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ABSTRACT

In prognostics and health management (PHM), data-driven
approaches are crucial for performing prognostics based on
historical data, relying on the analysis of extensive datasets
to identify patterns and relationships that contribute to pre-
dicting or optimizing variables. However, their efficiency is
contingent upon the availability of large, high-quality datasets
tailored to the specific task at hand.
Yet, real-world applications frequently face challenges as data
may not always be readily available due to limitations in data
acquisition systems or confidentiality concerns. Paradoxi-
cally, the contemporary era witnesses an unprecedented surge
in the availability of online databases across various fields.
These databases offer a plethora of data that can be harnessed
to develop, prototype, and test PHM solutions.
This study endeavors to introduce an innovative approach for
assessing the similarity between datasets, specifically tailored
for prognostic and health management applications. The ob-
jective is to empower the development of PHM solutions for
predefined systems without relying on data generated from
the system itself, but rather by leveraging analogous datasets.
To quantify the similarity between different datasets, we pro-
pose a set of criteria and sub-criteria based on the characteris-
tics of datasets. Subsequently, the analytic hierarchy process
(AHP), a well-established multi-criteria decision-making ap-
proach, is employed to systematically compare the impor-
tance of criteria and sub-criteria for each elementary pro-
cess within the PHM cycle. This dynamic process considers
the varying importance of criteria across different phases, ac-
knowledging that a criterion may not be uniformly significant
for all elementary processes. The evaluation of dataset simi-
larity incorporates the proposed criteria and sub-criteria, uti-
lizing a fundamental scale of importance intensity and weights
assigned through AHP. This holistic approach yields a com-

prehensive similarity score, enabling a nuanced understand-
ing of dataset compatibility.
To exemplify the efficiency of our proposed approach, we ap-
plied it to a practical case study. The study involves assessing
the similarity between a run-to-stop database of mechanical
bearings and a set of online databases dedicated to the same
application. Our solution facilitated the identification of cri-
teria pertinent to the case study, the determination of criterion
weights, and ultimately, the calculation of a similarity score
for each database. This process proved instrumental in select-
ing the most similar database, showcasing the practical utility
of our proposed approach in real-world PHM scenarios.

1. INTRODUCTION

Prognostics and Health Management (PHM) is an engineer-
ing and research field that aims to study fielded systems con-
ditions, predict their possible failures, and take appropriate
actions to mitigate those malfunctions effects (Bougacha, Varnier,
& Zerhouni, 2022). In this context, data-driven approaches
are being increasingly used to convert historical data into mod-
els that accurately represent the physical systems’ degrada-
tion behavior (Tobon-Mejia, Medjaher, Zerhouni, & Tripot,
2012). To perform efficiently, those approaches require the
presence of extensive datasets, adhering to established data
quality standards, and accurately reflecting the characteris-
tics of the system under study. However, for real systems,
data collection is a complicated process that requires setting
up sometimes costly acquisition devices, overcoming confi-
dentiality issues, and selecting the characteristics of the data
to be collected (data format, relevant variables, data quality
requirements...). This has led to a problem of insufficient
amount of data for some PHM applications and uncertainty
regarding the characteristics of the data to be collected.
Conversely, the current era is experiencing a proliferation in
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both the quantity and diversity of online databases, with ap-
proximately 31 million databases accessible on the Internet
as of August 2020 (Benjelloun, Chen, & Noy, 2020). These
publicly accessible datasets span a broad spectrum of do-
mains, encompassing around 4600 domains in August 2020
(Benjelloun et al., 2020), and are amenable to adaptation for
analogous problem-solving scenarios.
This theme has motivated this research work. We are inter-
ested in finding an approach for datasets similarity evalua-
tion that makes it possible to find, among freely accessible
datasets, the most similar dataset to a sample of data from a
system studied in order to overcome the problem of lack of
data for PHM applications.
In pursuit of this goal, we have introduced a set of criteria
grounded in data characteristics to assess the similarity be-
tween datasets. Subsequently, we presented a methodology
employing the Analytical Hierarchy Process (AHP), a widely
recognized multi-criteria decision-making technique. This
methodology serves to determine criteria weights and eval-
uate datasets similarity on the base of those criteria.
The remainder of this paper is organized into four sections.
Section 2 summarizes previous works related to data insuffi-
ciency, data characterization, and the AHP technique. Section
3 describes the proposed methodology. Section 4 presents an
illustrative case study evaluating the similarity between dif-
ferent bearing datasets. In section 5, a reliability evaluation
approach is proposed to assess the consistency of the results.
Finally, section 6 summarizes the main findings and outlines
future directions for research.

