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Abstract

This paper presents the development and experimental validation of a
novel nonlinear electromechanical oscillator that simultaneously enables vi-
bration energy harvesting and thermal sensing. The originality lies in exploit-
ing temperature-induced axial forces, arising from boundary conditions, as a
mechanism to shift the system’s natural frequency. Such modulation directly
affects the piezoelectric transducer output, allowing the device to function as
a dual-purpose structure for both sensing and energy harvesting. To char-
acterize the three-domain multiphysics behavior, a mathematical model is
developed using modal analysis and the harmonic balance method, captur-
ing the nonlinear dynamic response with a fidelity confirmed experimentally.
A sensitivity analysis reveals the key parameters that govern electrical power
output, offering insights for design optimization as a function of the selected

application. Beyond demonstrating the feasibility of the dual-function ap-
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proach, the results open perspectives for active thermal load control and
multiphysics extensions to other domains.

Keywords: Nonlinear multiphysics oscillations, Model parameter
identification, Dual-function systems, Sensitivity analysis, Piezoelectric

mechanisms, Thermally induced stresses

1. Introduction

Piezoelectric energy harvesters have been studied over the past two
decades [1] and continue to advance, finding applications across a wide range
of fields. In one of the pioneering studies in the area, Roundy and Wright
[2] developed a vibration-driven piezoelectric energy generator, formulating
an analytical model and validating it experimentally. Such model enabled
power output estimation and laid the groundwork for design optimization of
future studies. Ongoing developments have established this technology as a
viable solution for several applications, including MEMS [3 4], hearing de-
vices [5l 6], wearable electronics [7) 8], bio-inspired systems [9], [10], railways
[11, 12|, wind energy harvesting [I3-15], and hydraulic systems [16].

However, the effectiveness of linear vibration mechanisms strongly de-
pends on their resonance operating conditions [I7]. Dutoit et al. [I8] high-
lighted this problem, by developing a coupled electromechanical model of a
piezoelectric energy harvester, determining an optimal power condition and
providing design guidelines. The frequency dependence was also observed by
Erturk and Inman [19], who developed a linear model for a cantilevered bi-
morph piezoelectric energy harvester, accounting for different electrode con-
nection configurations and demonstrating that performance degrades signifi-
cantly when the system operates off-resonance. To overcome this limitation,
researchers have introduced nonlinearities into the system, increasing the
model’s complexity while enabling the emergence of bifurcations, chaotic be-
havior, multi-stability, and bandwidth enlargement [20, 21].

Building upon on these earlier developments [I8, [19], Stanton et al.
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[22] investigated nonlinear effects in the electromechanical coupling of the
oscillator, identifying nonlinearities even at low excitation amplitudes and
emphasizing the importance of including such effects to improve modeling
accuracy. Subsequent studies have further explored nonlinearities in multiple
directions. For instance, Mahmoudi et al. [23] employed a hybrid piezoelec-
tric—electromagnetic harvester to enhance both power density and frequency
bandwidth, achieving improvements of 60% and 29%, respectively. Noren-
berg et al. [24] examined the impact of asymmetries in a nonlinear piezo-
electric harvester by tilting the entire system and comparing its response to
a symmetric configuration. In addition, Li et al. [25] analyzed a cantilever
beam with geometric nonlinearities, adopting minimal assumptions in the
derivation to construct a consistent model and evaluate common sources of
error in nonlinear system formulations. Moreover, Rosso et al. [26] incorpo-
rated material nonlinearities to better capture the behavior of their harvester
with intentional nonlinearities, arising from the interaction between a mov-
ing magnet and a magnetic tip mass. The same research group also recently
proposed a method to manipulate the reported magnetic field [27], thereby
enhancing the nonlinear effects and reporting an increase of up to seventeen
times in peak power.

While most studies address intrinsic nonlinearities, discontinuous dynam-
ics in harvester systems have also emerged as a relevant research direction.
Works such as [28-30] highlight the potential of vibro-impact and stopper-
based mechanisms for novel topological configurations. Among other dy-
namic possibilities that nonlinearities offer to energy harvesters, one could
cite energy localization [31], the emergence of localized modes [32], and the
exploitation of internal resonances [33]. In fact, nonlinear systems have
demonstrated significant potential in distinct applications. As an example,
Hermann et al. [34] introduced a novel concept for friction damping, inves-
tigated within a sandwich structure exhibiting nonlinear dynamic behavior.

Furthermore, nonlinear systems have been employed for vibration control, as
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shown by Barbosa et al. [35], 36], who demonstrated that introducing impu-
rities into a chain of coupled nonlinear oscillators can lead to spontaneous
soliton nucleation.

Although a large number of publications exist in the field |37, [3§], the
state of the art in nonlinear energy harvesters remains in active development
due to its potential to power low-consumption devices [39, 40]. For instance,
Xu and Zhou [41], by exploring a bistable harvester, demonstrated how the
stochastic resonance of a decoupled bistable potential can be applied to bear-
ing fault diagnosis. Still within the context of bistability, Fang et al. [42]
theoretically modeled an opto-mechanical coupling system, paving a novel
way for promising applications in smart structures. In the work of Sun et al.
[43], the phenomenon of internal resonance was investigated by combining
rotational and translational electromagnetic energy harvesters, resulting in
enhanced harvesting efficiency under ultra-low-frequency excitations.

Beyond energy-focused applications, nonlinear systems have also demon-
strated potential in engineering sensing technologies [44-49]. As an example,
we could mention the work of Zhang et al. [47], which investigated mode
localization in weakly coupled nonlinear oscillators as a means of measuring
external acceleration, showing that small perturbations produce measurable
variations in the oscillators’ amplitudes. Research in this area has focused on
leveraging nonlinear dynamics to improve the detection of subtle variations
in critical physical parameters, including mass [50-56], fluid viscosity and
density [57], mechanical faults [58], 59|, gas [60], acoustic waves [61], flow [62]
and temperature [63].

It is worth noting that the aforementioned studies are primarily directed
toward specific applications; nevertheless, there is a growing interest in tech-
nologies that enable dual or multifunctional uses, particularly in nonlinear
systems. In a comparative study of six generic models for dual-objective
vibration mitigation and energy harvesting, Liu et al. [64] showed that elec-

tromechanical coupling not only enables energy extraction but also improves
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vibration attenuation, with the extent of this benefit depending on the system
architecture. The development of mechanisms that simultaneously address
vibration control and energy harvesting has increasingly attracted attention
from the scientific community. Recently, Wang et al. [65] introduced a
piezoelectric—electromagnetic energy harvester integrated with a magnetic
apparatus functioning as an energy sink. In Xu et al. [66], simultaneous
vibration suppression and energy harvesting was also achieved, with partic-
ular focus on low-frequency environments. Metastructures [67], quasi-zero
stiffness mechanisms [68] [69], and multi-stiffness combination strategies [70]
constitute more recent examples of dual-purpose implementations in non-
linear systems, whose dynamic behaviors are considerably richer than those
observed in their linear counterparts [71] [72].

Recent studies have increasingly focused on multi-physics coupling, ex-
ploring the interplay among mechanical, electrical, and thermal domains
in diverse applications [73H77]. In the field of energy harvesting, multi-
physics interactions have been exploited to enhance energy conversion ef-
ficiency [78, [79]. For instance, Mondal et al. [80] proposed a hybrid device
integrating triboelectric and thermoelectric effects to simultaneously convert
ambient mechanical and thermal energy into electricity, demonstrating the
potential of multimodal energy capture. Similarly, Fadzallah et al. [S]]
investigated the multifunctionality of polyvinylidene fluoride, leveraging its
piezoelectric and pyroelectric properties, and developed a design and opti-
mization framework for hybrid energy harvesters.

Beyond energy harvesting, multi-physics coupling has also been inves-
tigated in other contexts [82, [83]. Mohaidat et al. [84] developed a
MEMS-based electrothermal sensor for helium detection, where Joule heat-
ing induces deflections modulated by gas concentration, illustrating thermo-
electromechanical coupling in sensing applications. Likewise, Yotov et al.
[85] demonstrated thermal-to-mechanical-to-electrical energy conversion us-

ing shape-memory alloy wires as thermoactuators coupled with piezoelectric
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elements, and further improved performance through magnetic tuning of fre-
quency and amplitude.

