distort the optimization process. An analysis of the prediction results
shows that the false-negative rate (a delay predicted incorrectly as an on-time delivery) is 3%. A margin
of error of 3% represents, at most, a delay that was not predicted. In cases 1 and 2, as this translates to
half a delay (“half occurrence of a delay” does not make sense), half occurrences are replaced with full
occurrences. Therefore, the prediction results are adjusted accordingly, assuming that supplier forecasts
for on-time deliveries may be erroneous, resulting in the conversion of every (0) to a (1) to encompass
all potential scenarios. Then, to perform the sensitivity analysis, the worst, best and median cases were
retained in terms of total procurement costs (C}).

For each case study, the deviation of total procurement costs of the POS and CPOS are calculated

using Eq. (10).

a_
Dev(%) = % 100 (10)
t

with:
Cy: Total procurement costs of the initial obtained solution (Table 11)

C¢: Total procurement costs with added delays to the initial obtained solution

Eq. (11) presents the difference between the number of delays (Npeiays) given by the initial obtained
solution (Table 11) and the number of delays given by the disturbed initial solution with added delays
(Np

elays)

Delayyariation = N%elays - NDelays (11)

Table 12 illustrates the results of the sensitivity analysis for the POS and CPOS when applying the
same alternatives from stakeholders for each case study.

The results show that, even for the worst cases, the variation in total procurement costs does not
exceed 10.22%. These results confirm the objective of the sensitivity analysis, where it is proved that for
each case study (typical procurement week), the initial solution remains robust even if some disturbances,

due to prediction errors, occur.
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Table 12: Results of the sensitivity analysis

POS CPOS
Delayvariation  Ct(€) Dev(%) | Delayvariation Ct(€)  Dev(%)
Minimum deviation 0 2,785 0 0 2,785 0
Case 1 Median deviation 0 2,785 0 0 2,785 0
Maximum deviation 0 2,840 1.98 0 2,840 1.98
Minimum deviation 0 3,711 0 0 3,231 0
Case 2 Median deviation 0 3,732 0.57 0 3,252 0.65
Maximum deviation 0 3,770 1.59 0 3,280 1.52
Minimum deviation 0 6,290 0 0 5,030 0
Case 3 Median deviation 0 6,350 0.95 0 5,090 1.19
Maximum deviation 1 6,740 7.15 1 5,480 8.94
Minimum deviation 0 10,287 0.49 0 9,637 0.52
Case 4 Median deviation 2 10,824 5.73 2 10,174 6.12
Maximum deviation 2 11,217 9.57 2 10,567  10.22
Minimum deviation 1 17,380 2.48 1 15,380 2.53
Case 5 Median deviation 1 17,760 4.72 1 15,760 5.07
Maximum deviation 2 18,350 8.20 2 16,350 8.26

Ct: Total procurement costs

4.4. Best-Worst case analysis

The prediction model can generate up to 8% false predictions 4.1.3, with 5% being false positives
(incorrectly predicting on-time deliveries as delays) and 3% being false negatives (incorrectly predict-
ing delays as on-time deliveries). The sensitivity analysis emphasized a pessimistic scenario, where the
predicted number of delays was rounded up to a greater number to account for fractional delays. To
provide a more balanced assessment and account for decision-maker attitude, a best-worst case analysis
is performed across three scenarios. In the Pessimistic Scenario, 3% of predicted on-time deliveries are
considered as delays, converting each predicted on-time delivery (0) to a delay (1). In the Optimistic
Scenario, 5% of predicted delays are considered as on-time deliveries, converting each delay prediction
(1) to an on-time delivery (0). In the Neutral Scenario, 8% of predictions are randomly flipped, altering
both on-time and delayed delivery predictions (with respect to false positive and false negative rates).

