

1 **Electrochemical deposition of bimetallic sulfides on novel**
2 **BDD electrode for bifunctional alkaline seawater electrolysis**
3 **Mingxu LI^{1,2}, Genjie CHU^{1,2}, Jiyun GAO^{1,3}, Xiaolei YE^{1,2*}, Ming HOU^{1,2},**
4 **Shenghui GUO^{1,2}, Yunchuan LI^{1,2}, Ziqi ZHOU^{1,2}, Li YANG^{1,2*}, Pascal**
5 **BRIOIS⁴**

6

7 1. Faculty of Metallurgical and Energy Engineering, Kunming University of Science
8 and Technology, Kunming 650093, China

9 2. State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization;
10 Faculty of Metallurgical and Energy Engineering, Kunming University of Science
11 and Technology, Kunming 650093, China

12 3. School of Chemistry and Environment, Yunnan Minzu University, Kunming
13 650093, China

14 4. FEMTO-ST Institute (UMR CNRS 6174), UBFC/UTBM. Site de Montbéliard, F-
15 90010 Belfort-France

16

17

18

19 **Corresponding author:** Xiaolei YE (Stoneye2@163.com); LI Yang
20 (yanglikmust@163.com)

21

22

23

24

25

26

27 **Abstract**

28 Seawater electrolysis is an ideal technology for obtaining clean energy—green
29 hydrogen. Developing efficient bifunctional catalysts is critical for direct seawater
30 electrolysis to produce hydrogen. Currently, seawater electrolysis electrodes in the
31 form of metal substrates loaded with active catalysts are widely used. However, the
32 challenge of metal corrosion cannot be ignored. In this work, the boron-doped
33 diamond (BDD) with excellent corrosion resistance as a substrate to load active
34 catalysts for seawater electrolysis were explored. The step-by-step electrodeposition
35 method was used for FeCoS/Ni/BDD electrode preparation, which solved the problem
36 that the FeCoS active layer was difficult to adhere to the BDD substrate. The as
37 prepared FeCoS/Ni/BDD electrode exhibits interesting bifunctional catalytic
38 properties with the OER and HER overpotential of 425 mV and 360 mV in alkaline-
39 simulated seawater (containing 1 M KOH and 3.5 wt. %NaCl) at a current density of
40 100 mA cm⁻². At the same time, by adjusting the KOH concentration in the alkaline-
41 simulated seawater (increased to 3 M), the OER and HER overpotentials of the
42 electrode dropped sharply to 383 mV and 300 mV, respectively. This work provides a
43 new idea for the use of BDD substrates in the design of alkaline seawater electrolysis
44 electrodes with excellent corrosion resistance.

45 **Keywords:** Boron doped diamond, seawater electrolysis, bifunctional catalytic,
46 bimetallic sulfides, corrosion resistance

47 **1. Introduction**

48 As fossil energy becomes increasingly scarce and environmental pollution
49 becomes more prominent, the development of renewable clean energy has become
50 urgent ^{1,2}. In many renewable energy sources, hydrogen energy is regarded as an ideal
51 alternative to traditional fossil fuels due to its high energy density, excellent calorific
52 value and high environmental friendliness ³⁻⁵. Currently, hydrogen energy is mainly
53 produced from fossil fuels, industrial by-products, methanol reforming and water
54 electrolysis ^{6,7}. Hydrogen production from electrolyzed seawater is the most desirable

option for preparing hydrogen because it is clean and has zero carbon emissions⁸⁻¹⁰. Development of hydrogen production from electrolyzed water is limited by overpotential energy loss¹¹⁻¹³. Hydrogen production through electrolysis of water, where catalysts play a key role in economic viability and environmental sustainability, is demonstrated. Platinum electrodes are widely used in three-electrode devices for electrochemical analysis because of their excellent electrochemical inertness, electrical conductivity and mechanical stability¹⁴, but it still faces the problems of high potential and high price. The corrosion resistance of transition metal sulfides (TMS) is significantly enhanced in both acidic and alkaline environments¹⁵⁻¹⁸. The electronic structure of sulfides was effectively modulated by the introduction of defects, vacancies and morphology modulation by Hui Su et al. which resulted in the lowering of the OER energy barriers and the enhancement of the electrochemical properties^{17,19,20}. Nickel foam (NF) was treated with Al-doped Ni₃S₂ to obtain Al-Ni₃S₂/NF composites by Wei Liu et al. The test results indicated that the low overpotentials of HER and OER were determined to be 86 mV and 223 mV at a current density of 10 mA/cm² in 1 M KOH solution, respectively²¹. Nickel foam metal substrates have significant advantages such as high electrical conductivity, large specific surface area, high mechanical strength and easy processing. However, under industrial grade electrolyzed water conditions, nickel foam or copper foam metal substrates face a number of corrosion resistance issues. This means that under extreme conditions, substrates with better corrosion resistance and a wider range of applications need to be found.

The corrosion resistance of BDD electrodes in complex environments is mainly due to their unique electrochemical properties and potential for application in specific environments^{16,22}. BDD electrodes show excellent corrosion resistance and catalytic activity in wastewater treatment, effectively treating difficult-to-degrade industrial wastewater and enhancing its biochemistry^{23,24}. In certain gas detection applications, the BDD is able to be used as a sensor in corrosive gas environments, such as chlorine and sulfur dioxide^{22,25-27}. Electrodes made of BDD are commonly used for the

84 detection of heavy metal ions such as lead and mercury in water bodies^{22,28}. Due to the
85 high corrosion resistance of the BDD electrode, it can avoid a series of energy
86 consumption problems caused by corrosion problems of the metal substrate compared
87 to the traditional metal electrode. Therefore, in this paper, we attach cobalt-iron
88 sulfide to the BDD electrode, thus circumventing some related problems. And there is
89 a lack of research on current hotspots such as seawater electrolysis. Therefore, it is
90 necessary to expand more electrochemical applications of BDD electrodes and to
91 study the feasibility and practicality of their application.

92 In this paper, we report a two-step process for fabricating CoFeS/Ni/BDD
93 electrodes, involving electroplating a nickel layer onto BDD electrodes and
94 subsequently depositing cobalt-iron sulfides electrochemically. The structure and
95 morphology of the crystals were characterized by XRD and SEM, and the
96 electrochemical properties of the electrodes were tested by means of LSV, CV and
97 EIS. Increasing the concentration of KOH reduces the overpotential for both hydrogen
98 and oxygen evolution reactions, offering a new approach to lowering the evolution
99 potentials.

100 **2. Experimental**

101 **2.1 Materials**

102 Boron-doped diamond (BDD, 10 mm × 10 mm, single side) was purchased from
103 New Peak Technology Co. Nickel metal plate (Ni, 25 mm × 25 mm × 1.5 mm) was
104 purchased from Seiko Metal Materials Co. Ammonium chloride (NH₄Cl), nickel
105 chloride (NiCl₂·6H₂O), ferric chloride hexahydrate (FeCl₃·6H₂O), ammonia (NH₃),
106 potassium hydroxide (KOH), sodium chloride (NaCl), thiourea (CH₄N₂S), potassium
107 chloride (KCl), anhydrous ethanol (C₂H₅OH) were purchased from Tianjin Zhiyuan
108 Chemical Reagent Co.

