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Abstract—Forest-fire prediction using Artificial Intelligence (AI)
continues to face major challenges, including (i) the ability to
generalize across regions with very different risk profiles, (ii)
managing the inherent daily variability and randomness of fire
occurrences (including extreme fire days). These factors together
have hindered the deployment of dependable prediction systems
in operational settings. In this work, we introduce a novel multi-
risk modeling framework specifically designed to tackle all two
challenges simultaneously. The proposed approach is applied to
daily forest-fire prediction across mainland France. We develop a
voting-based system that combines the outputs of multiple models
trained on signals smoothed with a range of convolutional kernels,
capturing both local and seasonal variations. The proposed
solution achieves superior performance compared to conventional
models, demonstrating improved cross-regional transferability and
robustness to daily fluctuations. Notably, it significantly enhances
prediction skill for the rare but damaging extreme-fire days,
where traditional models often fail. Our experiments reveal that
using an ensemble of multiple risk models can better capture the
complex dynamics of fire risk and provide more reliable guidance
for decision-makers. Supplementary materials are available here.

Index Terms—Machine learning, Wildfire prediction, Extreme
prediction, Voting

I. INTRODUCTION

Forest fires impose extensive costs on multiple fronts. Eco-
nomically, the immediate destruction they wreak on property
and infrastructure is evident. According to the U.S. National
Interagency Fire Center, the U.S. alone spent over $3 billion
on wildfire suppression in 2018 without account post-fire costs
related to rebuilding, loss in property values, and disruptions
to local economies [1]-[3]]. According to |AccuWeather, the
economic loss from the large Los Angeles fire of 2025 is
estimated at $250 billion. From a human perspective, in addition
to the immediate threat to life, wildfires cause long-term health
impacts due to the inhalation of smoke and fine particulate
matter. For instance, a study found that the 2018 Camp Fire in
California resulted in over $16.5 billion in health costs from air
pollution exposure alone [4]. Ecologically, fires can decimate
local flora and fauna, with some species taking decades, if not
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centuries, to recover. The loss of vegetation further exacerbates
the risk of soil erosion and disrupts the local water cycle, posing
long-term ecological risks [5]]. Moreover, the carbon released
during wildfires contributes significantly to global greenhouse
gas emissions, thus amplifying the effects of climate change.

A. Problem formulation

According to Jan-Miguel-Ayanz et al [[6], wildfire risk can be
conceptualized as the likelihood of a fire event’s occurrence and
the potential adverse consequences arising from it. Developing
an algorithm to predict this likelihood offers an essential tool in
proactive wildfire prevention. The objective of this article is to
provide fine-grained, operational forecasts of the daily number
of wildfires at short horizons (daily) in French departments.
This enables better risk management, intervention planning,
and protection of populations and infrastructure.

B. State of the art

Table [I| shows the analysis of the state of the art carried
out in this article. Our literature review highlighted several
important points: daily predictions, although suggested in some
papers, are not achieved and suffer from randomness issues,
especially in areas with high occurrence rates. A single model
struggles to handle multiple regions, each with different risk
levels.

C. Contributions

In this article, we propose a method to optimize the daily
prediction of the number of fires for a given region. We address
two challenges highlighted in the state of the art: handling
regions with different risk levels and the random nature of
fires. Using a public database, we demonstrate that a single
risk model is not the ideal solution. Our method involves
applying a series of convolutional filters to the raw signal and
implementing a voting system. Our results show that, depending
on the specific task (predicting the highest risk, predicting in
a particular area, predicting during a specific season, etc.),
the optimal number of models varies. This analysis suggests
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TABLE I
SUMMARY OF RECENT WILDFIRE-OCCURRENCE PREDICTION STUDIES

Authors / Citation Objective

Remarks

(7)-19]
covariates.

Bethany et al. [|[10] Predict daily fire-occurrence risk maps.

Graff et al. [11]
sion.
[12]-[14] Monthly fire-probability forecasting.
Michail et al. [15]
GraphCast + temporal encoder.

“Daily” wildfire-danger modelling from daily

Daily ignition probability via Poisson regres-

Weekly global fire-occurrence prediction with

Archive converted to isolated fire / non-fire pixels; non-fire points chosen
by distance rule (e.g. >10 km). Random 80/20 split yields high apparent
skill but ignores day-to-day uncertainty, inducing a saw-tooth signal.
Accuracy rises as evaluation windows widen from 40 km to 120
km—coarser grids absorb spatial noise. Global performance low due
to stochastic nature.