These scenarios are applied to each case study, with the minimum, median, and maximum deviations
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recorded. The deviations in total procurement costs (Eq. (10)) and the number of delays (Eq. (11)) are
analyzed considering additional measures, namely the mean measure (Eq. (12) (Kiely et al., 2011) and
its deviation (Eq. (13) and the min-max range measure (Eq. (14) (Kiely et al., 2011) and its deviation

from the minimal case (Eq. (15)).

b Cf
M = — > 12
ean Na (12)

M —
Deoh (%) = Mean=Ct (13)
C
Range = %ax(cgb) - ]%in(cgb) (14)
Range — Mz'n(Cgb)

DevR(%) = Na -100 (15)

Min(Cii)
with:

Cy: Total procurement costs of the initial obtained solution (Table 11)

Cgb: Total procurement costs of alternative b (b=1,...,Na)

Na : Number of alternatives.

As presented in Table 13, an increase in delays (pessimistic scenario) consistently results in higher total
purchase costs, ranging from 0% to 9.57% across various case studies. Conversely, the optimistic scenario
predicts substantial cost reductions between 2.56% and 15.58%. The neutral scenario, which represents a
more balanced approach, results in cost deviations that can either increase or decrease, reflecting a more
realistic assessment of prediction uncertainty. The mean deviation across all case studies ranges from
-5.07% to 2.06%, suggesting that the initial allocation yields balanced outcomes with potential minor
gains or losses due to prediction errors. This is further illustrated in Fig.9, which shows box plots of total
procurement costs for case study 4 across different scenarios, indicating that the initial allocation falls
between the first and third quartiles of possible costs and is close to the mean cost for the neutral scenario.
Hence, the generated solution was selected, as it provides benefits when deliveries are on time and the
maximum deviation is within acceptable limits. The optimistic scenario can be opted for, assuming fewer
delays, but this choice entails greater deviations if false positive predictions occur, as the maximum range
is 26.93%. Alternatively, the pessimistic scenario, which anticipates more delays than predicted, leads
to higher procurement costs and unnecessary collaborative actions that could be avoided. This confirms

that the POS generated allocation balances the costs associated with prediction uncertainties.
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Table 13: Best-Worst case analysis results

Pessimistic Optimistic Neutral
Mean DevM Range DevR
Scenario Scenario Scenario
(€) (%) (€) (%)
Cy Dev Cy Dev Cy Dev
€ (») (€ (%) (€) (%)
Min 2,785 0 2,735 -1.8 2,735 -1.8
Case 1
Med 2,810 0.9 2,735 -1.8 2,785 0 2,781 -0.14 105 3.84
(5 PO)
Max 2,840 197 2,735 -1.8 2,840 1.97
Min 3,711 0 3,201  -13.74 3,201 -13.74
Case 2
( ) Med 3,732 0.67 3,201 -13.74 3,711 0 3,523 -5.07 569 17.78
8 PO
Max 3,770 1.59 3,201 -13.74 3,770 1.59
Min 6,290 0 5310 -15.58 5,310 -15.58
Case 3
Med 6,350 0.95 5,590 -11.13 6,290 -0.48  6,116.36 -2.76 1,430  26.93
(15 PO)
Max 6,740 7.15 6,290 0 6,740 7.15
Min 10,287 049 9,527 -6.94 9,577 -6.45
Case 4
( 0) Med 10,797 547 9,792 -4.35 10,312 0.73  10,298.85 0.60 1,690 17.74
20 P
Max 11,217 9.57 10,207 -0.29 11,187 9.28
Min 17,380 2.48 16,310 -3.83 16,510 -2.65
Case 5
(30 PO) Med 17,800 4.95 16,525 -2.56 17,320 2.12  17,308.63 2.06 2,040 12.51
30
Max 18,350 8.2 16,920 -0.24 18,310 7.96

Min: Minimum deviation, Med: Median deviation, Max: Maximum deviation

I Optimistic scenario
[ Pesimistic scenario

I eutral scenario

——- Total procurement cost for the initial solution

9500

9750

10000

1
10250

Total procurement cost (€)

10500

10750

11000

11250

Figure 9: Box Plot of total procurement costs for case study 4 with different scenarios

40



695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

4.5. Larger scale application

In the conducted experiments, the largest number of purchase orders (POs) within a single case study
is 30. With respect to the used dataset, this represents the upper limit of POs per week that can be
incorporated into a case study involving multiple suppliers and products. In this section, a synthetic
case study was constructed in order to evaluate the approach on a larger scale. This is achieved by
aggregating purchase orders over four procurement weeks, specifically those involving the same suppliers
and products as in case study 5 (cases details presented in Table 14). The aggregated purchase orders
are then consolidated into a single procurement plan consisting of 110 POs. To simulate a month’s worth
of orders, the capacities of the suppliers are multiplied by a factor of four. The results of the large-scale

experiments are presented in Table 15.