Within the presented context, our work proposes a system capable of
harvesting vibrational energy and detecting temperature variations through
thermally induced frequency shifts. Such shifts are induced by axial forces
resulting from the constrained thermal expansion of a harvester’s beam, com-
monly studied in the literature due to its influence on natural frequency and
bistability when buckled [0, 87]E]. Axial loads have been widely employed
as a strategy to modify the dynamic behavior of structures, enabling the
tuning of resonance frequencies to match desired operational ranges [88].
Emam and Nayfeh [89] investigated the primary resonance response of a
clamped—clamped beam subjected to axial loads exceeding the critical buck-
ling value, reporting agreement with experimental results. The study iden-
tified both qualitative and quantitative discrepancies in the static and dy-
namic responses, attributed to limitations of the single-mode approximation.
Building upon these findings, Nayfeh and Emam [90] analyzed the vibra-
tion modes of beams with various boundary conditions and demonstrated
that, beyond the first mode, equilibrium configurations tend to be unsta-
ble. The use of axial loads as a means to enhance system performance and
adaptability continues to be actively explored in recent studies [91-93]. By
leveraging temperature-induced axial loads, which shift the system’s reso-
nance frequency and consequently the voltage output of the transducer, our
proposed system can detect the crossing of critical temperature thresholds,
at which the system’s natural frequency aligns with the ambient excitation
frequency. Beyond the sensing capability, the same physical structure func-
tions as a tunable energy harvester, with tuning achieved through the same
physical strategy studied in [89).

A mathematical model is developed to capture the thermal effects on the

1One should note that beams subjected to mid-plane stretching are governed by non-
linear differential equations.
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system’s electromechanical behavior. Based on such model, design guide-
lines are proposed and experimentally validated, leading to the development
of a dual-function nonlinear oscillator operating across three physical do-
mains (mechanical, electrical, and thermal). The design process is guided by
a sensitivity analysis that identifies the parameters most influential to the
system’s power output [94H98|, and, by using the Harmonic Balance Method
(HBM) 99, [100], the system’s steady-state response in the frequency domain
is derived. To the best of our knowledge, while prior studies have examined
systems involving three physical domains [I0T], the integration of a multi-
function perspective within this context remains scarcely addressed. By mul-
tifunctionality, particularly in the context of nonlinear dynamics, we refer to
the use of a single mechanism for distinct applications, enabling structures
capable of sensing, harvesting energy, and mitigating vibrations.
Temperature variations are often treated in the literature as sources of un-
certainty [102, 103], increasing system variability and limiting performance.
For instance, the influence of temperature on structural dynamics and energy
harvesting was addressed in [104], where the effects of temperature-induced
uncertainties in material properties on the dynamics of an asymmetric monos-
table piezoelectric energy harvester were investigated. By modeling these
uncertainties stochastically, it was shown that increased thermal asymmetry
amplified the voltage output, while overall uncertainty reduced efficiency.
In [I05], random space-dependent temperature fields were considered to in-
duce thermal stresses that affected the natural frequencies and buckling be-
havior of plates. Using stochastic methods, the study demonstrated that
thermal uncertainty significantly impacted structural dynamics and reliabil-
ity. In [106], a data-driven method that accounted for temperature effects
in vibration-based bridge damage detection was proposed. By employing
neural networks, the approach successfully distinguished actual damage from
temperature-induced variations, thereby reducing false alarms and improving

fault localization. This work proposes to change this perspective by leverag-
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ing the temperature dependence of the system to induce axial loads through
restrained thermal expansion in a deterministic framework. In this context,
the following contributions are presented: (i) the development of a nonlinear
oscillator capable of operating in both sensing and harvesting modes; (ii) the
formulation and experimental validation of a nonlinear model that incorpo-
rates multiphysics interactions, including mechanical, thermal, and electrical
effects; and (iii) a sensitivity analysis that identifies the dominant dynamic
parameters governing the system’s electrical response, providing insight for
future design strategies.

The remainder of this paper is organized as follows. Section [2] introduces
the proposed system, outlining its structural characteristics and the effect
of temperature variations on its natural frequency. Section [3| presents the
mathematical formulation, including the modal analysis and the frequency-
domain solution obtained via the HBM. Section {4]describes the experimental
validation, where two experimental setups are used: an open-loop and a
closed-loop configuration for controller-based tests. It is demonstrated not
only the system’s ability to perform its dual functionality but also its thermal-
based resonance tuning capability. Finally, Section [5| summarizes the main

findings and outlines potential directions for future research.

2. On the Physical Foundation of the Proposed System

This section presents the structural configuration of the proposed thermo-
electromechanical system, detailing its geometry, material properties, and
physical behavior. The beam assembly, including the piezoelectric patch and
additional components, is described, followed by an analysis of the thermo-
mechanical response resulting from constrained thermal expansion. An an-
alytical expression is then derived to quantify the axial load induced by
temperature variation. Finally, the influence of the magnet and steel plate
on the system’s natural frequency and its sensitivity to temperature is inves-

tigated, emphasizing their role in tuning the dynamic response and enabling
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the integration of additional physical domains.

Steel plate

Pt

| System mounted
| on the shaker
‘v-. -'

Aluminum
clamping
structures

Figure 1: Physical prototype and the exploded view of the components. The main figure
shows the assembled prototype, highlighting the central steel plate with the attached
magnet, and the bonded MFC patch (model M2807-P2). The left side presents an exploded
view of the main components, including the aluminum clamping structures, the central
steel plate, and the MFC location. The right side displays the prototype mounted on the
shaker. Geometric notation presented in figure [2]

The proposed system under study is illustrated in [Fig. I which consists
of two external aluminum plates enclosing a central steel plate. A beam is
mounted with a magnet at its midpoint, a Macro Fiber Composite (MFC)
layer at one end, and a smaller steel plate at the other. Aluminum connec-
tors support the assembly above an aluminum base, which is coupled to a
shaker to provide base excitation. Temperature variations cause thermal ex-
pansion of the structure, and due to the clamped boundaries, this elongation
generates axial loads on the beam, thereby modifying its dynamic response.

A Schematic representation of the geometrical properties of the system
is depicted in [Fig. 2l The beam is made of steel, with a Young’s modulus
of Egeer = 200 GPa, density of p = 7850 kg/m?® and a thermal expansion
coefficient of avgee; = 12 x 1076 1/°C. Tts dimensions are L x h, x b = 150 x
0.8 x 10 [mm]|, where L is the beam length, hg its width, and b its thickness,
as shown in The MFC patch (M2807-P2) has a Young’s modulus of

9
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Figure 2: Schematic representation of the system. (a) Frontal view of the clamped-clamped
beam indicating the total length L, the MFC patch positioned between L,; and Ly, the
steel plate from Lc; to L.y, and the cube mass located at L/2. (b) Cross-sectional view at
the MFC location, showing the beam height A, piezoelectric patch height h,,, total height
hpe, and width b; the dashed red line represents the neutral axis. (c) Frontal view of the
deformed beam, illustrating the transverse displacement w,.¢;(x, t).

E, = 30.336 GPa and dimensions L, x h, x b = 37 x 0.3 x 10 [mm]|, where
L, is the patch length, h, its width, and has the same thickness as the beam.
The steel plate has the same material properties as the beam and the same
dimensions as the MFC. The magnet cube (343 mm?) is made of neodymium,
with a mass of M, = 2.52g. Finally, the clamping structure is made of
aluminum, with a thermal expansion coefficient of iuminum = 23 X 107°
1/°C.

Thermal variations in the system cause expansion of its components; how-
ever, due to spatial constraints, this expansion results in axial loads on the
beam. The relationship between the axial load Nt and the temperature vari-
ation AT is determined by considering the expansion of both the steel beam

and the aluminum clamping structure, as presented in leading
to the following equation:

NT - EsteelA(aaluminum - asteel)AT- (]-)
Since aluminum has a higher coefficient of thermal expansion than steel,

10
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Eq. indicates that temperature increases lead to tensile axial loads. Such
outcome differs from previous studies [86], 87|, where the thermal expansion
of clamped boundaries is typically neglected, leading to a different axial load
behavior. Based on the established relationship between temperature and
axial loading, all subsequent analyses can be equivalently reformulated in
terms of temperature variations.

The magnet and steel plate are included in the analysis due to their in-
fluence on the tuning of the natural frequency, which can be advantageous
for adapting the system to varying operational requirements. Although elec-
tromagnetic energy harvesting lies beyond the scope of this study, the mag-
net could potentially serve that purpose, thereby enhancing the structure’s
energy harvesting capabilities, while also enabling the addition of an extra
contribution to the system’s nonlinear stiffness. presents a simu-
lation of natural frequency variations caused by temperature changes, exam-
ining the influence of both the magnet and the steel plate on the beam’s dy-
namics. The results confirm the trend predicted by Eq. , with temperature
increases leading to higher natural frequencies, consistent with the presence
of tensile axial loads. The analysis further shows that the magnet decreases
the resonant frequency, whereas the steel plate increases it—counteracting
effects that enable frequency tuning to meet design targets. Additionally,
both components reduce the sensitivity of the natural frequency to tempera-
ture variations, with the magnet exerting a more pronounced effect than the

steel plate.