2. RELATED WORK

2.1. Solving the data insufficiency problem

The data insufficiency problem was the subject of several re-
search works. Indeed, (Guo, Lei, Xing, Yan, & Li, 2018)
require the existence of two conditions for the success of ma-
chine diagnosis data-driven intelligent approaches : Labeled
data containing fault information is available and training and
test data are drawn from the same probability distribution.
However, for some systems, it is difficult to obtain massive
labeled data (Guo et al., 2018).
One of the solutions proposed in the literature is Transfer
Learning. It is defined as follows: Given a source domain DS
with a corresponding source task TS and a target domain DT
with a corresponding task TT , transfer learning is the process
of improving the target predictive function fT(·) using related
information from DS and TS , where DS ̸= DT or TS ̸= TT
(Weiss, Khoshgoftaar, & Wang, 2016).
The transfer learning approach has been applied to several
industrial systems. (Wen, Gao, & Li, 2017) applied deep
transfer learning method for fault diagnosis in a big data en-
vironment. Their approach was tested on a Case Western
Reserve University bearing dataset (Smith & Randall, 2015).
(Shao, McAleer, Yan, & Baldi, 2018) developed a deep trans-

fer learning framework for mechanical fault diagnosis and
classification, and created a repository of several reference
datasets.
Despite its ability to solve the data gap problem, the transfer
learning technique requires that the source and target data are
similar and of the same distribution.
Another widely used approach is data augmentation. This
technique consists in increasing the amount of training data
by using the information contained within it (Perez & Wang,
2017).
Various data augmentation techniques have been applied to
specific problems. The main techniques fall under the cate-
gory of data warping, which is an approach to directly aug-
ment the input data to the model in the data space. This tech-
nique has been applied for several industrial applications and
on various types of data. (Li, Zhang, Ding, & Sun, 2020) em-
ployed it for fault diagnosis of rotating machines. They ap-
plied 5 techniques for data augmentation in the form of digital
signals, namely, Gaussian noise, masking noise, signal trans-
lation, amplitude shift, and time stretching.
Moreover, this technique is widely used with image data. As
an example, we cite the work of (Wang, Yang, Jiang, & Fan,
2020) on image augmentation for crack detection using 9 dif-
ferent techniques.
Certainly, the data augmentation technique is useful to over-
come the problem of lack of data for different applications
and data types. However, this approach requires the existence
of a minimal amount of data to be augmented.
On the other hand, other alternatives are used by researchers
and industrialists to generate artificial data, such as physical
model-based simulation (Saxena, Goebel, Simon, & Eklund,
2008) or test bench fabrication (Nectoux et al., 2012).

2.2. Analytical Hierarchy Process

The Analytical Hierarchy Process (AHP) was developed by
Saaty in the 1970s (Saaty, 1980). This method, used in many
fields related to multiple criteria decision-making (MCDM)
is considered one of the most useful decision-making tech-
niques (Ahmadi, Arasteh Khouy, Kumar, & Schunnesson, 2009).
It’s a methodology for relative measurement (Brunelli, 2014)
where the focus is on proportions between some quantities
rather than their exact measurement.
In AHP, The problem is divided into a hierarchy of quali-
tative and quantitative criteria, and then, using experience,
the degree of relative importance is deducted. According to
(Nydick & Hill, 1992), the AHP method is based on 4 steps :