109 **2.2 Preparation of Ni/BDD electrode**

110 Before electroplating, the boron-doped diamond (BDD) electrode, and the BDD
111 surface were first degreased to eliminate the effect of impurities on the electroplating

112 process. This step consisted of immersing the BDD surface in a solution of 1 M HCl
113 and 1 M NaOH and ultrasonic treatment using an ultrasonic cleaner for 30 min,
114 followed by rinsing the surface with anhydrous ethanol and deionized water for five
115 times each to ensure that the surface was clean and free of nickel powder, and then
116 drying the electrodes in an oven at 50 °C. Then, electroplating was used to deposit
117 nickel metal on the treated BDD surface. The process first involved configuring 100
118 mL of a mixed solution (0.1 M NiCl₂ + 2 M NH₄Cl). In the electroplating process, a
119 DC power supply was used to control a constant current of 0.1 A. The BDD electrode
120 was used as the cathode and the nickel plate as the anode. Next, BDD electrodes with
121 dimensions of 5 mm × 10 mm were immersed in an electrolyte at a temperature of 20°C
122 and electroplated for 30 min to successfully prepare Ni/BDD electrodes.

123 **2.3 Preparation of CoFeS/Ni/BDD electrode**

124 Cobalt-iron sulfides were electrochemically deposited onto prepared Ni/BDD
125 electrodes. The electrodeposition experiments were carried out in a three-electrode
126 system with an electrolyte consisting of a mixture of NiCl₂, FeCl₃ and thiourea.
127 Ni/BDD electrodes were used as working electrodes, Ag/AgCl electrodes as reference
128 electrodes, and carbon rods as counter electrodes. The concentrations of cobalt and
129 iron in the electrolyte directly determine the content of cobalt and iron in the
130 deposited layer, which in turn affects the electrocatalytic performance. Therefore,
131 CoFeS/Ni/BDD electrodes were synchronously prepared in three sets of electrolytes
132 with different cobalt and iron concentrations while keeping other conditions constant,
133 where the concentration ratio of NiCl₂ to FeCl₃ was set at 1-3 (7.5 mM: 7.5 mM-22.5
134 mM: 7.5 mM). The number of electrodeposition cycles is directly related to the
135 amount of cobalt, iron and sulfur deposited onto the Ni electrode. This remains a key
136 factor influencing the electrocatalytic performance of the electrode. For this purpose,
137 four CoFeS/Ni/BDD electrodes were prepared by cyclic voltammetry with a set scan
138 rate of 5 mVs⁻¹ and a scan range of -0.6-0.2 V. Each electrode underwent a different
139 number of electrodeposition cycles (5-20 turns). Finally, the appropriate cobalt-iron
140 concentration and number of electrodeposition turns were selected based on the

141 catalytic performance of these electrodes in 1 M KOH solution.

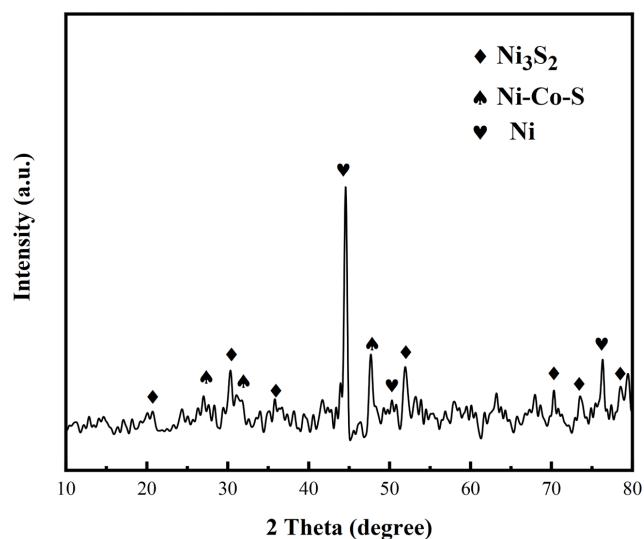
142 **2.4 Material characterization**

143 The BDD electrode-related information was characterized on a Bruker D8-
144 Advance x-ray diffractometer (Cu $\text{K}\alpha$, $\lambda = 1.5406 \text{ \AA}$) with a scanning speed of 3
145 degrees per minute and a scanning range of 10° to 100° . The diamond samples and the
146 precursor materials of the diamond-based electrodes were characterized
147 morphologically and microzonally analyzed for their chemical composition using a
148 Quanta 200 scanning electron microscope from FEI, USA. The surface elemental
149 composition as well as the chemical valence states of the samples were resolved using
150 multifunctional scanning imaging photoelectron spectroscopy of PH5000Versaprobe-
151 with A1Ka as the X-ray light source at 50 w and 15 kV.

152 **2.5 Electrochemical measurements**

153 On the three-electrode system of the Shanghai Chenhua CHI760e electrochemical
154 workstation, we conducted electrochemical tests, including cyclic voltammetry (CV),
155 linear scanning voltammetry (LSV), and alternating current impedance (EIS). These
156 tests were used for seawater electrolysis experiments, respectively. In this setup, the
157 three-electrode system had a BDD or BDD-based composite electrode as the working
158 electrode with an electrode area of $10 \times 10 \text{ mm}^2$ and an area of $10 \times 5 \text{ mm}^2$ immersed in
159 the solution. Hg/HgO or Ag/AgCl electrodes served as the reference electrodes, and a
160 carbon rod served as the counter electrode.