3. Mathematical Modeling

The current section establishes the mathematical framework used to de-
scribe the mechanism introduced in Section 2l A nonlinear beam model is
developed to account for midplane stretching, thermal axial loading, and
piezoelectric coupling, capturing the system’s response under base excitation

and temperature variation. Subsequently, the governing partial differential

11
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equations are reduced to a low-order representation through modal decom-
position, enabling both analytical and numerical evaluation of a Duffing-type
equivalent oscillator. Finally, a study is conducted to evaluate the influence
of axial loads on frequency domain, resulting in relations that serve as the
foundation for the model calibration and sensitivity analysis conducted in
the following sections.

The system is modeled as a clamped—clamped beam incorporating mid-
plane stretching and axial load effects, with the magnet at the midpoint
represented as a point mass. Static displacement due to gravity is neglected.
The electromechanical coupling follows the linear piezoelectric beam model
developed by Erturk and Inman [I9, 107]. Nonlinear terms arising from
midplane stretching and axial loading are included based on the formula-
tion presented by Touzé et al. [108], which serves as the foundation for
the mechanical model used in this study. The MFC layer is represented us-
ing equivalent piezoelectric parameters, following the approach proposed by
Deraemaeker et al. [109], where a summation over representative volume
elements is employed to derive the effective properties, thereby simplifying

the modeling process.

3.1. Electromechanical Model
The partial differential equations (PDEs) describing the dynamics of the

beam are written as follows?k

82
@ (Ejeq(l') wf(fl) + m(l’) wrel + cq wrel + CS[S w’crl‘:exlxw
FEA [F
~(Mer gy [ m? do) uz - 0107 - L) - (o~ Lyp)lute) @)
= —m(x) Wy,

20ne should observe that N7 serves as a thermomechanical coupling as observed in

Eq..

12
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=5.bL t Ly
833—p U(t) -+ & = —eglhpcb/ wfffl dl’, (3)
hp }ﬁ 0

where E1., is the equivalent bending stiffness (defined in|Appendix C)), m(z)
is the mass distribution along the z-axis (expressed as pA + Mpncd (x — £))

2
¢, and ¢, are the damping coefficients due to air viscosity and structural
damping, respectively, ¥ denotes the electromechanical coupling term, i,
represents the base acceleration excitation, H(x — d) is the Heaviside step
function centered at = d, and §(z—d) is the Dirac delta function at the same
point. As for the electrical parameters, £355 is the permittivity at constant
strain, R; is the load resistance, €3, is the piezoelectric voltage constant, and
hpe is the distance from the neutral axis to the center of the piezoelectric

element. Aiming to reduce the notation, when necessary, spatial derivatives

T
rel?

TT
rel’

TTTL

e Temporal

are indicated by superscripts in z, e.g., w*,, w**, and w
derivatives are denoted by dots: w,.;, W, etc. Mixed derivatives follow the
same convention, e.g., W™ = 03w, /0x?0t.

To solve the system of PDEs described by Equations and , the
beam’s oscilation is represented by a series of mode shapes and modal coor-
dinates. In this study, only the first eigenmode is considered, which allows
the simplification of Egs. and to a system of ordinary differential

equations (ODEs) on the modal coordinate 7:

i(t) + en(t) + kunn(t) + kun®(t) + 0v(t) = 7 F cos(wt), (4)
and ,
Cyit) + 22 = i), 5)

where the complete mathematical expressions for the physical parameters are

described in Fl

Appendix C| presents the expression for the equivalent bending stiffness and for the

13
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3.2. Mode Shape Analysis

The system’s mode shape is determined using a modal basis from the
linear, uncoupledﬁ and undamped case. The resulting ODE describing the
mode shape of a clamped-clamped beam under axial loads, with a lumped

mass at its midpoint, is given by:
d'é(z) d*¢(z)
dz* dx?

where, E1., is the mean value of the equivalent bending stiffness E1I., and,

El,, — Nr —wm(z)o(z) =0, (6)

for our particular case, given the clamped-clamped scenario:

de(x) dg(x)

0)=20 L)=0 =0 d —— =0. 7

o0)=0, o) =0, GT =0 and B @

We should note that continuity condition of the displacement field must also
L~ Lt

be considered at the concentrated mass: ¢ | — | = 7) . The analytical

2
Appendix DP| and is given by the

solution for the mode shape is described in

following relation:

e RO MCEDEICES)
= ¢""(0)f(x) = ¢™(0).f" ()],

where f(x) is an auxiliary function defined as:

()

_ sin(Dz)  sinh (Cx)

fla) =25 ., 0

equivalent dynamic parameters obtained via modal expansion.

4In nonlinear regimes, mode shapes may become coupled across different frequencies. In
this study, we assume the dominance of the first mode and, therefore, adopt a single-mode
expansion.

Appendix D|presents a detailed derivation of the mode shape ODE solution.

14



a5 and the wavenumber k, Nyg,,, 1, C and D are additional parameters defined

316 AS:

0.5
Nadm Nc%dm 4 0
C = (— 5 + < 4 +k , (10)

0.5
Na o N2 0.5
and D = ( 2d +( de—i-k‘l) )

siz - The eigenvalues associated with the employed modal basis are obtained from

sis the determinant of the matrix A, defined as follows:

(2D 7 (3) S(3)]

A= s b () ) F) | (11)

k2 (5) foo (L) f (L))

29 Details regarding the algebraic procedure are also provided in [Appendix D]
w0 It is worth noting that the influence of Np appears explicitly in the modal

;21 base Equation and in its associated matrix A through the variables C' and
32 D, which contrasts with some previous studies that analyzed beams under
23 axial loads [T110], 111].

324 By setting the determinant of the matrix in Eq. to zero, the natural
w5 frequencies of the system can be obtained for different values of axial load.
16 For the clamped-clamped beam configuration, this procedure leads to a tran-
27 scendental equation, which does not admit a closed-form analytical solution;
»s therefore, the frequencies must be computed numerically. For comparison,

29 [Append presents an analytical derivation of the relationship between

15
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closed-form solution is obtained.

Modal analysis of the fundamental frequency

N
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o

Numerical data
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Figure 3: Fundamental frequency as a function of axial load, with the corresponding
temperature variation shown on the secondary x-axis (obtained through the mode shape
equations). The critical axial load and its equivalent temperature (at which the frequency
tends to zero) are highlighted.

illustrates the increase in the fundamental frequency under tensile
axial loads and its decrease under compressive loads, eventually reaching the
critical buckling load N... The analytical expression for the critical buckling
load of a clamped-clamped beam is established in the literature [90, 112] and

is given by:

Am? BT
L2
When substituting the parameters associated with our beam into Eq.
, a critical load of N, = —220.37 N is obtained, which aligns with the
modal analysis presented in [Fig. 3| where the critical load obtained is N, =

—220.36 N, revealing good agreement between A and the results reported in

N, = (12)

the literature.
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Figure 4: The equivalent system of Egs. and , where the inertial element m of the
mechanical system is unitary in the derived equations. In a), the mechanical system is
shown, and in b), the electrical system. Inertial force resulting from base acceleration is
treated in its equivalent form, that is, as an external force applied to the lumped-parameter
equivalent system.

3.3. Model Response in the Frequency Domain
Equations and describe the system’s response in terms of modal

coordinates and voltage and its corresponding lumped-parameter represen-
tation is illustrated in [Fig. 4. The modal and physical displacements are
related through the mode shape, which, at the midpoint of the beam, where

the experimental measurement is taken, defines their relationship as:

0 =0 (5 ) no) (13

L
with z(¢) being the physical displacement at 7 Eq. provides the mode

L
shape expression, from which its value at — can be obtained, enabling conver-
sion between the two quantities. The mode shape exhibits negligible variation

L
around 3 for different values of Np, and is therefore treated as constant, with

L
10) (5) = 12.7. Such approach establishes a connection between the modal
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353 displacement used in the analytical model and the physical displacement
;¢ measured in the experiments.
355 To simplify the algebraic treatment, Eqs. and are nondimension-

36 alized. By defining the following nondimensional parameters:

i vF c w
Yy=— o = ) wn:\/klinu C:_7 QZ_?
7o Kiin 2w, W
]{anﬁg Cp@ 1 2 92
T=wyt, a=—, v=—, (= , and K* = ——,
klin Mo Rlcpwn klinCp
(14)
w7 Egs. and are rewritten as:
d? d
—y+2§—y+y+ay3—l—l-@2v = cos(§27), (15)
dr? dr
38 for the mechanical domain, and
dv dy
- =2 16
dr + v dr’ (16)
30 for the electrical one.
360 To determine the system’s response in the frequency domain, the HBM is

3

)

1 employed [16]. Accordingly, the solutions of Egs.(L5) and are assumed
w2 to be harmonic, leading to expressions that relate the amplitudes of the
33 mechanical (Y) and electrical (V') responses to the excitation frequency (£2),

34 by means of:

(AgY® + AY* + AY? — 1) =0, (17)
365 and
202
2 _ & (18)
02+ g%
366 Where
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90/

A6:_7
16
3« K202
A= —([1-02+ —— ,
! 2( 92+52> (19)
and

D2k2 (2 — 202 + 4(B + K?)
Q2 + g2 '
Equations and define the system’s frequency response. In par-
ticular, Eq. is a cubic polynomial in Y2, potentially yielding up to three

Ay = (1-0%%+4¢20% +

real solutions for a given excitation frequency, which are obtained numerically
over the frequency range associated with the response curve. The resulting
solutions are used to support both parameter identification, through a model
fitting approach, and the evaluation of parameter influence, via a sensitivity

analysis.

