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Abstract: Piezoelectric actuators are essential for high-precision microassembly. However,
monitoring their health state presents significant challenges due to their compact size and the
inherent complexity of their modeling. This study presents a machine learning-based approach
to predict failures in a micromanipulation system with four piezoelectric actuators. Log data
was used to extract features, and autoencoders were trained on healthy-state data to detect
deviations signaling faults. The method was validated using real-world training data and
simulated failure scenarios, successfully distinguishing between healthy and faulty states. This
approach offers a promising solution for monitoring the health of piezoelectric actuators in

precision systems.
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1. INTRODUCTION

Piezoelectric actuators (PZA) have attracted considerable
attention in fields such as robotics, optical engineering,
and precision machining due to their compact size, high
motion resolution, rapid response characteristics and high
precision (Xu et al., 2022; Luo et al., 2020). These ac-
tuators function based on the inverse piezoelectric effect,
producing small mechanical deformations in response to an
applied voltage (Mohith et al., 2020). However, PZA are
frequently exposed to repeated loading during operation,
which can result in their failure and disrupt the function-
ality of the associated system. Consequently, degradation
mechanisms and lifecycle performance have become criti-
cal areas of focus for researchers and engineers (He et al.,
2005).

This study is conducted within the context of a French
startup specializing in the design and production of high-
throughput microassembly machines for large-scale micro-
scopic production. These machines consist of multiple sub-
systems, including power supply, visualization, gripping,
and positioning.

Our focus is specifically on the positioning subsystem,
which incorporates a horizontal platform actuated by four
stick-slip piezoelectric actuators (Pan et al., 2016). The
actuators are configured in a master-slave arrangement,
with two actuators operating in parallel to control the
platform along a specific axis (X or Y) (Fig. 1).
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Fig. 1. Descriptive illustration of the studied subsystem

This subsystem has exhibited poorly understood and
difficult-to-predict failures, resulting in production inter-
ruptions. Currently, a corrective maintenance strategy
(Mosallam et al., 2016) is employed. This approach, trig-
gered only upon unexpected failures, leads to extended
production downtimes due to the complexity and time
required for fault diagnosis, repair, and machine restart.
Such a reactive strategy is inadequate to meet industrial
production demands.

The absence of an analytical model provided by the manu-
facturer, coupled with the complexity of the system (stem-
ming from interactions between subsystems and external
factors), makes mathematical modeling particularly chal-
lenging. Consequently, a data-driven approach emerges as



a promising alternative in this context.

However, this approach faces significant challenges related
to data collection. Previous studies have identified vari-
ables correlated with the remaining useful life of PZA, in-
cluding control voltage, operating frequency, temperature,
and humidity (Luo et al., 2020; Lipscomb et al., 2009;
Nakamura et al., 2001). Nonetheless, the configuration,
size, and operation of the actuators used in the system
make it infeasible to integrate sensors for measuring these
key operating variables.

This work introduces a novel data-driven approach to pre-
dict failures in piezoelectric actuators under limited data
conditions. Machine log data is utilized to compensate
for the lack of physical operating data. Additionally, we
propose an approach to simulate actuator failures based
on experts’ knowledge. These simulated data will be used
to evaluate the capability of the proposed solution to
accurately detect both healthy and faulty states of the
studied system.

2. RELATED WORKS
2.1 Piezoelectric actuators failures prediction

Predicting failures in piezoelectric actuators is crucial for
ensuring their reliability and performance in various ap-
plications. Admittance measurements are generally used
to estimate the degradation of piezoelectric bending ac-
tuators (Hemsel et al., 2016). However, this method ne-
cessitates interrupting the production process, resulting
in higher operational costs. In the literature, only a lim-
ited number of studies have addressed the prediction of
remaining useful life or failures in piezoelectric actuators.
For instance, Bender (2023) proposed a model-based ap-
proach leveraging the Butterworth-Van Dyke model to
predict actuator failure. However, this model is limited
to assessing the health state of individual actuators and is
not suited for complex systems involving multiple intercon-
nected PZA. Additionally, the prediction of exact model
parameters remains empirical, adding to the challenge of
applying this approach effectively.

In order to overcome the challenges of model-based ap-
proaches, some works have provided data-driven solutions
to predict PZA failures. For instance, Aimiyekagbon et al.
(2024) developped a data-driven approach based on oper-
ations between physcial measures (voltage and current).
Their approach is capable of detecting actuators failures
under different operating conditions by supervising those
computed features.

To the best of the author’s knowledge, only Kimotho
et al. (2017) investigated the use of Machine Learning
(ML) techniques to predict PZA’s remaining useful life-
time. They employed 23 physical features derived from
vibration and current measurements as inputs to three
models: Extreme Learning Machine, Random Forest, and
Support Vector Machine.