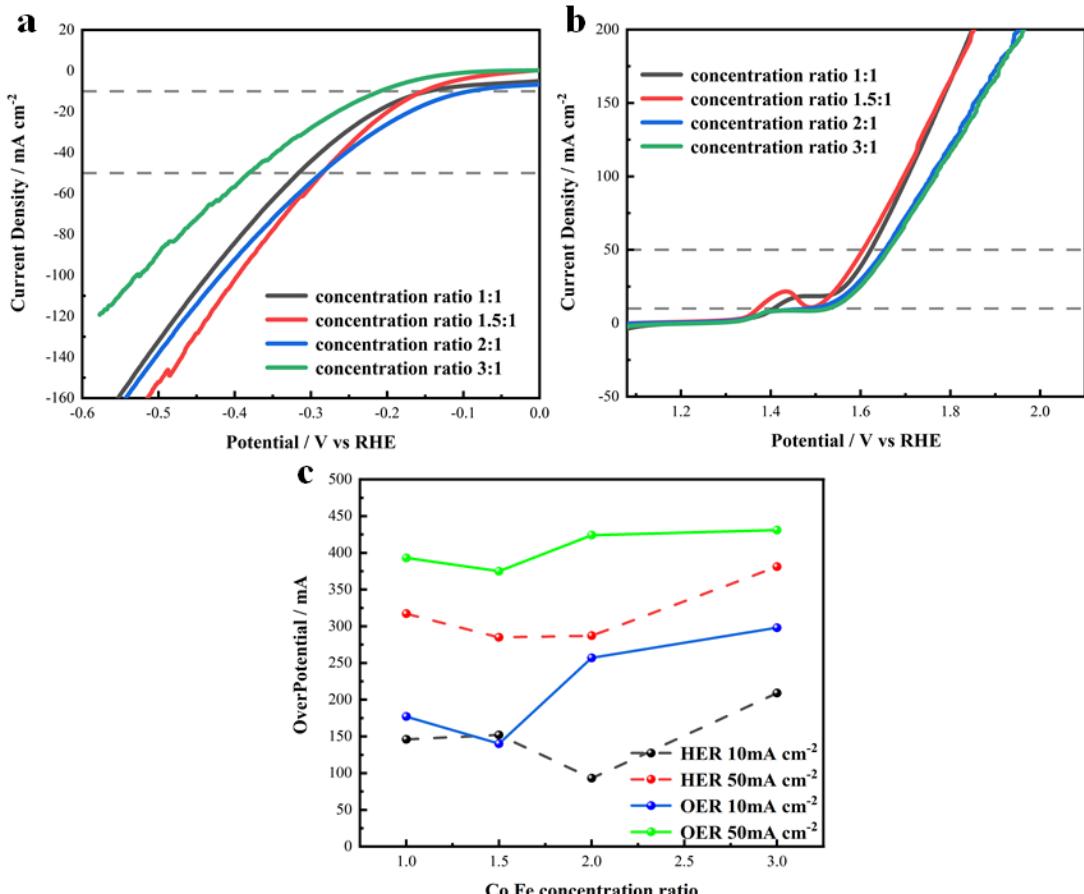
161 **3 Results and Discussion**


162 **3.1 Synthesis and structural characterization**

163 [Fig.1](#) shows the surface morphology and chemical composition of the electrode
164 samples at different stages throughout the preparation process. Smooth polycrystalline
165 pyramidal structure features can be observed on high quality BDD surfaces. The
166 tightly textured boron-doped diamond films are formed by their intricate arrangement
167 ([Fig.1a](#)). As shown in the SEM images of Ni/BDD samples at different magnifications
168 in [Figs.1b-c](#), agglomeration of cauliflower-like particles and uniform distribution of

169 columns can be clearly observed. The grooves between each column are well-defined,
170 which effectively increases the specific surface area and allows more active sites to be
171 exposed. The morphology of CoFeS/Ni/BDD electrode after electrodeposition is
172 depicted in [Figs.1d-f](#). A large amount of lamellar material was observed dispersed on
173 the surface of the columnar structure and embedded in the surface of the cauliflower-
174 like particles. This morphological change is indicated by the attachment of a new
175 substance of iron cobalt sulfide to the electrode surface. Furthermore, the constituent
176 elements of the CoFeS/Ni/BDD electrode surface were analyzed ([Figs.1g-h](#)). The
177 results indicate that the nickel particles are completely encapsulated by these
178 uniformly distributed elements. Combined with the analysis of elemental content in
179 [Fig.1h](#), it is evident that the elements Co, Fe, and S were deposited onto the surface of
180 Ni/BDD to form a CoFeS/Ni/BDD electrode. Three Ni diffraction peaks (PDF 04-
181 0850) are shown at 44.51°, 51.84°, and 76.37°, as demonstrated by the XRD spectra
182 of the heat-treated CoFeS/Ni/BDD electrodes in [Fig.2](#). The associated diffraction
183 peaks of Ni-Co-S correspond to the standard card (JSCPDS43-1477), and this was
184 observed simultaneously ²⁹. However, no obvious peaks of cobalt sulfide were
185 observed, which could be attributed to the small amount deposited during
186 electrodeposition of CoFeS ^{30,31}. In addition to this, a large number of Ni₃S₂
187 diffraction peaks (PDF 44-1418) were observed. None of the observed information
188 about iron sulfide was available, so the electrodeposited iron sulfide was assumed to
189 be amorphous, an assumption that is consistent with the results of the previous tests.

190
191 **Fig.1** (a) SEM images of the original BDD, (b-c) Ni/BDD SEM maps at different
192 magnifications, (d-f) Scanning electron micrographs of CoFeS/Ni/BDD at different magnifications
193 and their (g-h) EDS patterns and analysis of surface element content of CoFeS/Ni/BDD sample


194
195 **Fig.2** XRD pattern of CoFeS/Ni/BDD electrode.

196 **3.2 Electrochemical Properties**

197 **3.2.1 Electrochemical properties of CoFeS/Ni/BDD electrode**

198 The electrode samples indicated in [Fig.3](#) were prepared by electrodeposition in
199 electrolytes with different cobalt and iron concentrations. The hydrogen evolution
200 reaction and oxygen evolution reaction properties of the electrode samples were tested
201 in 1 M KOH solution to explore the optimal deposition parameters for cobalt and iron
202 concentrations.


203 CoFeS/Ni/BDD electrode materials are prepared by Co-Fe deposition technology.
204 The electrochemical activity of this electrode was evaluated for HER and OER using
205 various concentrations of Co in 1 M KOH solution, and the linear scanning
206 voltammetry (LSV) curves are shown in [Figs.3a-b](#). The HER and OER overpotential
207 line plots for a single CoFeS/Ni/BDD electrode at 100 mA cm⁻² and 200 mA cm⁻²
208 current densities are shown in [Fig.3c](#). [Fig.3c](#) reveals that the HER and OER
209 overpotentials of the CoFeS/Ni/BDD samples were observed to be minimized when
210 the Co-Fe concentration ratio was 1.5, indicating that the electrocatalytic performance
211 of this group of samples was optimal. CoFeS/Ni/BDD electrodes mentioned later in
212 this chapter were prepared as samples with a Co-Fe concentration ratio of 1.5, unless
213 otherwise noted.