4. Experimental Campaigns and Model Validation

The present section provides the experimental procedures carried out to
characterize the thermo-electromechanical behavior of the system and the
validation of the mathematical model developed in Section[3] The experimen-
tal campaign is organized into two main categories based on the temperature
control strategy: open-loop and closed-loop conditions. The experimental
setup is described for both conditions, including the instrumentation used
for measuring mechanical, electrical, and thermal responses under controlled
conditions. These tests are performed to evaluate the system’s behavior
across varying temperatures, excitation frequencies, and electrical load val-
ues. Subsequently, a model fitting procedure is implemented using Parti-
cle Swarm Optimization (PSO) in order to calibrate the model parameters

against experimental data for the particular case of the open-loop configura-

19



387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

tion E| The identified trends and parameter sensitivity are then discussed to
assess the model’s predictive capabilities and alignment with physical obser-

vations.

4.1. Open-Loop Temperature Control
4.1.1. Ezperimental setup

The experimental apparatus used in the open-loop series of tests is il-
lustrated in [Fig. 5] The setup is mounted on the shaker table of a Data
Physics V100 system, driven by a DSA5K-1 power amplifier. The input
acceleration is measured by a DJB A /600 accelerometer, fixed on the flat
surface of the base. Meanwhile, the electrical voltage generated by the MFC
is recorded, and the velocity at the center of the beam is monitored using
an Ometron VH300+ laser vibrometer. The infrared thermal imager Op-
tris XI1400 is employed for non-contact temperature monitoring of the beam
during the experiments. According to the manufacturer’s specifications, the
system accuracy is £2°C of the reading at ambient conditions, which limits
its performance in terms of absolute temperature acquisition. Nevertheless,
the camera provides a high thermal sensitivity of 80 mK (0.08 °C), allowing it
to reliably detect small relative variations in temperature. In practice, once
the initial reference temperature is calibrated, the system captures relative
changes with a precision on the order of 1072°C. Such characteristic makes
the device particularly suitable for the present study, since the focus is on
tracking frequency-temperature relationships and relative thermal fluctua-
tions rather than on the absolute temperature of the structure. All signals
are acquired and processed through an M+P International VibPilotE spec-
tral analyzer and subsequently stored on two computers for further analysis.

The heating in the experiments is provided by an electric convection
heater (Bionaire BFH3520, digital tower fan heater, rated power 2400 W).

6The experimental setup associated with the closed-loop configuration is used exclu-
sively to verify the thermal tuning and repeatability of the mechanism’s response.
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The device operates with a built-in thermostat and automatic cycling, pro-
gressively raising the air temperature until the setpoint of 35°C is reached
on its terminal. The heater is positioned at approximately 1 m from the test
structure, acting as a controlled heat source, while the actual temperature
control and monitoring are applied directly on the beam. Such choice avoids
uncertainties caused by the additional heat generated by auxiliary equipment
(shaker, amplifier, computers), which increases the room temperature but not
uniformly the structure. Owing to the steel’s high thermal conductivity and
small thickness of the beam, gradients are neglected [I13]. Although we do
not specify a heating rate, the experimental protocol ensures that the con-
trolled variable is the average temperature of the beam’s surface area, which
remains stable during the tests when the heat source is turned off.

As shown in [Fig. 6] the arrows indicate the direction of the electrical
signal flow throughout the system. The excitation signal, generated by the
acquisition board, is amplified and applied to the testbench. Simultaneously,
acceleration is measured at the base of the structure and used as a reference
input to compute the electromechanical FRs. The voltage signal produced
by the MFC passes through a resistance decade box, allowing adjustment of
the load resistance over a wide range (1 € to 10 MQ). In parallel, a ther-
mal camera monitors the system’s temperature by periodically transmitting
infrared images of the beam to an auxiliary computer.

shows the initial temperature condition of the assembled system.
Since the assembly is performed at 20.2°C, this state is defined as the un-
deformed reference configuration. The clamping structure is fastened to the
beam using M3 bolts tightened to a torque of 1 Nm. Such torque, relatively
high for M3 threads, ensures that the experimental setup behaves as a rigid,
monolithic structure. A similar condition was adopted in the work of Teloli
et al.[T14], where M4 bolts spaced at 30 mm guaranteed monolithic behavior
under dynamic excitation. In the present setup, bolt spacing ranges from

15 mm to 40 mm, with a higher torque applied, thus justifying the no-slip
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Figure 5: Overview of the experimental setup, indicating the components involved in the
measurements and data post-treatment. Temperature increase occurs either gradually, due
to heat accumulation from equipment operating in a closed environment, or abruptly, via
an external heater. Likewise, cooling takes place progressively after testing is interrupted
or with a higher rate when assisted by compressed air.

a4 assumption.
aas The experimental campaign under open-loop temperature control begins

us  with frequency-domain analyses conducted at various temperatures under
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Figure 6: Diagram of the experimental setup. The arrow colors represent signals from
different physical domains: green for mechanical quantities, blue for electrical quantities,
and orange for thermal ones.

closed-circuit conditions, with constant electrical resistance. In the first set
of tests, the system is analyzed at a fixed temperature, with the heater turned
off during measurements. After recording the frequency response, heating is
applied, when necessary, to gradually raise the ambient temperature to the
next target level. This procedure enables the identification of correlations
between system parameters and thermal variations. In the second series of
experiments, the system is excited at a fixed frequency while the temper-
ature is progressively increased by continuous heating of the surrounding
environment. Such controlled procedure allows the observation of the sys-

tem’s response near a critical temperature, where a sudden increase in volt-
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Figure 7: Thermal image of the system during assembly, with contour and labels indicating
the shaker, structure, and beam. The interior white rectangle marks the area where the
average temperature is calculated (value shown in the upper right corner).

age is detected. Additionally, a third set of tests is performed at constant
temperature in order to investigate the effect of the electrical resistance on
the system’s output. In such case, the excitation frequency is kept constant
and the resistance is varied parametrically across a wide range, allowing the
identification of the R value that maximizes power output, crucial in VEH

application.

4.1.2. Model Fitting

The model fitting is performed using a Particle Swarm Optimization
(PSO) algorithm to fit the parameters of the mathematical model presented
in Egs. and to the experimental data. By using the frequency re-
sponse expressions in Eqgs. and , the model may yield up to three
solutions at a given excitation frequency, two stable and one unstable branch.
However, only the upper stable branch is considered, as it corresponds to the
highest critical amplitudes observed experimentally.

Before performing the parameter fitting process, a sensitivity analysis

is conducted to identify which parameters most significantly affect the sys-
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Figure 8: First-order, second-order, and total Sobol indices for different excitation fre-
quencies. (a) First-order indices showing the individual contribution of each parameter.
(b) Second-order indices representing pairwise interactions between parameters. (c) Total
Sobol indices accounting for both individual and interaction effects. Parameters analyzed:
damping ¢, linear stiffness kj;,,, nonlinear stiffness k,,;, electromechanical coupling 6, and
modal force ~.

tem’s output. The input vector is defined as X = ¢, kyy, k1, 6,7, encom-
passing damping, linear and nonlinear stiffness, electromechanical coupling,
and modal force. The analysis is carried out across a range of excitation
frequencies to assess parameter influence under typical operating conditions.

Recalling Equation , the electrical power amplitude is given by:

Py = V2, (20)
l
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which is used as the objective function in the sensitivity analysis presented in
[Fig. 8 The first-order Sobol indices show that &y, has the highest individual
influence on the output power. The second-order indices further indicate a
strong interaction between ky, and v, suggesting that their combined effect
is also significant. This result is confirmed by the total Sobol indices, which
identify kyj, and v as the dominant contributors to the output variability.

Based on this result, the variations of the parameters £y, ¢, and 0 can be
considered to have negligible influence under the tested conditions and are
therefore assumed constant across different temperatures during the model
fitting process. Conversely, only kj, and v are treated as temperature-
dependent and are adjusted to match experimental data. Such choice is
supported by their dominant influence on the system’s response: ky;, directly
affects w,, determining how close the system operates to resonance for a given
excitation frequency, which strongly impacts the output power. Similarly, v
reflects the amplitude of the external excitation force, also governing the
energy transferred into the system. As both parameters directly shape the
system’s dynamic behavior and electrical response, their identification across
temperature variations is essential for accurately describing and predicting
the system’s performance.