However, the proposed approaches rely on the use of
physical parameters. In this work, we introduce a fault
prediction method that operates in the absence of these
variables.

2.2 Machine Learning anomaly detection

Anomaly detection refers to the process of detecting data
instances that are different from the majority of data
(Pang et al., 2021). According to Nassif et al. (2021), two
primary algorithms are commonly employed for anomaly
detection: Support Vector Machines (SVM), specifically
the One-Class SVM (OCSVM), and Neural Networks,
particularly Autoencoder (AE) models.

One-Class Support Vector Machines (OCSVMs) are a spe-
cialized form of SVMs tailored for outlier and anomaly
detection tasks. They function by constructing a decision
boundary that encapsulates the majority of data points in
the feature space, thereby maximizing the margin between
normal instances and potential anomalies (Alam et al.,
2020). Unlike conventional SVMs, OCSVMs are trained
exclusively on data from a single class and do not rely
on labeled examples from multiple classes. However, the
scalability of OCSVMs is limited when handling very large
datasets, posing challenges for their application in big data
scenarios. In addition, they tend to exhibit a high false
positive rate, which undermines the reliability of their
results (Nassif et al., 2021).

On the other hand, Autoencoder Neural Networks (AE)
are an effective technique for identifying anomalies using
data. This method makes use of autoencoders’ capacity
to learn condensed representations of normal data, which
enables them to reconstruct normal samples with minimal
error but gives a high error when reconstructing anomalous
samples (Li et al., 2023). Reconstruction error can thus be
used as an indicator to distinguish between healthy and
faulty data. While Autoencoders can be sensitive to the
choice of architecture and hyperparameters, potentially
resulting in inconsistent performance (Holly et al., 2022),
they remain effective and robust tools for anomaly detec-
tion.

3. METHODOLOGY

As presented in section 1, the problem consists in pre-
dicting piezoelectric actuators’ failure using log data from
the microassembly machine. For this purpose, a workflow
model is presented in Fig. 2. In this workflow, two use
cases are distinguished, (i) the training of the prediction
model (with black arrows in Fig. 2) and, (ii) the testing of
the trained model (with red arrows in Fig. 2).

Log data from the microassembly machine is collected to
train the prediction model. Relevant features are engi-
neered, and the dataset, initially containing only healthy
actuator data, is expanded with simulated fault scenarios
based on expert input. The data is divided into training,
testing, and fault sets, then preprocessed for AI model
training. Autoencoders trained on healthy data distinguish
normal from abnormal behavior. Model performance is
evaluated using evaluation metrics, and the final model
predicts actuator states using preprocessed test and fault
data.

8.1 Microassembly machine Log data
The study relies on machine log data instead of sensor-

based physical variables to analyze the operation of a
microassembly machine. Log data, which record system
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Fig. 2. Proposed methodology for data-driven piezoelectric actuators fault detection

states and activities chronologically, were collected over a
6-hour period, resulting in 421,389 measurements recorded
every 51 ms. Each record includes the timestamp and both
target and actual positions of two actuators (master and
slave) along the X and Y axes. Throughout the paper, we
denote X; ,,(t) and X, ,(t) as, respectively, the target and
actual positions of actuator n at timestamp ¢ along the
X-axis, and Y} ,,(t) and Y, ,,(¢) as, respectively, the target
and actual positions of actuator n at timestamp t along the
Y-axis, with n € {1,2}. Notably, when n=1, the actuator
corresponds to the master, and when n=2, it corresponds
to the slave.

3.2 Feature engineering

After collecting the microassembly machine log data, a
feature engineering phase is conducted. Since the log data
encompasses the entire machine, the first step is filtering
to retain only data relevant to the positioning subsystem.
Subsequently, the dataset is enriched with new variables.
This process involved brainstorming sessions with the
company’s engineers and operators, resulting in a list of
additional variables that were selected and computed:

e Velocity : This variable represents the instantaneous
velocity of each actuator, a critical parameter since
a decrease in speed may indicate actuator degrada-
tion. The velocity of every actuator is calculated as
the change in position between two successive times-
tamps. For example, Eq. 1 details the formula to
determine the instantaneous velocity of X;.

VXl(t) = Xr’l(t> - Xr,l(t —1)

t—(t—1) (1)
e T-A error : This variable represents the difference
between the target position and the actual position
of the actuator. A high error may indicate that the
actuator is struggling to follow commands, potentially
signaling a degradation phase. the T-A error of actu-

ator X5, for example, is calculated using Eq. 2
TAEx1(t) = Xia(t) — Xra (1) (2)

e S-M error : This variable represents the position
difference between the master and slave actuators.
Two variables were created: one for the X-axis and
another for the Y-axis. For illustration, the X-axis
S-M error is defined by the formula in Eq. 3.