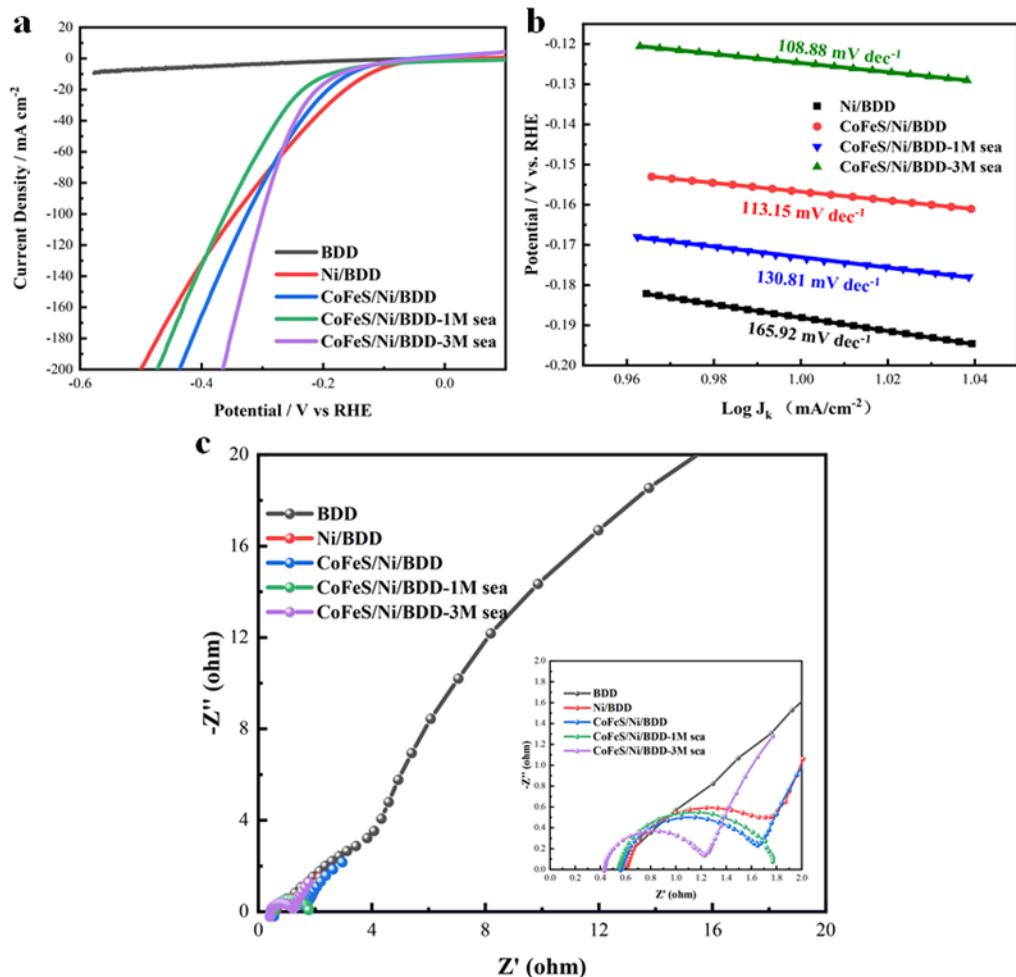
214

215 **Fig.3** CoFeS/Ni/BDD electrode prepared with different concentration ratios of cobalt and
 216 iron(a) HER performance, (b) OER performance and (c) overpotential line graph at current
 217 densities of 10 mA cm^{-2} and 50 mA cm^{-2} .

218 The HER/OER performance of CoFeS/Ni/BDD electrodes prepared at different
 219 number of cycles is depicted in **Fig.4**. This indicates that different number of cycles
 220 has a great influence on the catalytic performance of CoFeS/Ni/BDD electrodes. The
 221 electrocatalytic performance of the electrode was worst when only 5 cycles were
 222 made, while the catalytic performance gradually improving as the number of cycles
 223 increased. However, when the number of cycles reaches 20, the catalytic performance
 224 begins to decrease and is roughly equivalent to that achieved at 10 cycles. At the same
 225 time, the best HER and OER performance was achieved at 15 cycles (**Figs.4 a,b**).

226

227 **Fig.4** (a) HER performance, (b) OER performance of the CoFeS/Ni/BDD electrode prepared with
 228 5, 10, 15, and 20 electrodeposition cycles in the range of -0.6~0.2V at a scan speed of 5mV/s. and
 229 (c) overpotential line graph at 100 mA cm^{-2} and 200 mA cm^{-2} current densities


230 As shown in Fig.4c, combined with the analysis of overpotential line graphs of
 231 CoFeS/Ni/BDD electrode at 100 mA cm^{-2} and 200 mA cm^{-2} current densities. The
 232 HER overpotential values are 301 mA and 409 mA when the number of
 233 electrodeposition cycle turns is 15. The overpotential values are lower than 350 mA
 234 and 509 mA for 5 turns, 321 mA and 434 mA for 10 turns, and 324 mA and 441 mA
 235 for 20 turns. Similarly, the OER was lowest at 15 turns of cycling, with overpotential
 236 values of 401 mA and 499 mA, both of which are smaller than the overpotential
 237 values at 5 (455 mA, 569 mA), 10 (425 mA, 534 mA), and 20 (421 mA, 537 mA)
 238 turns of cycling.

239 In summary, the optimal process for the preparation of CoFeS/Ni/BDD
 240 electrodes by cyclic voltammetry electrodeposition was finally determined as 15
 241 cycles at a sweep rate of 5 mV/s in the range of -0.6~0.2 V.