1. Problem structuring

2. Data collection and measurement

3. Normalized weights determination

4. Application and problem-solution-finding

The Analytical Hierarchy Process has been used in several
industrial applications to make decisions in different areas.
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(Cabrita & Frade, 2016) proposed an AHP-based solution to
the supplier selection problem using fourteen different crite-
ria. (Ren & Lützen, 2015) used AHP for fuel evaluation and
selection under nine criteria for emission reduction from ship-
ping. (Kilic, Zaim, & Delen, 2014) evaluated and selected the
best ERP system using an AHP-based solution to solve this
MCDM problem.
Hence, the analytical hierarchy process can be considered as
a strong decision-making tool that can be used to evaluate and
select the best action/alternative in multiple criteria decision-
making problems.

2.3. Data Characterization

Databases similarity assessment first requires the establish-
ment of data characterization criteria. Several previous works
have addressed the issue of database characterization. How-
ever, the definitions and criteria proposed differ from one
work to another, and the research has not resulted in unified
criteria.
In this context, (Alelyani, Liu, & Wang, 2011) proposed 4
characteristics and studied their effects on feature selection
stability. The proposed characteristics are the number of sam-
ples, features and classes, and the data distribution. (Bhatt,
Thakkar, & Ganatra, 2012) divided thirteen characterization
criteria into 2 different groups: phenotype characteristics deal-
ing with entropy and the noise-signal ratio, and characteris-
tics concerning the genotype of a dataset, divided into 2 cate-
gories:

• Simple Characteristics concern the attributes and instances’
numbers

• Statistical Characteristics that deal with the statistical as-
pect of data.

(Oreski, Oreski, & Klicek, 2017) characterized data by 11
characteristics in 5 different groups, consisting mainly of stan-
dard, data sparsity, statistical, information-theoretic, and noise
measures.
On the other hand, data quality has emerged as a fundamental
notion for characterizing data. (Strong, Lee, & Wang, 1997)
have defined high-quality data as data that is suitable for data
consumers. Thus, we can conclude that data with different
degrees of quality will lead to different results. (Redman,
1997) proposed four data quality characteristics most stud-
ied in the literature: accuracy, consistency, completeness, and
timeliness. (Omri, Al Masry, Mairot, Giampiccolo, & Zer-
houni, 2021) suggest that for PHM applications, data quality
is characterized by volume, accuracy and completeness.

3. PROPOSED APPROACH

The proposed methodology (Fig. 1) is composed of four dif-
ferent phases. The first phase includes the proposal of sim-
ilarity criteria and sub-criteria. The second phase is linked
to the PHM cycle and the processes that make it up. The

third phase details the criteria and sub-criteria weights calcu-
lation using AHP technique. The final phase is dedicated to
decision-making using the established methodology.

3.1. Problem modeling / Criteria setting

The first step consists of proposing similarity criteria accord-
ing to which the similarity will be evaluated. This step is also
called ’Problem modeling’ for AHP applications (Ishizaka &
Labib, 2011). In fact, it is recommended to structure the cri-
teria in a hierarchical structure to be able to focus on their
importance when assigning their weights (Ishizaka & Labib,
2011). A structure of sub-criteria assembled in clusters (cri-
teria) helps describe the problem more conveniently and re-
duces bias (Ishizaka, 2004).
To define criteria that are in line with this problem, we mainly
rely on the data characterization criteria proposed in the lit-
erature. In (Table 1), a non-inclusive list of 17 sub-criteria
divided into four criteria is proposed to evaluate the similar-
ity between databases. These criteria can be used fully or
partially, depending on the application or case study under
consideration.
In addition to the attributes outlined in existing literature,
we have introduced two supplementary sub-criteria, namely
’Data extension’ and ’Data format.’ Specifically, within the
context of a given system and application, data represent-
ing the system state may manifest in various types and for-
mats, such as images, signals, or tabular data. Disparities in
data format and extension necessitate distinct characteriza-
tions and treatments.
Furthermore, our research proposes a novel set of application-
related criteria, consisting of two sub-criteria. These crite-
ria aim to evaluate the domain (e.g., manufacturing, medical,
transportation) of the system depicted in the dataset, along
with discerning the data source—whether it originates from a
real-world application, a simulation, or a test bench.