Based on the results of the sensitivity analysis, which identified ky;, and ~
as the dominant parameters influencing the system’s output, the optimization
process focuses on adjusting only these two parameters while keeping ¢, k,,,
and 6 fixed. The goal is to minimize the discrepancy between the model

predictions and the experimental data. The objective function J(kyy,y) is
defined as:

N
T (i, y) = [Er + &, (21)
=1

and €¢° are the normalized error terms, defined as:

~mec

where €]
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3 mec + 1. 25X1 ec o Jimec + 1. 5Xmec mec
enec = , (22)
max( mec 4 1. 25Xmec mec 4 1. 5Xmec mec)
J

associated with the mechanical domain, and

ele + 1. 25Xele ele + 1. SXSh; vlsle

~ele 1,i€
max( ele + 1. 25X<il§ jle + 1. 5Xgl(; jle) ( )
J
associated with the electrical one, where:
emec o (ylmec y;nec) ’ and eele o (yfle gzele) ) (24>

The variables ye¢, gmec ¢ and §¢ correspond to the measured and es-
timated mechanical and electrical responses at frequency f;. The indicator

functions used to define the frequency-weighted windows are given by:

mee _ ) L A 1fi = [l < 1.5 He
Xl,z = ) ,
0, otherwise
(25)
e )L i Ifi— Sl < 0.5 Hy,
X2 Z - . )
0, otherwise
and
we _ J L A lfi = fiae] < 1.5 Hz
Xl K = ,
0, otherwise
(26)
ele _ ]" if |f2 - ffnlgx| <0.5 Hz
X2 K = ) ,
0, otherwise
where fe° and g}gx denote the frequencies at which the maximum measured

amphtudes of the mechanical and electrical responses occur, respectively.
The function J (k. ) in Eq. is built on a normalized quadratic error
metric, enhanced with frequency-dependent weights to increase sensitivity

around regions of maximum response. Specifically, two weighting windows
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are introduced near the peak amplitude frequencies: one spanning +1.5 Hz,
weighted by 1.25, and another narrower window of £0.5 Hz, weighted by 1.5.

The experimental data used for the optimization process are obtained

as described in [subsection 4.1} The PSO algorithm is configured to run for

a maximum of 80 iterations, with a stopping criterion that terminates the
search if the improvement in the best-found solution falls below 1078. The
swarm consists of 100 particles and the parameter limits are defined through
an iterative procedure: first, a initial adjustment is performed to estimate
the order of magnitude of each parameter, from which search intervals are
established. The starting points of the parameters is guided by their influence
on the response curves: the resonant frequency defines the order of magnitude
of kyin; the damping coefficient ¢ and the nonlinear stiffness k,; shape the
slope and amplitude of the backbone curve; the parameter 6 sets the relative
amplitudes of the mechanical and electrical responses; and  controls the
overall response amplitude. For our system, the initial search interval is k;;,
= [1x10°, 2x10%], v = [0.1, 0.5]. In subsequent experiments, the optimal
values obtained from the previous iteration are used as reference points, and
new bounds are set within £20% of those values, under the assumption that

experimental variations should not significantly alter the system parameters.

4.1.3. Model Validation

In order to validate the model, ten fits are performed using the PSO al-
gorithm with different seeds to ensure repeatability. The fitted results show
no significant differences (dispersion rate of ky,: 0.013% and ~: 0.34%),
indicating the consistency of the optimization strategy. A table presenting

the mean values and standard deviations of the ten fits is provided in [Ap]

Ipendix F| [Fig. 9| (a) and (b) show the evolution of the identified parameters

ky, and v as functions of temperature, obtained through the fitting of the
experimental frequency response curves. Both parameters exhibit a clear in-
creasing trend with temperature, reflecting the system’s stiffening behavior.
Points (1-4) in[Fig. 9(c) illustrate representative cases where the fitted model
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is compared with experimental sweep-up and sweep-down curves. The fitted
results show good agreement with the measurements, accurately capturing
the frequency shift induced by temperature variations. It should be noted
that this first experimental campaign aims to verify the Duffing model in its

ability to describe the dynamic behavior over a temperature variation range.

a b
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Figure 9: Parameter identification and model validation under thermal variation. (a)
Identified values of the linear stiffness kj;, as a function of temperature, showing a mono-
tonic increase. (b) Identified values of the modal force v under the same conditions, also
increasing with temperature. (c) Frequency response curves obtained experimentally and
from the fitted model for selected temperature conditions (1-4). The model accurately
captures the amplitude and shift in resonance behavior in both sweep-up and sweep-down
directions.

To further validate the developed model, two parametric analyses are
carried out by varying the system’s external acceleration (see and
electrical load resistance (see [Fig. 11]). These tests aim to assess the model’s
ability to predict the frequency response (both in the mechanical and electri-

cal domains) using experimental data not employed during the fitting process.
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ss6  behavior under changes in excitation and electrical boundary conditions.
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Figure 10: Parametric analysis of the system’s response under varying excitation acceler-
ations. (a) Mechanical displacement and (b) electrical voltage are shown as functions of
frequency and excitation amplitude. Light colors represent experimental data for sweep-
up and sweep-down tests, while dark colors correspond to the fitted model responses. The
insets highlight the agreement between model and experimental data at an excitation level

of 3.5% g, demonstrating the model’s accuracy in capturing the system behavior across a
range of operating conditions.

4.1.4. On the Harvesting Function

In energy harvesting applications, it is crucial to identify the system pa-
rameters that most significantly influence the power output, in order to max-

imize the energy extracted from the system. In the electrical domain, for
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Figure 11: Parametric analysis of the system’s response under varying electrical resis-
tance. (a) Mechanical displacement and (b) electrical voltage are shown as functions of
frequency and electrical resistance. Light colors represent experimental data for sweep-up
and sweep-down tests, while dark colors correspond to the fitted model responses. The
insets highlight the agreement between model and experimental data at an electrical load
of 500 2, demonstrating the model’s accuracy in capturing the system behavior across a
range of operating conditions.

the system under study, the parameter that enables such tunability is the
electrical load resistance. [Fig. 12|(a) shows the parametric variation of the
electrical output (in terms of voltage and power) as a function of R;, based
on the model described by Eqs. and . The model predictions are
consistent with the experimental results presented in [Fig. 12|(b).

As shown in [Fig. 12|c), increasing R; drives the system toward an open-
circuit condition, which leads to voltage saturation across the piezoelectric
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Figure 12: Investigation of the influence of load resistance on output voltage and power. In
a), the Model predictions obtained from the analytical formulation; in b), the experimental
measurements of voltage and power; in ¢), voltage and power amplitudes as functions of
load resistance at a fixed excitation frequency of 175 Hz. The comparison between a) and
b) shows good agreement between the experimental data and the model predictions in
identifying the optimal load resistance across a frequency range. Additionally, the result
in ¢) (for a given w value) aligns with the analytical estimate from Eq.(27), as indicated
by the red dashed line.

ss¢ element and, consequently, a reduction in power output. The optimal elec-

se0  trical load Ry, that maximizes power extraction for a given excitation fre-

s0 quency has been analytically derived by Xiao et al. [16] for a Duffing-type

32



571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

oscillator and is expressed by the following equation:

Rotm - (27)

1
@.
The red dotted line in |[Fig. 12c) represents the R, computed value using
Eq.(27) (for w = 175 Hz), showing good agreement with the experimentally
identified optimal electrical load. In fact, the analytical R, (experimen-
tally validated in [16]) also agrees with the results across the entire simulated
bandwidth in Fig. (a). In particular, around the resonance frequency
(184.5 Hz), Eq. prescribes an optimal resistance of approximately 43
k2, which is numerically confirmed. Experimentally, we also observe that a
resistance close to this value delivers the maximum harvested power, as in-
dicated in Fig. [Fig. 12(b). One may question whether stiffness nonlinearities
affect the validity of this formula; however, its derivation is related to the
impedance matching between the piezoelectric element and the external cir-
cuit [115, [116], not to the resonance condition of the mechanical subsystem.
Such idea relies on the assumption of the piezoelectric element operating as
a current source, which remains valid as long as the resistance change does
not significantly affect the transducer. Actually, Eq. , as well as the
validation in [16], has also been corroborated in several works on nonlinear
vibration energy harvesters [I17HIT9).