242 **3.2.2 HER catalytic performance of CoFeS/Ni/BDD**

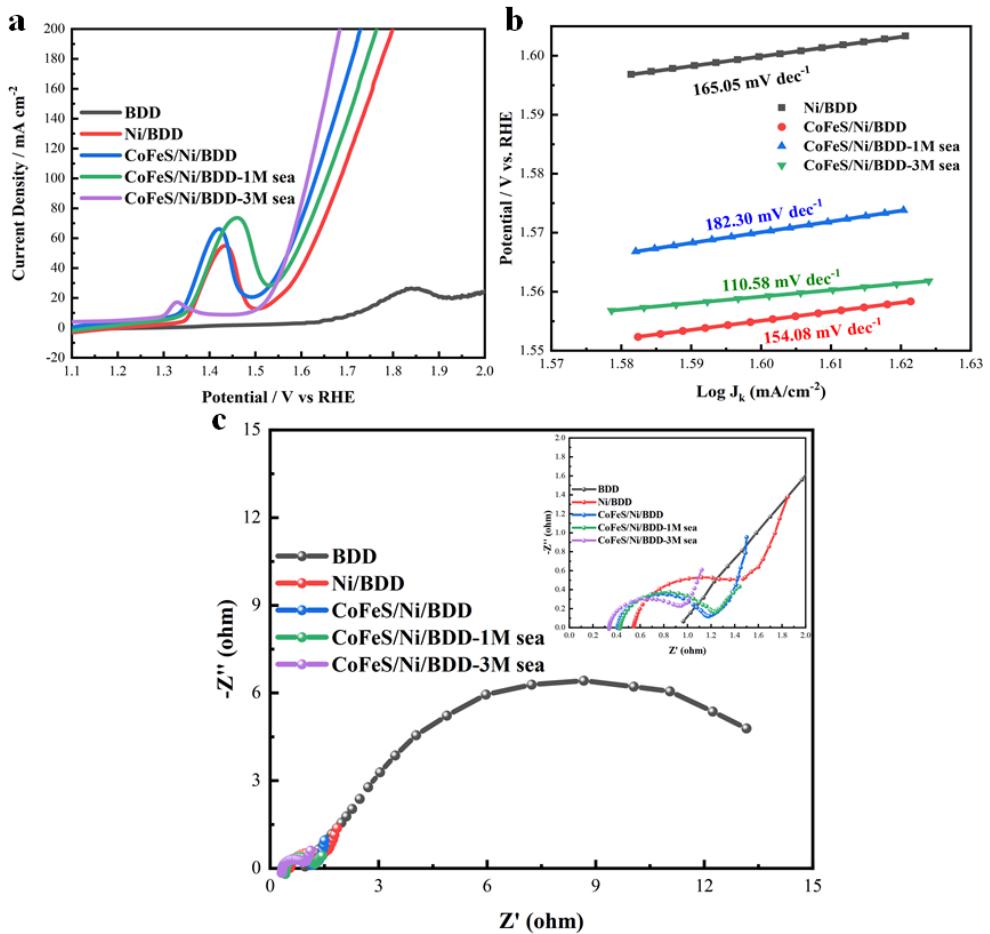
243 To assess the hydrogen evolution performance of the CoFeS/Ni/BDD electrode,
244 pristine BDD, Ni/BDD, and CoFeS/Ni/BDD electrodes were evaluated in a 1 M KOH
245 standard solution and an alkaline simulated seawater solution containing 3.5% NaCl
246 and 1 mol/L KOH. Furthermore, to emphasize the influence of KOH concentration on
247 the electrocatalytic effect, a control set of alkaline solution containing 3.5% NaCl and
248 3 mol/L KOH was included. Nitrogen was passed into the solution for 20 minutes
249 prior to testing to eliminate interference from dissolved oxygen. [Fig.5a](#) presents the
250 linear scanning voltammetry (LSV) curves of the pristine BDD, Ni/BDD, and
251 CoFeS/Ni/BDD tri-electrodes in a 1 M KOH standard solution, as well as the LSV
252 curves of the CoFeS/Ni/BDD electrode in alkaline simulated seawater (Figure
253 CoFeS/Ni/BDD-sea) at a sweep rate of 5 mV/s. In 1 M KOH, the pristine BDD
254 electrode exhibited negligible HER activity, and the Ni/BDD electrode had an
255 overpotential of 345 mV. The CoFeS/Ni/BDD electrode, however, showed an
256 overpotential of 325 mV, indicating a 5.7% reduction, which suggests that partial
257 substitution of the Ni surface with NiCo, Ni₃S₂, etc., enhances HER activity,
258 particularly at high current densities. In alkaline simulated seawater, the overpotential
259 increased to 360mV due to the reduction in HER activity by NaCl. When the KOH
260 concentration was increased to 3M, the overpotential was reduced to 300mV, which is
261 lower than that of the 1M KOH standard solution. This change suggests that
262 increasing the KOH concentration helps to improve the catalytic performance. The
263 HER Tafel slope, as in [Fig.5b](#), is then converted from the LSV curve in [Fig.5a](#). The
264 CoFeS/Ni/BDD electrode exhibits a slope of 113.15 mV/dec in 1 M KOH, which
265 increases to 130.81 mV/dec in alkaline simulated seawater. The Ni/BDD electrode has
266 a higher slope of 165.92 mV/dec compared to that of the CoFeS/Ni/BDD electrode.
267 Upon increasing the KOH concentration, the slope decreases to 108.88 mV/dec. By
268 comparing the Tafel slopes of the electrodes, the CoFeS/Ni/BDD electrode is seen to
269 significantly enhance the HER kinetics, an effect hypothesized to arise from the
270 strong catalytic capabilities of the novel materials, such as nickel-cobalt alloys and
271 nickel-iron sulfides, along with the increased specific surface area resulting from

272 morphological changes, collectively improving the electrode's catalytic performance.

273

274 **Fig.5(a)** LSV inverse scan curve of each electrode of BDD, Ni/BDD, and CoFeS/Ni/BDD scanned
 275 in 1 M KOH solution or alkaline simulated seawater (1 M/3 M) at a scan rate of 5 mV/s. (b)
 276 Current Tafel curve when the density is 10 mA cm⁻². (c) EIS curve relative to Hg/HgO when the
 277 potential is -1.1 V

278 As in [Fig.5c](#), The charge transfer kinetics at the electrodes as well as at the electrolyte
 279 interface were investigated in relation to the electrochemical impedance in the
 280 frequency range of -1.1 Vs Hg/HgO, 10 kHz to 0.01 kHz. All three electrodes, BDD,
 281 Ni/BDD and CoFeS/Ni/BDD, were placed in 1 M KOH solution for testing. The data
 282 obtained was plotted as a Nyquist semicircle by the software, and the magnitude of
 283 the charge transfer resistance (R_{ct}) during the reaction was determined by comparing
 284 the radius of its semicircle.


285 The results demonstrate that CoFeS/Ni/BDD has the smallest Nyquist radius
 286 indicating small R_{ct} and fast charge transfer during the oxygen evolution reaction. The

287 Nyquist semicircle in the 3M KOH simulated seawater solution was the smallest,
288 indicating the lowest R_{ct} and the fastest charge transfer rate. This is due to the fact
289 that an increase in the KOH concentration increases the ions in the solution, leading to
290 a lower resistance.

291 **3.2.3 OER catalytic properties of CoFeS/Ni/BDD**

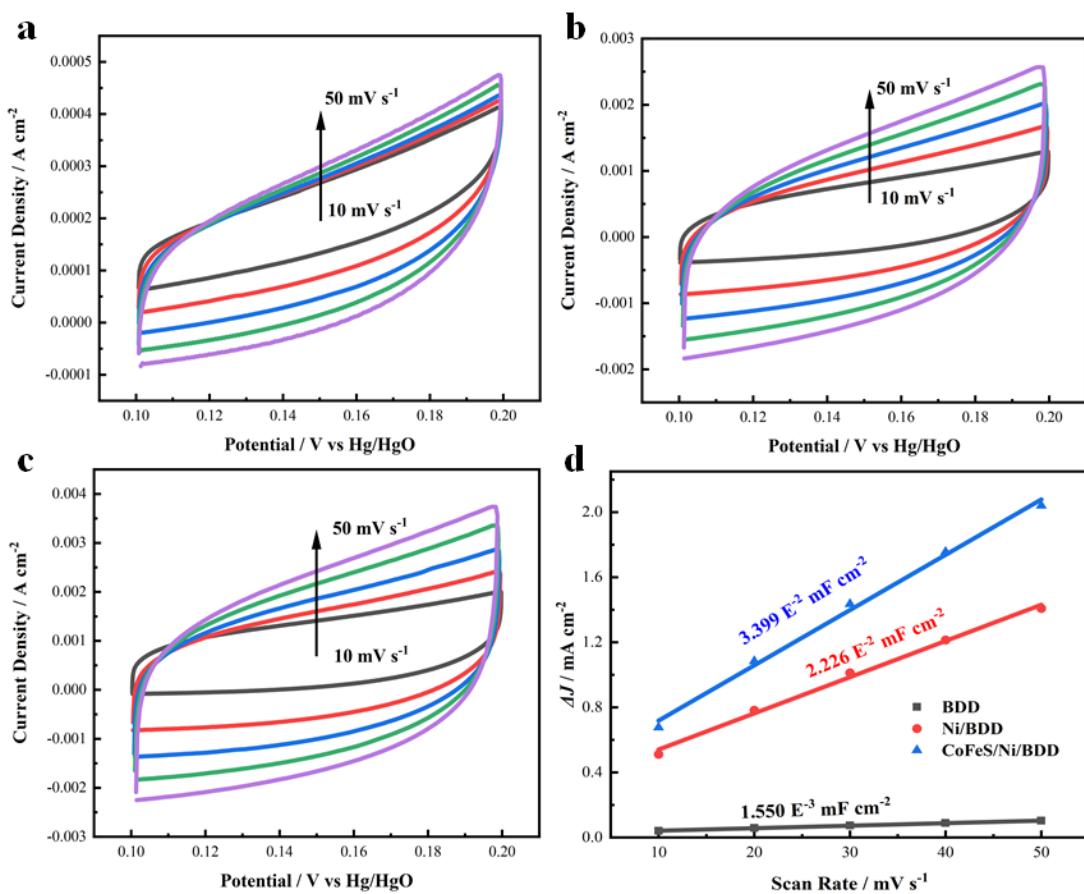
292 The electrodes at each preparation stage were analyzed for OER catalytic activity
293 in 1 M KOH solution and alkaline simulated seawater. Prior to each test, the solution
294 was subjected to oxygenation for approximately 20 minutes to ensure that sufficient
295 oxygen was held to ensure the accuracy of the test. [Fig.6a](#) displays LSV curves for
296 pristine BDD, Ni/BDD, and CoFeS/Ni/BDD electrodes in 1 M KOH and
297 CoFeS/Ni/BDD in alkaline seawater (CoFeS/Ni/BDD-sea) at 5 mV/s. Pristine BDD
298 shows poor oxygen evolution. Ni/BDD, with a cauliflower-like Ni layer, reaches
299 1.685 V at 100 mA cm^{-2} , indicating a 455 mV overpotential.