3.2. PHM cycle modeling

In order to assign weights to each similarity criterion, we pro-
pose to, firstly, divide the studied PHM cycle into elementary
processes. In fact, the PHM cycle is composed of seven el-
ementary processes according to (Omri, Al Masry, Mairot,
Giampiccolo, & Zerhouni, 2020), namely data acquisition,
data processing, data assessment, diagnostic, prognostics, de-
cision support, and HMI. From data acquisition to decision
support and HMI, the importance of each of the established
criteria depends on the process.
For example, the data distribution a negligible impact on the
data acquisition process. However, this characteristic is very
important in the data processing and exploitation processes
(diagnostic and prognostic). Thus, the importance of each of
the criteria will be judged with respect to every PHM process
separately.
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Figure 1. AHP based approach for datasets similarity evaluation

Table 1. Data similarity criteria

Criteria Sub-criteria
1. Number of attributes (Alelyani et al., 2011; Bhatt et al., 2012; Oreski et al., 2017)
2. Number of instances (Alelyani et al., 2011; Bhatt et al., 2012; Oreski et al., 2017)

Standard criteria 3. Number of classes (Alelyani et al., 2011; Bhatt et al., 2012; Oreski et al., 2017)
4. Number of binary features (Bhatt et al., 2012)

5. Data format
6. Data extension

7. Data distribution (Alelyani et al., 2011)
8. Features correlation (Bhatt et al., 2012; Oreski et al., 2017)

Statistical criteria 9. Multivariate normality (Oreski et al., 2017)
10. Mean Kurtosis of attributes (Bhatt et al., 2012)
11. Mean skewness of attributes (Bhatt et al., 2012)

12. Accuracy (Omri et al., 2021; Redman, 1997)
13. Completeness (Omri et al., 2021; Oreski et al., 2017)

Data quality criteria 14. Consistency (Redman, 1997)
15. Timeliness (Redman, 1997)

Application related 16. Field of application
criteria 17. Data source

3.3. Criteria / Sub-criteria weights determination

Notation:

• Pi : Elementary process i (i=1,..., L)
• Dh : Similar dataset h (h=1,..., Q)
• Cj : Criterion j (j=1,..., N)
• Xj,i : Weight of criterion j for process i
• SCk : Sub-criterion k (k=1,..., M)

• Yk,i : Weight of sub-criterion k for process i

• Wk : Weight of sub-criterion k

• Mj : Number of sub-criterion related to the criterion j

• Zh,k : Similarity score of the candidate dataset h with
the target dataset with respect to the sub-criterion k

• Rh : Similarity score of the candidate dataset h with the
target dataset.
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In the AHP technique, a ratio scale is used to derive, two by
two, the criteria’s and sub-criteria’s importance. This com-
parison, unlike techniques that use interval scales, requires
no units (Ishizaka & Labib, 2011) and assures a more accu-
rate decision than comparing all the criteria at once.
The pairwise comparison of criteria, and every group of sub-
criteria, is realized using Saaty’s 1-9 scale for pairwise com-
parison (Saaty, 2005) described in Table 2.

Table 2. Saaty’s 1-9 scale for pairwise comparison

Intensity of importance Definition
1 Equal importance
3 Moderate importance
5 Strong importance
7 Very strong importance
9 Extreme importance

To determine the weights of N criteria for the elemental pro-
cess Pi, An NxN matrix is created, where aj1,j2 describes the
importance of criterion Cj1 over criterion Cj2. Therefore,
for all j1 and j2, aj1,j2 is the inverse of aj2,j1 and aj1,j1 = 1.


1 a1,2 .. a1,N

a2,1 1 .. a2,N
.. .. .. ..

aN,1 .. aN,N−1 1

 (1)

This procedure is carried out to deduce the relative impor-
tance of the criteria by comparing them two by two using the
fundamental scale of importance intensity. The weight Xj,i

of criterion Cj in relation to the process Pi is calculated us-
ing equation 2.