Table 14: Cases details for large-scale analysis

Procurement week Number of PO Suppliers involved Products involved

Case 1 41th week 30 S1,52,53,94,95,56 P1,P2,P3,P4,P5
Case 2 42th week 27 S1,52,83,54,55,56 P1,P2,P3,P4,P5
Case 3 44th week 24 S1,52,53,54,55,56 P1,P2,P3,P4,P5
Case 4 45th week 29 S1,52,53,54,55,56 P1,P2,P3,P4,P5

Table 15 demonstrates that, for a relatively large number of purchase orders, the proposed POS
significantly reduces total purchase costs and the number of delays compared to existing optimization
and predictive approaches. Furthermore, by implementing three actions collaboratively, the number of
delays was reduced by 75%, resulting in an allocation without delay costs. It should also be noted that the
execution time of the optimization module remains low, around 1 second, which means that the suggested

approach is scalable with respect to the considered company size and operational requirements.
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Table 15: Large-scale case study results with different approaches

Cp (€) Cy (€) (i (€) Npelays
Existing APP 54,915 30,830 86,745 59
Opt APP 54,850 30,040  84.890 57
Predictive APP 56,190 5,765 61,955 14
POS 56,260 3,500 59,760 8
CPOS 56,300 0 56,300 2

1- Communicate and negotiate with S1
2- Communicate and negotiate with S4
3- Adjust raw materials reservations
CPOS Applied Actions Consequences
1- An increase in S1 capacities to deliver P3 (4200), P5 (+300)
2- An increase in S4 capacities to deliver P1 (4350), P4 (+200), P5 (+400)

3- Delays of P2 will not have delay costs

5. Managerial insights

The ”experimentation and validation” section was conducted within the company, with approval and
iterative and incremental improvements from company experts. The outcome is an operational system
that has acceptance and brings value to users. This study supports the company, similar manufacturers
and similar industrial sectors, in restructuring their conventional supplier selection process to take better
advantage of the collaboration and integration offered by digitalization technologies and trends. The out-
comes of the experimentation and validation section highlight the managerial and functional implications

of the proposed framework. A summary of these implications is as follows:

e The feature importance analysis (section 4.1.4) sheds light on influential features that were not
paid attention to, and not considered, in company practice before this study, although they impact
decision-making significantly. Combined awareness of these features (including the day of the week
and the supply time), and of delay predictions, impacts future decisions about when to release

purchase orders, and how to select suppliers based on the flexibility they need to avoid delays.

e As a corollary, the previous insight, as well as the best-worst case (section 4.4) and larger scale
(section 4.5) analyses influence strategic relations with suppliers and customers. The suggested
methodology (workflow) and system (CPOS) influence strategic, long-term relations with suppli-

ers, through improved negotiation of annual reviews of performance, and contractual terms and
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conditions. They influence operational settings, like safety storage levels, inventory replenishment
strategies, downstream warehouse management (e.g. mobilization of necessary and sufficient logis-
tics workforce), and production planning and control, for example through advised decision-making
with respect to the choice of planning horizons and production order releases. On the customer
side, being aware of potential delays can improve the quality of commitments to customers in terms

of negotiated quantities and delivery conditions.

e In the large-scale analysis, it is important to note that the suggested approach is scalable with
respect to company operational requirements, because it was able to adapt to consolidating orders
and extending the planning horizon. Although this consolidation contributes to reducing costs and
delays, such an approach may not always be feasible due to constraints such as suppliers’ capacities,
storage locations, storage costs, and the risks of spoilage. Therefore, companies must seek an optimal
compromise that balances these factors. The suggested approach provides decision support tools
to reach advised agreements when negotiating quantities and discussing annual procurement plans

with suppliers.