300 The corresponding potentials of CoFeS/Ni/BDD electrodes are 1.631 V and
301 1.655 V, respectively (the overpotentials are 401 mV and 425 mV) in a 1 M KOH
302 solution with a current density of 100 mA cm^{-2} and in alkaline simulated seawater.
303 CoFeS/Ni preparation significantly improves the OER catalytic effect, especially at
304 high current density. Increasing the KOH concentration significantly reduces the
305 oxygen evolution activation energy, especially in seawater, which helps to inhibit the
306 side reactions.

307

308 **Fig.6(a)** LSV inverse scan curve of each electrode of BDD, Ni/BDD, and CoFeS/Ni/BDD scanned
 309 in 1 M KOH solution or alkaline simulated seawater (1 M/3 M) at a scan rate of 5 mV/s. (b)
 310 Current Tafel curve when the density is 100 mA cm⁻². (c) EIS curve relative to Hg/HgO when the
 311 potential is 0.6 V.

312 The Tafel curve for the oxygen evolution reaction is obtained by computational
 313 conversion from the LSV curve. As shown in **Fig.6b**, the Tafel slope value of
 314 CoFeS/Ni/BDD electrode in 1 M KOH standard solution was calculated by fitting to
 315 be 154.08 mV/dec. The Tafel slope value for this electrode increased to 182.30
 316 mV/dec in alkaline simulated seawater. In contrast, Tafel slope values of only 110.58
 317 mV/dec were observed for CoFeS/Ni/BDD electrodes in alkaline simulated seawater
 318 at 3 M KOH. The Tafel slope value of 165.05 mV/dec was observed on the Ni/BDD
 319 electrode without electrodeposition treatment and this value is higher than that
 320 presented by the electrode modified with cobalt iron sulfide. Observations show that
 321 the electrode's kinetic reactivity in the oxygen evolution reaction (OER) is
 322 significantly improved by the introduction of cobalt-iron sulfide, and this performance

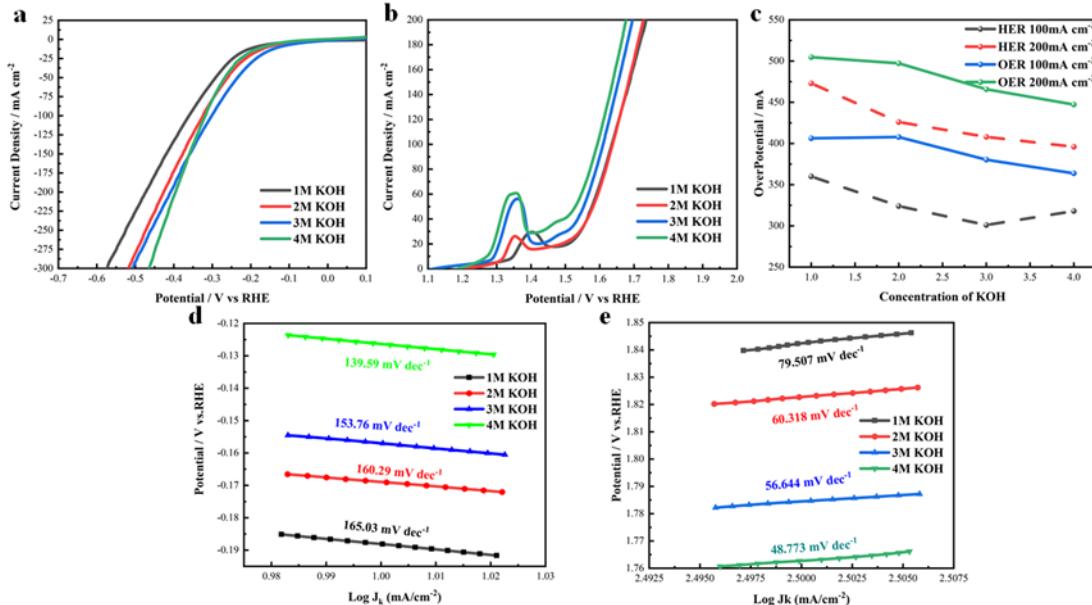

323 enhancement is attributed to the high electrical conductivity of CoFeS as well as the
324 facilitation of the partial oxidative conversion of the surface catalyst to cobalt-iron
325 oxide. It is concluded that the oxygen evolution reaction process is indeed hindered by
326 side reactions in solution, energy is consumed and the catalytic efficiency of the
327 oxygen evolution reaction is consequently reduced.

328 The solution charge transfer was studied also by electrochemical impedance
329 ([Fig.6c](#)). The frequency range of the test was kept the same as in the hydrogen
330 evolution reaction, and the potential was adjusted to 0.6 Vs Hg/HgO in the oxygen
331 evolution reaction. The results indicate that a seawater simulation solution containing
332 3 M KOH was observed to exhibit minimal Nyquist semicircles, lower Rct values,
333 and promote more rapid charge transfer during the oxygen evolution reaction. The
334 standard solution with 1 M KOH is the next best, and the results are the same as those
335 of the previous HERs, this suggests that the electrolysis of seawater benefits from the
336 preparation of CoFeS as well as an increase in KOH concentration.