SMEx1(t) = X,1(t) — Xpa(t) (3)

3.8 Fuailure simulation

The collected data covers 6 hours of normal operation
without anomalies. Therefore, a failure simulation step is
essential to enrich the dataset with fault cases. These cases
are crucial for testing the model, as the training process
will be conducted solely on healthy data.

Discussions with production and maintenance experts re-
vealed that piezoelectric actuator degradation is reflected
in a decline in instantaneous velocity. Specifically, as the
actuator enters a faulty state, the maximum achievable ve-
locity gradually decreases. To simulate failures, we propose
gradually reducing the maximum achievable instantaneous
velocity until a complete stop. Two different degradation
models were applied: (i) linear (Eq. 4) and (ii) exponential
(Eq. 5). For every model, different numerical parameters
were tested in order to test the machine learning model
ability to detect different failures modes.

|Vinaz ()| = —at + b (4)
[Vinaz ()] = Bem (5)

with :

e t : time variable

e Ve (t) : maximum achievable instantaneous velocity
in the failed operating mode

e a,b,a, 3 : constants

The simulation procedure is as follows:

(1) Select the last 30% of the dataset instances.



(2) Apply a linear or exponential degradation model for
the maximum achievable instantaneous velocity.

(3) Limit the instantaneous velocity to the minimum
of the actual velocity and the selected degradation
model.

(4) Adjust the timestamps to align with the modified
velocity.

3.4 Data preprocessing

Data preprocessing refers to the process of transforming
raw data into a suitable format to be fed to the machine
learning algorithms. To achieve this, two preprocessing
techniques were applied.

First, data splitting was performed to create training,
testing, and failure assessment datasets. Since the last
30% of the data instances contain altered data with failure
simulations, the remaining 70% were divided into 50% for
training the model and 20% for testing the model’s perfor-
mance on healthy data and its ability to recognize healthy
patterns. However, this 20% test set will be further divided
into two separate parts, with details to be illustrated in the
results section.

Second, the data was normalized using the min-max nor-
malization technique (Patro, 2015). In fact, normalization
is an important technique when using neural networks.
This method transforms the data linearly to a range be-
tween 0 and 1, preserving the original distribution while
ensuring all features contribute equally to the model.

3.5 Model training and evaluation

In this study, two autoencoder models, the Long Short-
Term Memory Autoencoder (LSTMAE) and the One-
Dimensional Convolutional Autoencoder (1-DCAE), were
employed for fault detection in piezoelectric actuators.
Autoencoders are neural networks designed to learn and
reconstruct a compressed representation of input data
through an encoder-decoder architecture. The reconstruc-
tion error, measured using the Mean Absolute Error
(MAE) (Hodson, 2022), quantifies the difference between
the original and reconstructed data.

Autoencoders, typically used for dimensionality reduction
and feature extraction, were leveraged here for anomaly
detection. The models were trained exclusively on healthy
data to learn the normal actuator behavior with a low
reconstruction error. New, unseen data was then evalu-
ated, where a low reconstruction error indicated healthy
operation, while a high error signaled a fault.

(1) Long Short-Term Memory Autoencoder: LST-
MAEs combine the strengths of LSTM networks,
which excel at capturing long-term dependencies,
with the autoencoder’s ability to learn compact rep-
resentations. The LSTM units within the network use
input, forget, and output gates to control information
flow, allowing the model to selectively remember or
forget information over long sequences. This structure
enables LSTMAESs to effectively learn and preserve
temporal patterns in data, making them particularly
useful for tasks such as anomaly detection in time
series data

(2) One-dimensional convolutional autoencoder: A
1-DCAE is a kind of neural network which applies

one dimensional convolutional operation to the input
data then compress it and then reconstruct it. This
kind of autoencoder, the encoder has convolutional
layers while the decoder has the deconvolutional
layers or the transposed convolution. The convolution
layer applies filters which view the input through the
behavior of “convolution”, and the filter size is usually
defined by the parameters (Lee et al., 2023).

4. RESULTS AND DISCUSSIONS

Python and libraries like Pandas, Numpy, and Sklearn
were used for data processing and ML analysis. The train-
ing was performed on an Intel i5-8350U CPU (1.70GHz,
16GB RAM). Hyperparameters were fine-tuned using grid
search algorithm (Lerman, 1980) with the MSE metric
and early stopping criterion. Table 1 details the obtained
hyperparameters for each ML model.