Xj,i =

∑N
j2=1(

aj1,j2∑N
j1=1 aj1,j2

)

N
(2)

Similarly, the sub-criteria relating to each criterion are com-
pared two by two, and the weight of each sub-criterion in
relation to the Pi process is calculated using equation 4


1 b1,2 .. b1,Mj

b2,1 1 .. b2,Mj

.. .. .. ..
bMj,1 .. bMj,Mj−1 1

 (3)

Yk,i =

∑Mj
k2=1(

bk1,k2∑Mj
k1=1 bk1,k2

)

Mj
×Xj,i (4)

At the end of this procedure, the weight of each criterion/sub-
criterion is given, showing their importance for each elemen-

tary process of the PHM cycle.
In order to deduce the weight of a sub-criterion for the whole
cycle, an average of these weights is calculated (equation 5).

Wk =

∑L
i=1 Yk,i

L
(5)

3.4. Similarity score calculation

In this final step, the similarity Zh,k of every candidate dataset
Dh with the studied dataset regarding each sub-criterion k
is evaluated. The assessment is done using the fundamental
scale of importance intensity (Table 2).
For quantitative criteria, an odd number between 1 and 9 is
assigned, depending on the decision-maker’s expertise. On
the other hand, for qualitative criteria, only two possible val-
ues can be given, 9 for two data sets with similar attributes
and 1 otherwise.
Finally, a normalized similarity score of each candidate dataset
Rh is calculated using equation 6. The higher the similarity
score, the more the concerned dataset is similar to the target
dataset. A similarity score of 1 means that the two compared
datasets have identical characteristics.

Rh =

∑M
k=1 Zh,k ×Wk

9
(6)

4. ILLUSTRATIVE CASE STUDY

The proposed database similarity assessment methodology
will be applied to a case study of bearing failure databases
available online.
A bearing is a machine component that lessens friction be-
tween moving elements in mechanical engineering. It is fre-
quently used in wheels or axles to support and guide a rotating
or oscillating shaft. Bearings can be subject to various fail-
ures, manifested by cracks, wear marks, chips, and abnormal
noises. These failures can significantly affect the mechanical
and energy sectors’ capacity to operate, level of safety, and
financial aspect (Nectoux et al., 2012).
In the context of PHM applications for bearing condition prog-
nosis, (Nectoux et al., 2012) provided a database for the IEEE
PHM 2012 Prognostic Challenge. The experiments were car-
ried out on the PRONOSTIA platform at the Femto-ST In-
stitute, and the results present 9 features relating to run-to-
failure tests of 17 bearings.

4.1. Proposed criteria and PHM cycle modeling

For the application under consideration, based on the criteria
summary table (Table 1), eleven sub-criteria split among three
criteria were proposed. The sub-criteria relating to the stan-
dard criteria were retained, except for the number of classes.
This selection is justified by the studied databases, which
were not originally designed for classification purposes and
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lack class labels. In addition, the application-related criteria
were also retained with the proposal of two additional criteria
specific to this application, namely the number of operating
conditions applied and the number of tested bearings. More-
over, two of the data quality sub-criteria were used in this
case study. The completeness was evaluated as the ratio of
non-empty cells over all available cells, and the accuracy was
assessed as the presence or absence of noise.
For this application, the PHM cycle was simplified to 3 ele-
mentary processes, namely the data acquisition, the data pre-
processing, and the prognostics processes.

4.2. Similar databases collection

A collection of four databases, available online, for the same
applications, was carried out.
The first dataset (Kaggle, 2023) is provided by Quantum com-
pany in collaboration with Kharkiv Polytechnic Institute. It
consists of 3-axis vibration measurements of 112 rotating bear-
ings.
The second dataset (Qiu, Lee, Lin, & Yu, 2006) is a run-to-
failure dataset of four bearings under one operating condition,
provided by Qiu et al. Eight features related to the vibration
and the temperature of the bearings were collected to study
their health state.
The third data set (CWRU, .) is provided by Case Western
Reserve University and presents ten statistical features related
to measurements of 21 bearings under fixed operating condi-
tions that manifested ten possible types of faults.
Finally, the fourth database presents recordings of the accel-
eration of a high-speed bearing used for wind turbines over
30 days (6 seconds daily). These recordings were made un-
der two operating conditions.
Table 3 details the selected dataset characteristics in relation
to the criteria and sub-criteria chosen for the study.