337 The electrode was cycled at different stages at different scanning speeds from 0.1
338 V to 0.2 V relative to Hg/HgO in 1 M KOH solution to study the process of
339 electrodeposition of cobalt iron sulfide layer. Under the same conditions, the nickel
340 layer on the electrode underwent periodic scanning to probe the changes in ESCA at
341 different stages. [Figs.7a-c](#) shows the pristine BDD, Ni/BDD and CoFeS/Ni/BDD
342 electrode CV curves, respectively. [Fig.7d](#) shows the relationship between the current
343 density difference ΔJ and the scanning speed (electric double layer capacitor) for each
344 sample. The Cdl of the CoFeS/Ni/BDD electrode is 3.399×10^{-2} mF/cm², which is
345 about 21.93 times higher than that of the pristine BDD electrode of 1.550×10^{-3}
346 mF/cm² and 1.53 times higher than that of the Ni/BDD electrode (Cdl 2.226×10^{-2}
347 mF/cm²).

348 First, the BDD substrate is electroplated with a layer of nickel, which forms
349 cauliflower-like agglomerates that give the BDD surface a columnar and well-defined
350 shape, thus significantly increasing the specific surface area. Subsequently, nickel
351 cobalt sulfide was prepared by electrodeposition on the surface of the nickel layer,

352 which further increased the specific surface area and thus effectively increased the
 353 contact area between the electrolyte and the catalyst.


354
 355 **Fig.7(a-c)** CV curves of BDD, Ni/BDD and CoFeS/Ni/BDD electrodes at different scanning
 356 speeds in the range of 0.1~0.2 V vs. Hg/HgO in 1 M KOH solution, (d) and the current density
 357 difference ΔJ versus scanning speed relationship curve between.

358 **3.2.4 Effect of different potassium hydroxide concentrations on the**
 359 **electrocatalytic performance of CoFeS/Ni/BDD of CoFeS/Ni/BDD**

360 During the electrolysis of seawater, some side effects can be headache-inducing.
 361 These side reactions compete with the oxygen evolution reaction and significantly
 362 impact the efficiency of oxygen generation on the anode. Therefore, enhancing the
 363 priority and efficiency of anodic oxygen evolution reactions during seawater
 364 electrolysis and investigating effective methods to limit or eliminate competing side
 365 reactions have emerged as key areas of current research.

366 The OER activities of CoFeS/Ni/BDD were all significantly enhanced with

367 increasing KOH concentration ([Fig.8b](#)) in the electrocatalytic process. The oxygen
368 evolution overpotential in the electrolyte decreases gradually with increasing KOH
369 concentration from 1 M to 4 M when the current density reaches 200 mA cm⁻², with
370 overpotential values of 504 mV, 497 mV, 465 mV, and 447 mV, respectively. When
371 the KOH concentration was increased to 3 M, the overpotential was lower than the
372 side-reaction potential of 480 mV in the alkaline seawater electrolyte. Thus, at higher
373 current densities, side reactions at the electrode can be suppressed by increasing the
374 concentration of potassium hydroxide. Similarly, as shown in [Fig.8a](#), the values of
375 hydrogen evolution overpotential with increasing salinity were 473 mV, 426 mV, 408
376 mV, and 396 mV. The decrease in overpotential with increasing KOH concentration is
377 due to the fact that the ions supplied in the electrolyte increase the collision frequency
378 of the ions during the passage of the current, which promotes the reaction rate. [Fig.8c](#)
379 presents the line graphs of HER and OER overpotentials of CoFeS/Ni/BDD
380 electrodes at 100 mA cm⁻² and 200 mA cm⁻² current densities in different KOH
381 concentrations. It can be observed that the evolution of both hydrogen and oxygen
382 improves as the concentration of KOH increases, with the optimal catalytic effect
383 observed in a 4 M KOH solution. The OER/HER tafel curves transformed from the
384 LSV curves in [Figs.8a,b](#) are shown in [Figs.8d,e](#). Meanwhile, the Tafel slope values of
385 CoFeS/Ni/BDD electrodes were calculated through linear fitting, revealing a
386 significant correlation with the concentration of KOH in the solution. The HER tafel
387 slope of 139.59 mV/dec at 4M KOH is better than 153.76 mV/dec at 3M and 160.29
388 mV/dec at 2M and significantly better than 165.03 mV/dec at 1M. The OER Tafel
389 slope is similarly reduced, with a value of 48.77 mV/dec at 4M KOH, which is much
390 lower than the 79.51 mV/dec at 1M KOH. Therefore, the catalytic performance of the
391 CoFeS/Ni/BDD electrode is superior at high potassium hydroxide concentrations, and
392 in special cases, the electrocatalytic effect can be improved by increasing the salt
393 concentration.

394

395 **Fig.8** (a) HER. (b) OER. (c) overpotential line diagram of CoFeS/Ni/BDD electrode in 1 M, 2 M,
 396 3 M, 4 M KOH solutions at 100 mA cm^{-2} and 200 mA cm^{-2} current density and (d) Tafel curve of
 397 HER at a current density of 10 mA cm^{-2} and (e) Tafel curve of OER at a current density of 200 mA
 398 cm^{-2} .

399

4 Conclusion

400 In this chapter, a cauliflower-like metallic nickel layer was first plated on the
 401 BDD surface. Then, CoFeS/Ni/BDD electrodes with excellent catalytic performance
 402 were prepared by electrodepositing cobalt and iron sulfide on the surface of the nickel
 403 layer. The effects of the cobalt-iron concentration ratio and the number of
 404 electrophoretic cycles on the catalytic performance of the electrodes were investigated,
 405 and the optimal process parameters were determined: a cobalt-iron concentration ratio
 406 of 1.5, a scanning speed of 5 mV/s, and a cycle number of 15 cycles. It was found that
 407 the electrode exhibited low OER and HER overpotentials at a current density of 100
 408 mA cm^{-2} in alkaline simulated seawater. Increasing the KOH concentration could
 409 further reduce the overpotentials and directionally promote the oxygen evolution
 410 reaction, thus enhancing the efficiency. This study not only extends the application of
 411 BDD beyond anodic degradation of organic wastewater, but also shows great potential
 412 in the field of seawater electrolysis. At the same time, it opens up new perspectives
 413 for the application of BDD.

414 **CRediT authorship contribution statement**

415 Mingxu LI: methodology, formal analysis, investigation, data curation and
416 writing - original draft. Genjie CHU: formal analysis and writing - review & editing.
417 Jiyun GAO: formal analysis. Xiaolei YE: funding acquisition, supervision and writing
418 - review & editing. Ming HOU: formal analysis. Shenghui GUO: funding acquisition,
419 conceptualization. Yunchuan LI: formal analysis and software. Ziqi ZHOU: formal
420 analysis. Li Yang: conceptualization, funding acquisition, supervision and writing -
421 review & editing. Pascal BRIOIS: language review, formal analysis and visualization.

422 **Declaration of Competing Interest**

423 The authors declare that they have no known competing financial interests or
424 personal relationships that could have appeared to influence the work reported in this
425 paper.

426 **Data availability**

427 Data will be made available on request.

428 **Acknowledgement**

429 This research was supported by National Natural Science Foundation of China
430 (52364051, 52374389) and Caiyun Postdoctoral Program in Yunnan Province of
431 China (CG24056E003A, CG24056E014A); The authors (Li Yang, Shenghui Guo)
432 would like to acknowledge Xing Dian talent support program of Yunnan Province.