Recalling the sensitivity analysis in [Fig. § the output power is primar-
ily governed by the linear stiffness kj, and the modal force amplitude 7.
Tuning kj;,, to match the natural frequency with the excitation enhances res-
onance energy conversion efficiency, while increasing v amplifies mechanical
displacement, thereby boosting electrical output. Optimizing these two pa-
rameters is thus critical for maximizing harvester performance. It should also
be observed that the temperature in the harvesting function is kept constant;

variations in 7" would lead to a decrease in power output.
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Figure 13: Relation between the system’s natural frequency and temperature. In the
top panel, the temperature values associated with each identified frequency are shown,
along with a least squares fit used to establish an empirical relation between the natural
frequency w; and temperature. Dashed lines around the line fit represent a confidence
interval of 99%. In the bottom panel, experimental voltage response curves (sweep-up and
sweep-down) are presented for different temperatures, along with the fitted model curves.
The overlaid curves show the predicted response overlaid with the actual experimental
responses, demonstrating that the model is able to predict the behavior of the system.

4.1.5. On the Sensing Function

In sensing applications, understanding how temperature affects the sys-
tem’s natural frequency is essential, as this relationship enables the prediction
of its dynamic response under specific thermal conditions. Since no closed
expression directly relates the fundamental frequency to temperature varia-
tions in the clamped-clamped configuration, a numerical strategy is adopted.
A functional dependence between frequency and temperature is assumed, de-
noted as w; = f(T'), to which a Taylor series expansion can be applied and

fitted to the experimental data. By truncating the expansion at the first-
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order term, such relationship can be approximated as linear correlation, as
illustrated in[Fig. 13} According with the experimental data, the approxima-
tion is valid within the temperature range considered in the present study,
where variations are relatively small. However, for applications requiring
higher accuracy or involving wider temperature ranges, additional terms in
the Taylor expansion should be retained to improve predictive capabilities.

also shows the experimental and predicted curves under vary-
ing temperature conditions, highlighting the shift in the system’s resonance.
Such variation enables the use of output voltage as a sensing metric for tem-
perature variations on the order of 0.5 degrees. The dashed lines represent a
99% confidence interval, indicating a maximum prediction error of +0.12°C
based on the fitted line over the experimental data. The sensing mechanism
in this paradigm is based on the resonance condition: when the excitation
frequency aligns with w, the output voltage increases. Alternatively, if the
excitation frequency is fixed, temperature changes gradually shift the natural
frequency toward resonance.

While the sensing strategy described above detects high temperature vari-
ations through shifts in the resonant condition, bifurcations provides an al-
ternative approach. Operating near a jumping point allows for the detection
of smaller temperature increments, as slight parameter variations can trig-
ger abrupt transitions between dynamic states, resulting in sudden voltage
jumps due to branch switching in the response curve. For instance, at 24°C,
a critical excitation frequency of 182 Hz can produce a sharp change of ap-
proximately 220% in output voltage within a narrow frequency interval of
0.5 Hz.

Fig. 14{(a) presents a numerically simulated frequency response obtained
by sweeping the excitation frequency while imposing a time-varying temper-
ature profile, which alters the system’s natural frequency. The appearance
of a double peak results from a temperature decrease followed by an increase

during the frequency sweep, leading the system to momentarily pass through
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Figure 14: (a) Numerical simulation of the frequency response under a time-varying tem-
perature profile, generated using a chirp excitation combined with the temperature curve
shown below. This setup emulates thermal variations observed in experimental condi-
tions with limited temperature control. The model incorporates the temperature influ-
ence through the empirical relation obtained in The resulting double peak in the
voltage response highlights the system’s sensitivity to temperature changes. (b) Experi-
mental time evolution of temperature and voltage response under a 190 Hz excitation. A
sharp increase in voltage, approximately six times higher than the initial level, is observed
around 8 minutes, demonstrating the system’s responsiveness to thermal variations.

resonance twice. This simulation demonstrates the system’s capability to
detect temperature changes and suggests that it is more effective under slow
thermal variations, as the system requires time to adapt its dynamic response
to temperature-induced frequency shifts.

Fig. 14|(b) illustrates the temperature evolution and the corresponding
electrical response over time, simulating a sensing condition based on the
variation of w;. By keeping the excitation frequency fixed at 2 = 190 Hz
and considering the temperature and frequency relation from [Fig. 13| an
estimated critical temperature of approximately 26.02°C is obtained. Ex-
perimentally, the critical temperature is observed between 26°C and 27°C,
in good agreement with the predicted value. In applications where thermal
switching is required, the proposed system can act as a protection mecha-

nism, ensuring operation remains below a critical threshold.
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4.2. Close-Loop Temperature Control

This section presents the validation of the proposed structure in terms of
repeatability and sensitivity, while also examining the exploitation of non-
linear bifurcation phenomena for sensing applications, comparing its per-
formance with linear regimes. The setup previously described in Section
4.1]) correspond to the open-loop temperature condition, in which the beam
temperature is directly measured by the thermal camera without any active
temperature control. Such approach enables the characterization of the tem-
perature influence on the system’s parameters; however, it does not address
aspects related to measurement repeatability or sensitivity to controlled ther-
mal variations. For this reason, an additional set of experiments is conducted
under closed-loop temperature control, allowing predefined temperature evo-
lution profiles to be imposed and reproduced.

The experimental apparatus associated with the closed-loop control is il-
lustrated in [Fig. 15l The structure is mounted on an electrodynamic shaker
(Vibration Test Systems 27 kN, TIRA), enabling base excitation. The Sim-
center SCADAS Mobile system (SIEMENS) is employed for excitation con-
trol and post-processing of the measured data, while the Climats 540 H 50/3
climatic chamber provides controlled temperature conditions during testing.
The temperature control is achieved by imposing a predefined profile, with
the control strategy determined by the climatic chamber supplier (Climats
540 H 50/3). In this configuration, the temperature of the experiment is
controlled, although the rate at which it is reached is defined by the chamber
itself. Representative examples of the temperature profiles applied in the ex-
periments are provided in [Appendix G| One should note that the clamping
conditions of the mechanism are specifically designed for the shaker illus-
trated in Figure [0 corresponding to the case with no axial loads applied to
the beam. In contrast, the fixation adopted in other setups (e.g., Figure
uses clamps that apply compressive/tensile forces on the beam, thus modi-

fying the resonance condition observed in the open-loop tests. Although a
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ero frequency shift is introduced, the main objective remains the validation of the

ss0  structure’s repeatability and sensitivity under different thermal conditions.

681

682
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Structural coupling to
the shaker/chamber

Temperature control

‘ , system

Shaker control and data acquisition system

Figure 15: Experimental setup used for vibrational characterization and data acquisition
under closed-loop control.

The experimental campaign under closed-loop temperature control starts
with the acquisition of frequency response curves to identify bifurcation

points. Then, bifurcation tests are performed by applying temperature steps
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at fixed excitation frequencies to evaluate the system’s transitions between
stable branches. Additional tests are conducted with gradual temperature
changes to assess stiffness variation, demonstrating thermo-mechanical cou-
pling for resonance control. Finally, repeatability and sensitivity are ex-
amined by comparing frequency response curves across temperature cycles,

identifying the minimum detectable variation. The temperature evolution

profiles are presented in [Appendix G|

4.2.1. Repeatability and Sensitivity

Fig. 16{a) shows the curves obtained for two temperature conditions, se-
quentially measured. The first measurements are taken at 30°C, followed by
an increase to 33°C, and then a return to 30°C, repeating the procedure. It is
observed that the curves corresponding to the same temperature are closely
aligned, indicating that in fact the frequency response can be associated with
a given temperature condition. A shift in the 30°C curves is also apparent,
which may be attributed to residual stresses in the structure resulting from
the heating and cooling cycles. Additionally, an increase in amplitude is ob-
served for the 33°C curves, which is related to the effect of temperature on
the structural fixations, increasing the tightening and thereby reducing over-
all damping. For future studies, an improvement could be done by welding
the components, minimizing the influence of losses in screws and residual
stresses.

Fig. 16(b) presents the curves obtained for successive temperature con-
ditions, differing by 0.1°C. As anticipated in the sensing concept proposal,
the highlighted curves confirm a temperature sensitivity on the order of 0.5
°C. One should note that branches with higher amplitudes are experimen-
tally difficult to achieve, leading to increased deviations near the bifurcation
points on the sweep-up curves. Although the mechanism exhibits high sen-
sitivity to small temperature changes, practical measurement accuracy may

be limited in the vicinity of the bifurcation.
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Figure 16: Validation of repeatability and sensitivity. (a) Mean response curves for two
distinct temperature conditions (four curves in total). (b) Mean response curves for eleven
temperature conditions, highlighting three equally spaced examples. Each mean curve
is computed from 12 measurements (6 sweep-up and 6 sweep-down), with the standard
deviation enveloping the curves.