New-fire occurrence is highly random at a one-day horizon; MLPs confer
no gain over the simpler model.

Enlarging the temporal scale smooths the stochastic nature of ignition
events.

One week ahead, AUPRC = 0.64 worldwide, but only 0.20 for Europe; a
single “global” network hides pronounced regional disparities, motivating
domain-specific fine-tuning.

the need for a complex framework composed of multiple risk
prediction models. Figure [I] shows the pipeline developed in
this article.

D. Organization

First, we describe the database employed, detailing the
predictor variables and the target response to be estimated. Next,
we examine the proposed voting scheme in depth. We then
present the training configuration for each of the tested models
and report the corresponding experimental results. Finally, we
offer guidelines for kernel selection aimed at optimizing a
specific downstream task.

II. DATASET

This section presents and discusses the data source used to
obtain fire information. It describes the features and the target
variable to be predicted.

A. The Forest Fire Database

Also called BDIFF, it is an online application designed to
centralize all data on forest fires across French territory since
2006 and make this information available to the public and
state services. This database provides access to multiple sources
of information about forest fires, as follows:

o Date of the day

o Time the alert was issued

o The nearest city

e The cause (criminal, accidental, etc.), when available
e The burned area.

o Meteorological data

We used data from 2017 to 2023.

B. Features and Target

Features and target were computed as it is described in the
unpublished article of Caron et al. [16] (see figure [2).

The wildfire prediction problem is treated as an ordinal
multi-class classification task. For each department, an ordinal
5-class signal for occurrence using the K-Means algorithm
is created. Each sample with O fires was set to class 0, and
positive samples were clustered into four classes, representing

Normal, Medium, High, and Extreme fire occurrence. This
approach highlights typical occurrences rather than absolute
values.

The features computed for training the models are grouped
into 4 categories, as shown in Table Meteorological,
Topographic, Socio-Economic, and Historical. The feature
processing follows the same procedure as noted in the original
article: data are transformed into a 3D raster with a 2
km resolution, aggregated by department using the mean,
maximum, and minimum, and features with low variance or
high correlation are removed using Pearson, Spearman, and
Kendall coefficients (keeping the highest variance).

The dataset is split into training (2017-2021), validation
(2022), and testing (2023) subsets. All calculations were
performed on the training set and generalized to all data. Each
row consists of the aggregated features and the target risk for
a specific cluster within a specific French department.

III. PROPOSED VOTING SCHEME

In this section, we present the proposed voting scheme to
optimize forest fire prediction. This idea stems from the desire
to address the randomness inherent in fire signals. A fire is a
rare event that can occur due to multiple factors that are difficult
to account for (such as cigarette butts, barbecues, electrical
cables...), not to mention fires of criminal origin. Therefore, a
fire occurring on day J could reasonably have happened within
a certain range of days around J (from J-x to J+x), where x is
an integer. This phenomenon creates discrete datasets in which
some samples labeled 0 do not correspond to a day without risk.
When focusing not only on the occurrence of fires but also on
the number of fires, the signal becomes increasingly noisy. This
effect is even stronger when the study region (here, France) is
large. In some departments (e.g., Ain), very few forest fires
have occurred (11 over 7 years), yet vegetation dynamics could
make these departments much more at risk than current data
suggests. However, predicting events with only 11 samples is
challenging. Among these rare events, extreme events (many
fires in a single day) are even harder to predict.

Figure [3| shows the final solution proposed to bypass those
limitations. Starting from the fire signal, different convolution
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Fig. 1. Process pipeline. After creating the dataset, different kernels are applied through convolution or simple aggregation. This resulted in
different signals, for each of which we trained a model. The final prediction is given by the votes of all models.

TABLE 11
SUMMARY OF FEATURES USED IN THIS STUDY. ’-> MEANS THE SAME AS ABOVE.

Variables Frequency Source \ Variables Frequency Source

Meteorological Topographic

Temperature 12h, 16h Meteostat Elevation Static IGN

Dew Point - - Forest landcover - -

Precipitation - - Landcover - Cosia

Wind Direction - - NDVI, NDSI, NDMI, NDBI, 15 days GEE (landsat
NDWI 1+2)

Wind Speed - - Swelling-shrinking of clays - -

Precipitation in Last 24 hours - -

Snow height - -

Sum of last 7 days rain drop - -

Day since last rain 12h -

Nesterov - firedanger

Munger - -

KBDI - -

Angstroem - -

BUI, ISI, FFMC, DMC, FWI, - -

Daily severity rating - -

Precipitation Index last 3,5, and - Calculated

9 days

Socio-Economic Historical

Highway Static OSMNX Past risk Daily Calculated

Population - Kontur Past risk burned area - -

Calendar Daily Cluster Static -
Department - -
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Fig. 2. Dataset process employed in this article.

kernels (mean, max, min, cubic, quartic, etc.) are applied to
smooth the original signal. Each filtered output is clustered
using the same method as the raw signal and then passed to an
Al model. In the end, one model is obtained for each applied
kernel. The final output is then the result of a vote among all
models.