4.3. Criteria and sub-criteria weights calculation

As mentioned in section 3, and in order to determine the
sub-criteria weights, a pairwise comparison of the importance
of the criteria for every elementary PHM process was per-
formed.
Table 4 details the process of comparing importance and cal-
culating criteria weights for the data acquisition process.
The criteria weights were calculated using equation 2, after
constructing the comparison matrix. The application crite-
rion contributes the most to selecting a similar dataset for the
data acquisition process. In addition, a similarity in the appli-
cation criterion is strongly preferred to the quality criterion.
In fact, a different application may require another data acqui-
sition system. Moreover, as seen in Table 4, no two criteria
are of equal importance for the acquisition process.
Table 5 compares the criteria importance and weights in the
data preprocessing process. In contrast to the data acquisition
process, the application criterion has an insignificant weight

compared to standard and quality criteria, indicating a lower
priority in this context. Conversely, the quality criterion holds
the highest significance in selecting an appropriate dataset
in the preprocessing process, holding nine times more im-
portance than the application criterion and three times more
significance than the standard criterion. These findings align
with expectations, as the preprocessing process rarely depends
on applications and focuses mainly on data quality and stan-
dard characteristics.
The weights of each family of sub-criteria were then deter-
mined for each elementary process of the PHM cycle. This
is done by comparing them two by two using the 1-9 scale
for pairwise comparison and then, by applying equation 4 to
incorporate the weights of the associated criteria.
Table 6 shows the weights of the standard sub-criteria for the
data acquisition process. The number of features is found
to be the most important sub-criterion to assess the similarity
between two datasets concerning the data acquisition process.
In fact, features (variables) are collected using acquisition de-
vices like sensors. These devices are costly and require stud-
ies to set them up and to ensure data acquisition. This sub-
criterion is therefore the most important for this PHM pro-
cess. The number of features sub-criterion is considered to
be very strongly important than the number of instances, ex-
tremely important than the data extension sub-criterion, and
moderately important than the data format sub-criterion.
The data format is the second most important standard sub-
criterion to assess datasets similarity in relation to the data ac-
quisition process. It is strongly more important than the num-
ber of instances and the number of binary features, and mod-
erately more important than the data extension sub-criterion.
The Standard sub-criteria importance and weights for the prog-
nostic process are described in Table 7. Similarly to the ac-
quisition process, the number of features criterion is the most
important factor in determining databases’ similarity in re-
lation to the prognostic process. Additionally, the data ex-
tension is the least impacting factor in both processes. The
second most important standard sub-criterion is the number
of binary features in this context. It is moderately more im-
portant than the number of instances and data format criterion
and highly more important than the data extension criterion.
The final weights of all the considered sub-criteria for the
whole PHM cycle are detailed in Table 8.
The accuracy sub-criterion is found to be the most impor-
tant. Since the scores are normalized, then a weight of 0,3603
means that this sub-criterion contributes by 36,03% to the
final decision about datasets similarity. The following sub-
criteria are the number of tested bearings, the number of oper-
ating conditions, and the number of collected features. These
four sub-criteria contribute by more than 75% to the final de-
cision.
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Table 3. Collected datasets characteristics

Target dataset Candidate Candidate Candidate Candidate
Dataset 1 Dataset 2 Dataset 3 Dataset 4

Number of attributes 7 13 8 10 2
Number of instances 18196480 10265700 4415488 2048 29,286,800
Number of binary features 0 0 0 0 0
Data format tabular tabular text tabular binary data container
Data extension .csv .csv text .csv .mat
Field of application Academic Industrial Academic Industrial energy industry
Data source test bench test bench test bench test bench real life
Number of operating conditions 3 3 1 1 2
Number of bearings tested 17 112 4 21 1
Completeness 100,00 % 100,00 % 100,00 % 100,00 % 100,00 %
Accuracy noised X noised X noised