4.2.2. Bifurcations

Fig. 17(a) presents the experimental frequency responses at 7" = 33°C,
together with the mean response curve, highlighting the frequencies at which
the tests are performed. A decrease in temperature shifts the response curve

to lower frequencies, causing the corresponding points to transition to the
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Figure 17: (a) Experimental frequency responses of the measured voltage at T = 33°C.
Orange traces are individual experimental realizations and the black trace is the mean re-
sponse; the excitation frequencies used for the time-domain tests are indicated. (b) Voltage
time series for a step AT : 33 — 32.5°C at three closely spaced excitation frequencies. (c)
Voltage time series at fixed excitation w = 70.25Hz for two step amplitudes (33 — 27°C,
33 — 30°C).

alternative stability branch. In line with the theory presented in Section [2]
frequencies closer to the bifurcation point are expected to transition earlier
toward the low-energy branches than those further away from the bifurcation,
a behavior confirmed in [Fig. 17(b). Following the same reasoning, for a fixed
excitation frequency, a larger step input is also expected to trigger earlier
jumps, which is experimentally observed in [Fig. 17|(c).

(c) shows the temperature profile applied to the system, along
with the temperatures measured for both the nonlinear (high acceleration)

41



—— Nonlinear — Linear ---- Reference

(@) st
4t
>
(0] 3
[@)]
2 2
S
1_ ..——A
(b) 1.0f
>
0.8}
=
g
5 0.6r
Q
N
T 0.4}
£
O
Z 02'
Qoo =7 e T
& 33f
g
s 31¢
3
©
O 29t
o
§ 27 : : : : : : :
IG—J 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Time (h)

Figure 18: Temperature-controlled response of the system under linear and nonlinear
regimes of oscillation. (a) Measured voltage responses for the nonlinear (0.6g, in red)
and linear (0.08¢, in black) excitation amplitudes. (b) Corresponding normalized voltage
responses, highlighting the distinct behaviors of the two regimes. The linear response (in
black) shows a gradual voltage increase near resonance, whereas the nonlinear response
(in red) displays abrupt transitions associated with bifurcations. (c) Applied temperature

profile (27-33°C, in blue) and measured temperatures for both configurations (in red and
black).
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and linear cases (lower acceleration), indicating that the system temperature
closely followed the slow and uniform input. [Fig. 18|(b) presents the voltage
measured during the experiment, normalized by the maximum value in each
case ([Fig. 18(a)). The nonlinear response was obtained with an excitation
amplitude of 0.6g, while the linear response used 0.08g. The results demon-
strate that the structure’s stiffness can be thermally controlled, also showing
that the nonlinear regime, due to the presence of bifurcations, exhibits higher
sensitivity than the linear one. In linear conditions, the sensing mechanism
is based on the resonance of the structure, resulting in a gradual voltage
increase until the peak is reached. In contrast, in nonlinear conditions, bi-

furcations cause abrupt changes in voltage.

5. Conclusions

This paper presents the development of a nonlinear electromechanical
oscillator that exhibits dual functionality, acting both as a temperature-
sensitive switch /sensor and a vibration energy harvester. The system is mod-
eled as a clamped-clamped beam with an attached MFC, under axial loads
induced by temperature variations. Mismatched thermal expansion between
the aluminum clamping structure and the steel beam generates tensile axial
loads, increasing the system’s natural frequency. A nonlinear electromechan-
ical model is developed incorporating midplane stretching and axial load ef-
fects, with its frequency response obtained via the harmonic balance method.
The model is experimentally validated using PSO-based parameter fitting,
which shows that kj;, and ~ increase with temperature, while other param-
eters presented a slight variation. A sensitivity analysis confirms ky;, and ~
as the most influential parameters.

In sensing applications, the system can detect ambient temperature
changes by monitoring voltage amplitudes induced by shifts in resonance.
Such variations may occur gradually, as the excitation frequency sweeps
through the stable branches of the Duffing oscillator. According to this
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approach, large changes in AT are the primary target of detection. How-
ever, sensitivity can be further enhanced by leveraging the jump dynamics,
wherein operation near a bifurcation point enables small parameter variations
to induce abrupt transitions in the system’s response. Under this alternative
strategy, small values of AT become the focus of measurement. As a key
conclusion, the sensor demonstrates a broader dynamic capability compared
to linear mechanisms.

In VEH applications, the system’s nonlinear nature leads to bandwidth
enlargement, an advantage not attainable with single-degree-of-freedom lin-
ear systems. One should observe that the harvested power can be directly
linked to thermal sensors, enabling battery-free designs or systems without
external power sources. The mechanical architecture also allows tuning of
wy via axial loads, imposing operation near the target excitation frequency.
Moreover, the presence of a central magnet introduces the potential for elec-
tromagnetic transduction, expanding the available energy conversion mech-
anisms, while also allowing for an additional contribution to the nonlinear
stiffness of the system. Overall, as with sensing applications, the advantages
of nonlinearity are retained even in simple architectures, with good agree-
ment between experimental behavior and analytically derived optimal design
parameters.

Beyond sensitivity and repeatability, the closed-loop experiments also
demonstrated thermal piloting of the structural stiffness, enabling controlled
transitions between stable branches through temperature modulation. More-
over, the frequency response curve is reproduced solely by varying the system
temperature, demonstrating both possible jumps of the duffing oscillator
(up and down sweeps). This capability reveals a new route for exploiting
bifurcation-based sensing in reconfigurable structures.

In summary, the proposed structure provides a multifunctional solution
for environments that demand both monitoring and energy autonomy. Its

ability to adapt the frequency response via thermal loading, along with its
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capacity to detect thermal shifts, highlights its potential in smart structures,
embedded sensors, and energy-aware devices. Miniaturization paves the way
for investigating sensing and harvesting performance at the microscale, par-
ticularly in MEMS applications. Alternatively, adaptive control strategies
could be implemented to allow the system to autonomously track frequency
shifts caused by temperature changes, using the MFCs as active shape mod-

ulators rather than passive elements.
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Appendix

The following appendices provide complementary derivations, simulations,

and supporting data that extend the main text. derives the ther-
momechanical behavior of the structure, establishing the relation between

temperature variation and the induced axial load. presents fi-
nite element simulations that qualitatively validate this relation and illustrate

the influence of structural components on thermal sensitivity.
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details the expressions for the equivalent homogenized mechanical and elec-
trical parameters used in the reduced-order model. provides the
deduction of the analytical mode shape for the clamped—clamped configu-
ration with a concentrated mass using Laplace transform techniques, while
derives the closed-form frequency relation for a simply supported
beam under axial loading, enabling comparison with the clamped-clamped
case. Finally, compiles the experimental data obtained through

parameter identification, and exemplifies the measured temper-
ature profiles used throughout the experimental campaign.

Appendix A. Description of the physical behavior of the system

6A luminum

Figure A.19: Ilustration of thermally induced axial deformations in the aluminum and
steel components. Deformations in directions perpendicular to the beam axis are disre-
garded.

The structural deformation due to temperature variation is assumed to
follow a linear relationship for small temperature changes, with axial defor-

mation given by § = aLoAT, where « is the coefficient of thermal expansion
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and Lg is the initial length (thermal deformations of each component are
shown in . In the current configuration, both the steel beam and
the aluminum clamping structures are subjected to thermal expansion. How-
ever, since aluminum exhibits a higher thermal expansion coefficient than
steel, it undergoes greater elongation for the same temperature variation.
One should observe that the components are mechanically assembled, con-
sequently, constrained to deform equally, which prevents free thermal ex-
pansion and leading to the generation of internal axial forces in the beam.
To quantify the axial load N, induced by the temperature variation AT,
the principle of superposition is applied. The resulting axial force, obtained
from the difference between the expansions, is a function of the constrained

deformation, given by the Equation:

6N = 5aluminum - 5steela (A1>

so that the deformation induced by the axial force is expressed as follows:

NrLg
on = A2
N EsteelA7 ( )

where A is the cross sectional area of the beam. The combining of Equations
(A.1) and (A.2) results in a relation between Ny and AT, such that:

NT - EsteelA(aaluminum - asteel>AT' (A?))

Appendix B. Finite element simulation

presents a finite element simulation performed in COMSOL
Multiphysics®, aimed at qualitatively assessing the influence of temperature
on the system’s natural frequency and evaluating the effects of structural
modifications on its thermal sensitivity. To emphasize the general behav-
ior rather than material-specific responses, an arbitrary piezoelectric mate-

rial from the software’s database is selected. The model couples thermal
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Figure B.20: Natural frequency change as a function of temperature variation obtained
from COMSOL simulations. Color coding indicates the distinct configurations of the
system, based on the inclusion of the magnet and/or the steel plate.

and structural physics to capture the axial loads induced by temperature
variations, with eigenfrequency analyses conducted to monitor the result-
ing frequency shifts. A fine tetrahedral mesh with 38,672 elements ensures
numerical accuracy.