The kernels used, as well as their sizes (in number of days),
can be difficult to define without prior training. For that reason,
we selected a large number of kernels in order to maximize the

information extracted. Figure 4] shows all the kernels studied.

Kernel size range is defined in
size € {1, 3,5, Specialized},

Numerical data defines the number of days before and after. The
specialized size is computed per season and cluster. The size
corresponds to the mean duration of continuous fire sequences
(consecutive fire days with gaps of less than 2 days between
them). A 3-day inactivity threshold separates sequences. For
each signal (including the original), we created 5 classes
(representing: Null, Low, Medium, High, and Extreme risk)
using K-Means.

This process results in a voting scheme with 32 different
models plus a model trained on the raw clustered fire signal
for a total of 33 models.

There are several ways to handle voting among AI models.

In this article, we use a soft voting approach based on each
model’s class-membership probabilities. The vote is weighted

by the model’s performance on the validation set, calculated
on the original (unfiltered) target fire signal.

IV. TRAINING

To evaluate our solution, several models have been used. The
tested models are listed in Table [ILI| with their configurations
provided in the supplementary materials. In addition to the
classic versions, CatBoost, logistic regression, and XGBoost
were also trained with oversampling using SMOTE. Three
oversampling rates were tested: 2x, 4x, and 6x. Oversampling
was applied only to the original fire signal (with no kernels).
For each training, we tested different percentages of 0 samples
(ranging from 0.05 to 1.0), selecting the one that gave the best
score on the validation set.

The high training time and the size of the framework prevent
us from using more complex and heavy models, such as GNNs
or CNNs. However, it is worth noting in the unpublished
article [[16] that very complex models did not significantly
improve performance compared to simple models (for this
dataset). While this is planned for future work, our objective
here is to demonstrate that a single risk system cannot address
the aforementioned limitations.

TABLE IIT

LIST OF MODELS USED.
Model Type
LG (Logistic Regression) | Linear model
XGBoost Decision tree (Boosting)
CatBoost Decision tree (Boosting)
GRU Recurrent neural network
LSTM Recurrent neural network
MLP Fully connected neural network

V. RESULTS

We evaluate the models’ performance on each target using
two metrics:

1) Binary f1 score.

2) Intersection over Union (IoU), which measures how
well the predicted risk aligns with actual risk when an
event occurs. IoU is well-suited for multiclass wildfire
prediction as it accounts for class uncertainty and
preserves class ordinality—predicting class 1 instead of
4 is penalized less than predicting 0. Unlike metrics such
as Balanced Class Accuracy, IoU reflects the severity of
misclassifications. It also highlights model performance
on rare events, where accurate prediction often requires
accepting more false positives—a trade-off that IoU
captures effectively.

In this paper, we only show the performance on the IoU
metric, as it is more precise than the F1 score, which is provided
in the supplementary materials.

Each metric was calculated using three methods:

¢ Classic: computed over the entire dataset.

o Generalization: evaluates the area under the score curve

for each department as it was used in [[16]].
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Fig. 4. Types of kernels applied to the fire signal. Sigma was set to kernel_size - 1.

« Extreme: evaluates the Intersection over Union (IoU) on
the higher classes (2, 3, and 4).

Using the validation-set scores (used as voting weights), we
tested the voting system while varying the number of models
included—from 1 up to 20, and then with the entire set of
models.

A. Classic evaluation

The overall performance of the models is presented in
figure El As can be seen, in the case of XGBoost and LG,
the voting models slightly improved the results (~ +0.003).
In deep learning models (MLP, GRU, and LSTM), we notice
a larger improvement in the global scores using the voting
schemes, but both performances remain similar. For CatBoost,

no noticeable improvement is observed. The use of SMOTE
reduced the models’ performance (~ —0.03).

B. Generalization evaluation

This section investigates the models’ generalization
scores—their ability to cope with different regions (here,
individual French departments) that have distinct risk histories.
Using Equation [T} the score is first computed for each
department (t), then normalized by the maximum possible
area (which equals 1 for each department). Only departments
that experienced at least one fire during the 2023 test year are
considered.