433 **Reference**

- 434 1 Prajapati, M. & Shah, M. Geothermal-solar hybrid systems for hydrogen production: A
435 systematic review. *International Journal of Hydrogen Energy* **67**, 842-851, (2024).
- 436 2 Dang, V.-H. *et al.* Photocatalytic hydrogen production from seawater splitting: Current
437 status, challenges, strategies and prospective applications. *Chemical Engineering Journal*
438 **484**, 149213 (2024).
- 439 3 Du, J., Zhang, X., He, F. & Xie, Y. Modulation of the morphology, composition, and
440 oxidation state of the spinel high-entropy oxides to boost their bifunctional catalytic
441 activity for overall water splitting. *Electrochimica Acta* **461**, 142599 (2023).
- 442 4 Santra, S., Das, D., Das, N. S. & Nanda, K. K. An efficient on-board metal-free
443 nanocatalyst for controlled room temperature hydrogen production†Electronic
444 supplementary information (ESI) available. See DOI: 10.1039/c7sc00162b. *Chemical
445 Science* **8**, 2994-3001 (2017).
- 446 5 Tarhan, C. & Çil, M. A. A study on hydrogen, the clean energy of the future: Hydrogen
447 storage methods. *Journal of Energy Storage* **40**, 102676 (2021).

448 6 Jianlin, L., Zhonghao, L., Danxi, L. & Suliang, M. J. D. E. R. Overview of development
449 status of green hydrogen production and application technology under targets of
450 carbon peak and carbon neutrality. **6**, 25-33 (2021).

451 7 Xu, S. & Yu, B. J. J. o. B. I. o. T. Current development and prospect of hydrogen energy
452 technology in China. **23**, 1-12 (2021).

453 8 Sun, H. *et al.* Electrochemical water splitting: Bridging the gaps between fundamental
454 research and industrial applications. **6**, e12441 (2023).

455 9 Liu, Q. *et al.* F-doped self-supporting carbon electrode to improve carbon–water
456 reaction assisted electrolysis of water for hydrogen production. **375**, 132512 (2024).

457 10 Li, W., Sun, Z., Ye, X. & He, Y. J. I. J. o. H. E. Ultra-thin PPS mesh-based PSF-ZrO₂
458 composite diaphragm for efficient electrolysis of water for hydrogen production. **81**,
459 918-926 (2024).

460 11 ZHANG, W.-y. *et al.* Research and perspectives on electrocatalytic water splitting and
461 large current density oxygen evolution reaction. **45**, 1057-1070 (2023).

462 12 Xie, W.-F. & Shao, M.-F. J. J. o. E. Alkaline water electrolysis for efficient hydrogen
463 production. **28**, 4 (2022).

464 13 Zhang, Y., Zhang, B. & Sun, J. J. J. o. P. U. Progress in hydrogen production by water
465 electrolysis and its electrocatalysts. **35**, 19 (2022).

466 14 Wei, R., Fang, M., Dong, G. & Ho, J. C. Is platinum a suitable counter electrode material
467 for electrochemical hydrogen evolution reaction? *Science Bulletin* **62**, 971-973, (2017).

468 15 Wang, S. *et al.* Arsenopyrite weathering in acidic water: Humic acid affection and arsenic
469 transformation. *Water Research* **194**, 116917 (2021).

470 16 Kajana, T. *et al.* Potential transition and post-transition metal sulfides as efficient
471 electrodes for energy storage applications. **12**, 18041-18062 (2022).

472 17 He, R., Huang, X. & Feng, L. Recent Progress in Transition-Metal Sulfide Catalyst
473 Regulation for Improved Oxygen Evolution Reaction. *Energy & Fuels* **36**, 6675-6694,
474 doi:10.1021/acs.energyfuels.2c01429 (2022).

475 18 Noor, T., Yaqoob, L. & Iqbal, N. J. C. Recent advances in electrocatalysis of oxygen
476 evolution reaction using noble-metal, transition-metal, and carbon-based materials. **8**,
477 447-483 (2021).

478 19 Wang, M., Zhang, L., He, Y. & Zhu, H. J. J. o. M. C. A. Recent advances in transition-
479 metal-sulfide-based bifunctional electrocatalysts for overall water splitting. **9**, 5320-
480 5363 (2021).

481 20 Jin, H. *et al.* Nanocatalyst design for long - term operation of proton/anion exchange
482 membrane water electrolysis. *Adv. Energy Mater.* **11**, 2003188 (2021).

483 21 He, W. *et al.* Al-doped nickel sulfide nanosheet arrays as highly efficient bifunctional
484 electrocatalysts for overall water splitting. **12**, 24244-24250 (2020).

485 22 Joshi, P., Riley, P., Goud, K. Y., Mishra, R. K. & Narayan, R. J. C. O. i. E. Recent advances of
486 boron-doped diamond electrochemical sensors toward environmental applications. **32**,
487 100920 (2022).

488 23 de Souza, A. B. *et al.* Occurrence and elimination of pharmaceutical residues in
489 municipal wastewater effluent by electrochemical anodic oxidation. **66**, 105899 (2024).

490 24 Macku'l'ak, T. *et al.* Boron doped diamond electrode–The elimination of psychoactive
491 drugs and resistant bacteria from wastewater. **171**, 108957 (2020).

492 25 ZHENG, Y., ZHANG, Y. & TONG, Y. J. J. o. S. C. Research progress and application of
493 boron-doped diamond film. **50**, 1138-1148 (2021).

494 26 Zhou, Y. L., Tian, R. H., Zhi, J. F. J. B. & Bioelectronics. Amperometric biosensor based on
495 tyrosinase immobilized on a boron-doped diamond electrode. **22**, 822-828 (2007).

496 27 Zhou, Y. & Zhi, J. J. E. c. Development of an amperometric biosensor based on covalent
497 immobilization of tyrosinase on a boron-doped diamond electrode. **8**, 1811-1816
498 (2006).

499 28 Hao, Z., Yuxin, Z., Jun, C. & Yuansheng, P. J. C. J. o. E. E. Direct electrochemical detection
500 of ammonia in wastewater using boron-doped diamond (BDD) electrode. **15**, 4067-
501 4076 (2021).

502 29 Beka, L. G., Li, X. & Liu, W. Nickel Cobalt Sulfide core/shell structure on 3D Graphene for
503 supercapacitor application. *Scientific Reports* **7**, 2105 (2017).

504 30 Cheng, J.-W. *et al.* Rational design of nickel cobalt sulfide/cobalt sulfide sheet-on-sheet
505 structure for asymmetric supercapacitors. *Electrochimica Acta* **283**, 1245-1252 (2018).

506 31 Mohamed Saleem, M. S., Swaminathan, R., Mohan, V., Liyakath Ali, N. U. H. & Kim, S.-J.
507 Sulfurization of cobalt oxide to cobalt sulfide: A positrode for the high-performance
508 supercapacitor. *Journal of Industrial and Engineering Chemistry* **136**, 493-500 (2024).

509