Table 4. Criteria matrix and weights for the data acquisition
process

Standard Application Quality Criteria
weights

Standard 1 1/3 3 0,2605
Application 3 1 5 0,6333
Quality 1/3 1/5 1 0,1062

Table 5. Criteria matrix and weights for the preprocessing
process

Standard Application Quality Criteria
weights

Standard 1 7 1/3 0,2946
Application 1/7 1 1/9 0,0567
Quality 3 9 1 0,6486

4.4. Similarity score calculation and decision-making

In this final step, the similarity of every candidate dataset
with the target dataset is evaluated with respect to every sub-
criterion using the fundamental scale of importance intensity
(Table 2).
Similarity based on qualitative criteria is assessed using the
Saaty scale. In other words, if both datasets have the same
attribute, a rating of 9 is assigned; otherwise, a rating of 1 is
assigned.
For example, for the data format sub-criterion, two candidate
datasets are of the same format as the target dataset, so they
got a similarity score of 9. The other two datasets are of dif-
ferent formats (text and binary data container), leading to a
weak similarity score of 1.
A score of similarity, according to every sub-criterion, be-
tween each candidate dataset and the target dataset is given.
Afterward, the weights deducted in the previous step are used
to get a similarity score for every candidate dataset 8.
The second dataset (Qiu et al., 2006) is found to be the most
similar dataset to the target dataset (Nectoux et al., 2012)
with a similarity score of 0,7143. However, the first can-
didate dataset (Kaggle, 2023) is the least similar dataset to

the target dataset. This is mainly caused by the difference in
the accuracy sub-criterion, the number of tested bearings and
the number of features. These sub-criterion were found to
be three of the four most important comparison sub-criteria.
Therefore, a low score in these attributes leads to a weak over-
all similarity score.
If a simple normalized mean of the similarity scores is cal-
culated, the first candidate dataset will obtain a higher score
of 0,7172, meaning that it is the most similar dataset. This
shows the importance of assigning weights to the comparison
sub-criteria.
It is important to note that, although the fourth dataset is the
only one originating from the real world, it was not selected.
This decision stems from the fact that the ’data source’ crite-
rion is just one of several simulation criteria used in the se-
lection process. Moreover, the target dataset itself is derived
from a simulation, rendering dataset number 4 dissimilar in
terms of data source. Our aim is to select the dataset that
most closely resembles the target dataset, rather than simply
identifying the best dataset.

5. DECISION RELIABILITY

The methodology outlined in this study hinges upon conduct-
ing pairwise comparisons of both criteria and sub-criteria to
ascertain their respective weights. These comparisons are
based on subjective judgments provided by the decision-maker.
Consequently, it becomes important to assess the consistency
of these judgments. Consistency, within the context of the
Analytic Hierarchy Process (AHP), denotes the extent to which
the pairwise comparisons rendered by decision-makers ex-
hibit logical coherence and absence of contradictions. Incon-
sistencies in judgments bear the risk of yielding unreliable
weight assignments, thereby potentially skewing the subse-
quent similarity evaluations.
Several works have addressed the problem of consistency of
AHP matrices. One way to deal with this is by determining
the Consistency Ratio (CR) (Pant, Kumar, Ram, Klochkov,
& Sharma, 2022; Franek & Kresta, 2014). First, the Consis-
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Table 6. Standard sub-criteria matrix and weights for the data acquisition process

Number of Number of Number of Data Data Criteria
instances features binary features format extension weights

Number of instances 1 1/7 1/3 1/5 3 0,0740
Number of features 7 1 5 3 9 0,5048
Number of binary features 3 1/5 1 1/5 3 0,1163
Data format 5 1/3 5 1 3 0,2581
Data extension 1/3 1/9 1/3 1/3 1 0,0468

Table 7. Standard sub-criteria matrix and weights for the prognostic process

Number of Number of Number of Data Data Criteria
instances features binary features format extension weights