The simulation results reveal a consistent increase in natural frequency

with rising temperature, indicating the presence of tensile axial forces, in
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agreement with the theoretical prediction from Eq. . This agreement,
together with the analytical relation established in Eq. , justifies ex-
pressing all subsequent axial load effects in terms of temperature variation,
allowing the incorporation of AT into the beam’s governing equation.

To assess the system’s tunability, the influence of adding a magnet at
the beam’s midpoint and a steel plate at its extremity is also analyzed. The
inclusion of the magnet reduces the natural frequency, while the steel plate
increases it, counterbalancing the magnet’s effect and enabling frequency ad-
justment to meet specific design targets. Furthermore, the simulation shows
that both components reduce the system’s sensitivity to temperature-induced
frequency shifts, with the magnet having a more pronounced influence. This
interaction offers greater design flexibility, allowing simultaneous tuning of
resonance characteristics and thermal response. Finally, it is worth noting
that the magnet’s presence opens the possibility of incorporating magnetic
effects into the model, extending the system’s applicability to a broader range

of multiphysical problems.

Appendix C. Equivalent physical parameters

The equivalent bending stiffness E'1.,(z) is given by the equation:

Bl (x) = <Esteel[s + (Esteet(Lsp — Is) + Eply) [H(x — Lyi) — H(z — Lyy)]
+Egea(lie = 1) [H(x = L) = H(x = Lop))),

(C.1)
where [, is the area moment of inertia of the MFC, and I, I;., and I repre-
sent the beam’s area moments of inertia at the MFC location, the steel plate
location, and all other regions, respectively. The expressions used to calcu-
late the moments of inertia, arising from the homogenization of a composite
cross section, are provided in Erturk and Inman’s work [107]. It should be
emphasized that E'1., varies with x, and this dependence should be accounted

for in the subsequent integrations. Following the modal base description, the
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lumped parameters of Egs. and are given by the equations:

L L L
Ktin = / ol O Y / FTEELL ¢ dr + / B ¢ do
0 0 0

L
Ny / 6 ¢ dx,
0

b = — (B / “(oe) / o,

L L
c=cely / Q" pdx + ca/ * dz,
0 0

0 =9[6"(Lyi) — " (Lyy)], 7= —(pA /OL ¢(x) dz + Mconc¢(§)>7

=S
_ &33 bL,
- )

C, .
p

19: —bEpdglhpc.

(C.2)
The parameters in Eq.(C.2]) are independent of spatial variables and are
treated as homogenized quantities, as they arise from an integration over

the spatial domain. From the experimental perspective of this work, these

parameters are determined through experimental identification.

Appendix D. Mode shape deduction

Adopting the parameter notation described in Eq., Eq.@ can be

rewritten in the following format:

di;i(f) + Nadmdi;i(;) — kK <1 + pd (x — g)) ¢(z) =0, (D.1)

allowing us to apply the Laplace transform £, to both sides of the Equation,
in order to convert the differential equation in x into an algebraic equa-

tion in s. After applying the boundary conditions at x = 0 and isolating
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L, [¢(z)] (s), the following equation is deduced:

d*¢ d*¢
oL 9 90
Lo - @ et g g
* st 4+ Nygms? —k* st 4+ Nygns? — k4 st 4+ Nygms? — k4

(D.2)
Before applying the inverse Laplace transform, it is convenient to rewrite the

equation in a form suitable for conversion using tabulated transforms:

Lo [o(x)] (s) =

@)@ D% (@0 D7) (- O 4 DY)

Considering the relation given by:

1 1 [ 1 1

(2 —C2)(s2+D?)  (C2+D?) |(2—C?%) (24 D?)|

and the inverse Laplace transform properties, given by:

;! {s {(32_102) - (SQiDQ)” — cosh(C) — cos(Dx),

£ { [(32 - c2) (s im)] } - %Smh(cm) - %Sm(m)’ (B:5)

and
L1 {eU(s)} =u(z — c)H(z —c),

xT

the final modal expression is obtained, as shown in Equation .
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Appendix E. Natural frequency and temperature relation for a

simply supported beam

Lets assume a PDE for a simply supported beam under axial loads is

given by:
0w (z,t) 0*w(x,t) O*w(x,t)
Bl ~Nap 045

where EI is the bending stiffness, N is an axial load (positive for tensile

—0, (E.1)

loads and negative for compressive loads), p is the beam’s material density
and A it’s cross sectional area. Under the simply supported condition, the

boundary conditions are given as:

w(0,t) =0, w(L,t)=0, w™(0,{)=0, and w™(L,t)=0. (E.2)

By applying the same algebraic treatment used in |[Appendix D} Eqs. (E.1)
and (E.2) yield the following ordinary differential equation governing the

mode shape:

Lo | Pol)

— 2 =
I 772 wpAp(z) =0, (E.3)
or, on a compact notation,
d'¢(z) Eolx) 4
W Nadmv — k’ ¢(l’) = O (E4)

Still following the algebraic strategy outlined in[Appendix D} the differential
equation in x is transformed into an algebraic equation in s, from which the

following expression is derived:

) d &
(s° + Nadm) @Wx) e (x)
— =0 =0
‘Cﬂf W(m)] (8) - 84 + Nadm32 o k’4 + 84 ‘l‘ Nadmsz . ]{54’ (E5>
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or, again on a compact notation,

d d?
(* + Nudm) Egb(x) 73 ()

L. [Y(x)](s) = (s2 = C?)(s% + D2;C:0 + (s2 — C?)(s? TODQ)' (E.6)

Recalling the properties of the inverse Laplace transform, the following rela-

tion is finally obtained:

o) = - —il_ - [wxm(O) <sinhéC’x) B Sin(é)x))

+47(0) ((c + Né‘f’") sinh(Cz) + (D - Ngm> sin(D:z:)) } (E.7)

where the matrix A associated with the eigenvalue problem under the new

boundary condition is given by:

freL) - AL

1
A= —" E.
whose determinant leads to the following relation:
sin (DL)sinh (CL)
Al = =0. E.
A = 0 (E9)

Since sinh (C'L) is always positive for C' > 0, the only possible solution is
obtained by considering sin (DL) = 0, therefore, DL = nm, with n € N*. By
enforcing the nullity through the sine condition and returning to the notation
associated with the physical parameters, the relationship between the natural
frequency and axial loads for the simply supported beam is finally derived

through the following equation:

2,2 2,2
s TN Elrm*n
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ag  From this Equation (E.10)), analogously to the derivation associated with the
a9 clamped—clamped case, the first critical buckling load can be obtained by

o0 setting w = 0 and n = 1, yielding:

Elx?

Ncr:_ 12

(E.11)
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o1 Appendix F. Table of fitted data

922

Experimental curve | T (°C) | ki (x10%) | o(kun) | 7 a(vy)
1 20,7 1.096 64,35 | 0,30 | 0,0005
2 21,1 1110 | 87,08 | 0,31 | 0,0007
3 21,3 1.124 65,95 | 0,31 | 0,0005
4 21,6 1.138 82,83 | 0,32 | 0,0007
5 21,7 1.150 98,37 | 0,32 | 0,0008
6 21,9 1.164 71,09 | 0,33 | 0,0006
7 92.2 1175 | 59,13 | 0,33 | 0,0005
8 22.5 1.185 53,53 | 0,34 | 0,0008
9 22,4 1.193 121,42 | 0,34 | 0,0009
10 99.4 1.201 | 161,19 | 0,35 | 0,0012
11 22,6 1.207 65,95 | 0,35 | 0,0005
12 22.9 1.213 38,37 | 0,35 | 0,0003
13 22.8 1218 | 35,17 | 0,36 | 0,0003
14 22.8 1.223 67,64 | 0,36 | 0,0005
15 23,0 1.227 89,12 | 0,36 | 0,0006
16 23,1 1.232 66,81 | 0,36 | 0,0005
17 23,1 1.235 40,37 | 0,37 | 0,0003
18 93,2 1239 | 47,27 | 0,37 | 0,0005
19 23,2 1.262 26,09 | 0,38 | 0,0002
20 23,9 1.265 60,83 | 0,38 | 0,0004
21 23,8 1.268 61,92 | 0,38 | 0,0004
22 23,8 1.276 71,88 | 0,39 | 0,0005

Table F.1: Parameter identification by the optimization algorithm at different tempera-
tures T, with maximum value of dispersion rate (standard deviation over mean value) of
kiin: 0.013% and ~: 0.34%. The overbar notation () denotes the mean value, while the
symbol o represents the standard deviation. kj;,, corresponds to the linear stiffness and

to the modal force.

Appendix G. Temperature profiles
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Figure G.21: Examples of experimentally imposed temperature profiles: (a) Step, (b) "V",
and (c) ramp profile.
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