e The suggested study offers a sound basis to roadmap strategic digital transformation projects.
Whereas the current trend is to endow ERP systems with extra layers to enable them perform data
analytics, without necessarily linking data analytics to decision-making, the suggested methodol-
ogy and system go a step further by streamlining data analytics to optimization and collaborative
decision-making processes. Such empowerment is a step forward towards the virtual enterprise
paradigm, where several stakeholders and interested parties in different geographical locations (like
suppliers and customers), and different functional affiliations and responsibilities (like different de-

partments), interact to achieve common business goals (for instance, just in time deliveries).

6. Conclusions

This article addressed some aspects of the supplier selection problem that are not well covered both
in literature and industrial practice. Two main limitations were addressed, namely (i) the unilateral,
single perspective of the purchase/procurement department, who usually does not consider the added
value of involving several stakeholders from multiple expertise domains (decision makers from different
departments, suppliers, and customers) in the decision-making processes, and does not consider collab-
oration to solve the supplier selection and order allocation problem; (ii) the under use of digitalization
technologies, such as enterprise information systems, data analytics and optimization, to streamline the

supplier selection and order allocation decision-making processes.
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To deal with these limitations, a collaborative workflow was developed to take advantage of feedback
and alternatives from all involved stakeholders. The workflow relies on industrial ERP systems as a
backbone asset to integrate and streamline the supplier selection process. The workflow also involves a
collaborative predictive optimization system (CPOS) that was developed to coordinate knowledge and
interactions between several stakeholders from multiple expertise domains. The CPOS uses data from
industrial ERP systems to predict occurrences of delays, based on data analytics and machine learning
to account for historical context and dynamics. Classifications of occurrences of delays are then used in
a mathematical programming optimization of supplier selections, to achieve an overall supplier selection
optimization.

To assess performance and validate the CPOS, the specificities of a French company in the furniture
industry were considered. The company is facing supplier selection problems under capacity constraints,
and is suffering from a significant number of supplier delays. An experimental numerical assessment shows
that delays are tied to dynamic factors, like order release and delivery dates, product and purchase costs,
and that evaluating delays with metrics that do not take these dynamic factors into account can yield
unsatisfactory results. The integration of predictive analytics into ERP systems improves results, but not
enough compared to the proposed predictive-optimization approach, in which the mathematical model
capitalizes on the predictive module outcomes to achieve a global optimal allocation. The collaborative
decision-making process further improves results, allowing significant cost savings, delays reduction and
realistic solutions with well-designed and practical budgets.

As managerial insights, the outcomes of this research help managers better understand, explain and
deal with delays to find optimal decisions and improve operational performance. Data analytics, informa-
tion sharing and collaborative decision-making with all impacted stakeholders promote collective efforts
to prevent and actively mitigate the negative consequences of possible delays. Instead of traditionally
fragmented architecture and compartmentalized processes, where only the purchase department deals
with the selection of suppliers, the suggested approach and system promote more transparent, effective
and efficient (material, information and financial) flows across all involved processes and actors, thus
consolidating the foundations for a successful digital transformation.

To the best of the authors’ knowledge, no previous work has investigated the above-mentioned limita-
tions using a data-driven, collaborative, predictive-optimization approach. Our findings can be leveraged
by other companies facing similar challenges. The modular and flexible architecture of the proposed
methodology and system enable for an easy implementation of different possible extensions for other in-
dustrial case studies, unknown/uncertain parameters and/or various objectives to be handled separately

or simultaneously.
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Future research directions to improve this work, to overcome some of its limitations, and to deal with
problems that are challenging both scientific research and industrial practice include considering solving
the prediction problem as multiple regression problems, where the duration of delays, the variable costs
of delays, and eventually other quantifiable supply chain risks are predicted and proactively considered
in the supplier selection process. Fuzzy logic can be considered to better deal with uncertainty and
ambiguity in data. Multi-agent systems can be considered to automate and support the collaboration
process. Knowledge based systems can be considered to reuse knowledge about similar previous supplier

selections and order allocations.
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