Number of instances 1 1/5 1/3 3 7 0,1449
Number of features 5 1 3 7 9 0,4992
Number of binary features 3 1/3 1 3 7 0,2298
Data format 1/3 1/7 1/3 1 7 0,0962
Data extension 1/7 1/9 1/7 1/7 1 0,0299

Table 8. Final weights and similarly scores of the candidate datasets

Sub-criteria Sub-criteria
weights

Candidate
dataset 1

Candidate
dataset 2

Candidate
dataset 3

Candidate
dataset 4

Number of instances 0,0156 5 3 1 5
Number of features 0,1008 3 7 5 1
Number of binary features 0,0224 9 9 9 9
Data format 0,0584 9 1 9 1
Data extension 0,0177 9 5 9 1
Accuracy 0,3603 1 9 1 9
Completeness 0,0721 9 9 9 9
Field of application 0,0354 5 9 5 3
Data source 0,0276 9 9 9 5
Number of operating conditions 0,1229 9 3 3 7
Number of bearings 0,1668 3 3 7 1
Similarity score 0,4787 0,7143 0,4863 0,6244

tency Index (CI) is computed according to equation 7:

CI =
λmax −N

N − 1
(7)

with λmax representing the largest eigenvalue of the pairwise
comparison matrix and N indicating the matrix size (number
of criteria or sub-criteria).
Using pre-defined tables (Table 9), the Random Index (RI)
corresponding to the matrix size is determined. The Consis-
tency Ratio (CR) is then calculated by dividing CI by RI. A
CR value below 0.1 signifies acceptable consistency in judg-
ments, while values exceeding 0,1 may indicate potential in-
consistencies requiring further scrutiny or adjustment.
As an example, the consistency ratio of the criteria pairwise
comparison matrix is 0,03 for the data acquisition process and
0,07 for the preprocessing process. These results demonstrate
that the weights of the resulting criteria are consistent and can
be used to reliably determine criteria weights.
On the other hand, the consistency ratio of the standard sub-
criteria matrix for the prognostic process is 0,11 meaning that

the comparison need to be adjusted in order to get a consistent
judgment of the sub-criteria weights.

6. CONCLUSION

In this work, a database comparison approach was proposed
to find a solution to the problem of lack of data for PHM ap-
plications. Indeed, for this field of study, and in order to de-
velop a data-driven PHM solution, datasets need to be avail-
able, containing all the variables describing the system under
study and complying with quality standards. In reality, this is
not always the case.
Therefore, we have proposed an approach for assessing the
similarity between a target dataset and a set of datasets avail-
able online. A set of criteria has been proposed, based on data
characteristics. As the criteria are not equally important for
judging similarity, a weight for each criterion is determined
using the analytical hierarchy process. The similarity of the
datasets is then scored against each criterion, and a normal-
ized score is calculated for each dataset.
The proposed approach has been applied to an illustrative

8
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Table 9. Random index for the AHP consistency ratio (Saaty, 1980)

Number of rows 1 2 3 4 5 6 7 8 9
RI 0 0 0,58 0,90 1,12 1,24 1,32 1,41 1,45

case, where the similarity of four datasets with a bearing op-
erating database has been evaluated. The application leads to
calculating similarity scores for each dataset and selecting the
most similar one.
This work presents a first step towards solving the problem
of lack of data for PHM applications. It makes it possible to
design a PHM solution for a given system without the need
to use data directly from that system.
On the other hand, this proposal is limited by the subjectiv-
ity of the decision-maker. The latter, responsible for rating
similarity and judging the importance of criteria, may be bi-
ased and lead to subjective decisions. We therefore recom-
mend that weights and scores be allocated by several experts
at the same time, in order to limit the subjectivity of decision-
makers.
In addition, considering the limitations of our current method-
ology, future studies may employ fuzzy techniques to reduce
the uncertainty of the decision. Furthermore, in this work, we
proposed a non-exhaustive list of criteria, other criteria can
also be used, namely the maturity of the data for example,
which leads to the generalization of the approach to various
fields and applications.
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