Table 1. Machine Learning models hyperpa-

rameters
LSTMAE model 1-DCAE model
#1, . 4 #L:6
#N per Enc layer : [512, 256] | #N per Enc layer : [128, 64, 32]
#N per Dec layer : [256, 512] | #N per Dec layer : [32, 64, 128]

Batch size : 512
Number of epochs : 50
Learning rate : 0,001

Batch size : 256
Number of epochs : 30
Learning rate : 0,005

L : Number of layers, N : Number of neurons,
Enc : encoding, Dec : decoding

Fig. 3 displays the training and validation loss curves for
the two trained models across training epochs. Fig. 3a
demonstrates that, for the One-Dimensional Convolutional
Autoencoder, training and validation errors converge to
approximately zero. These results indicate that after 8
training epochs, the 1-DCAE model can effectively rec-
ognize healthy actuator operation without overfitting.

For the Long Short-Term Memory Autoencoder model,
Figure 3b shows that the training and validation loss
converge more slowly, only after 10 epochs. Moreover, the
validation loss does not reach zero even after 49 training
epochs. These results indicate that the 1-DCAE model
outperforms the LSTMAE model on the training set.

To evaluate the performance of the trained models, they
were tested on a separate test set subjected to various
failure modes. Examples of linear and exponential limita-
tions on the maximum achievable instantaneous velocity
are presented in Figures 4 and 5, respectively.

In these figures, the colors blue, green, and red correspond,
respectively, to the error associated with healthy data used
for training, healthy data used for testing (unseen during
the algorithm’s training), and faulty data employed to
evaluate the algorithm’s capability in detecting actuator
faults. The results demonstrate that both algorithms ef-
fectively detect actuator failure modes. Specifically, the
relatively low error on test data (green color) indicates
that the models successfully classified these data as repre-
senting healthy operation, despite not having encountered
them during training. However, for failure data, the re-
construction error increases sharply, signaling anomalous
actuator behavior.

For the 1-DCAE model (Figures 4c and 5c¢), the recon-
struction error is nearly zero on the training and test
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Fig. 3. Training and test loss for the trained ML models

sets. In contrast, a sharp increase of approximately 400%
is observed as soon as the actuators enter the failure
mode. Subsequently, the error continues to rise, reaching
values between 0,05 and 0,175 for the exponential failure
simulation and between 0,04 and 0,150 for the linear failure
simulation.

However, for the LSTMAE model, the distinction between
normal and faulty actuator behavior is less pronounced.
The model’s loss fluctuates between values of 0,02 and
0,07, which is higher than the loss of the 1-DCAE model.
Furthermore, the increase in error at the onset of the fail-
ure regime is approximately 50%, with values continuing
to rise until reaching a maximum of 0,2 when the actuators
stop operating, for both simulated failure modes. These re-
sults support the use of the one-dimensional convolutional
autoencoder for failure detection of piezoelectric actuators.
Furthermore, we recommend using a loss threshold of 0.05
for failure detection. Indeed, the reconstruction error on
healthy data remains well below this value. In contrast,
the error quickly reaches 0.05 at the onset of the failure
mode, allowing for failure detection within 1 hour and 45
minutes for both studied cases.

5. CONCLUSIONS

In this study, we proposed an approach for failure detec-
tion of piezoelectric actuators in micro-assembly machines.
Given the complexity of the system, a data-driven ap-
proach was employed. To achieve this, we collected the
machine log data, which was then filtered and enriched
with additional variables. We subsequently simulated fail-
ures at the end of the operating sequences based on linear
and exponential degradation modes, leveraging human
expertise. Two autoencoder algorithms were trained ex-
clusively on healthy operation data: the LSTM autoen-
coder and the one-dimensional convolutional autoencoder
(I-DCAE). Both models proved effective in distinguish-
ing between healthy and faulty data through variations
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(a) Failure simulation results for the instantaneous velocity of X1
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Fig. 4. Failure detection results with linear degradation
(a=0,156 and b=3192)

in reconstruction error. However, the 1-DCAE algorithm
delivered superior results, producing a very low error for
healthy data and a relatively high error for failure data,
enabling failure detection over an hour before actuator
shutdown.

However, this work has certain limitations. First, the
methodology assumes that the algorithm is exposed to
all possible normal operating modes during the training
phase. In other words, an increase in reconstruction error
could correspond either to a failure or to a new normal
operating mode that was not included in the training data.
Second, the method is sensitive to the empirically defined
detection threshold, which can significantly impact the
prediction horizon.

In conclusion, this work represents a first step toward
failure detection of piezoelectric actuators without relying
on physical operating variables. Future research direc-
tions include testing these approaches with larger datasets
that encompass sufficient operating modes and real-world
failures to better evaluate algorithm performance. Ad-
ditionally, a post-predictive solution could be developed



to leverage predictions for decision support in predictive
maintenance, machine allocation, and scheduling.
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(a) Failure simulation results for the instantaneous velocity of X1
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Fig. 5. Failure detection results with exponential degrada-
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