Figure [6] displays the resulting scores. Although applying
SMOTE with an oversampling factor of 6 improved the score,
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Fig. 5. IoU performance on full database between voting, classic, and SMOTE models.

the dedicated scoring strategy achieved the best performance
(0.094 with CatBoost using an ensemble of ten models).
Nevertheless, the score remains very low, highlighting the
persistent difficulty of the task. A similar pattern is observed
across the other models evaluated. However, although the
GRU voting model achieves its maximum score with the
same number of models (around 10), it did not surpass the

generalization of the baseline model, even if the scores are
very close (0.094 vs 0.095).
T
/ score(t) dt
score = 20 (D

T
| v
0

This section evaluates model performance on the most
extreme days. To do so, two separate sample groups were
analysed: (i) all observations belonging to classes 2, 3, and 4,
and (ii) all observations belonging to classes 3 and 4.

Figure [/| reports the results for the first group. When the
number of models in the voting ensemble is greatly increased
to 12-14, the voting scheme achieve higher precision than
with the baseline models and those trained with SMOTE.
When comparing performance with generalization enabled, we
observe a correlation between the improvement in predictions
for classes superior than 2 and the generalization score:
the former becomes noticeable from six models onward,
and the latter from seven. This suggests that generalization
particularly enhances the prediction of abnormal days in low-
risk departments.

Figure [8| shows the results for the second group. Here the
improvement is even stronger: for CatBoost, the score rises
from 0.341 to 0.402 when the full ensemble is used. Logistic
regression follows a similar trend but drops sharply when
all models vote, which suggests greater stability at around
20 models. The greatest improvement in extreme values is
achieved by the GRU model, increasing from 0.292 to 0.415.

Applying SMOTE does not yield strong stability across
the models. By contrast, the kernel-based method produces
more reliable high-class values because it embeds seasonal
information via the different kernel types. Instead of creating

C. Extreme events evaluation

synthetic points, it identifies new days that are potentially at
risk.

VI. SELECTING BEST KERNELS FOR A SPECIFIC TASK

Validation scores obtained by each model, which are used
as weights in the votes, are shown in Figure [9} This figure
illustrates a proposed segmentation based on the results
analyzed previously. From this segmentation, we identify
specific filters tailored to each task:

o Median filter ((highest weight): produces classifications
that closely mirror the raw signal, regardless of the filter
size.

o Linear aggregations (max, sum): improve spatial gen-
eralization by smoothing out the randomness of fires in
high-risk regions and emphasizing seasonal risk patterns
rather than daily fluctuations.

o Complex kernels (Gaussian, cubic, circular, quartic),
when scaled according to season and region, yield sub-
stantial gains in extreme-risk prediction while maintaining
primary emphasis on the day of filter application (the
kernel center).

o Additional filters: In light of the results, the following
models were not further analyzed, and we found little
benefit in including them going forward.

VII. CONCLUSION

In this article, we proposed a method to address the
generalization issue in low-risk regions and the stochastic
nature of daily fire predictions. Our approach creates several
*ordinal risk systems* and assigns to each day the risk level
that receives the most votes across the trained models. We
found that, depending on the task, the number of models
considered can vary: selecting only the best-performing models
tends to improve overall predictions, while including a larger
ensemble improves the prediction of extreme values and
enhances generalization. Until now, risk systems have been
built by applying different types of filters to the fire signal. The
proposed method delivers better performance and flexibility
compared to conventional over-sampling. The main drawbacks
are (i) the training time required for the full ensemble (which
may take several days, depending on the model and hardware),
and (ii) the final model size. For the latter, we believe a

78 910112131415
Number of models used in the v

1617 18 1920 all
vote



Values

Values

Values

ToU Normalized Area — xghoost ToU Normalized Area — catboost ToU Normalized Area — Ig

ToU Normalized Area — NetMLP

ToU Normalized Area — GRU

ToU Normalized Area — LSTM

o] 005 sorns 095 ceeeeeeeeeesereeeeos
oomas oo oo
aoss o0
0.0900 0.086 0.09
oase] Yo I ooss ouss
oosrs ooss
00821 g 3 2 0.0850 8 8
= oosso 3 oom2 3 - E
00807 4 - - ~ o0s2s - = o080
]\ /\ 0080
0078{ oo e e 0le 000000 0eeeese\ee 0.0825
\y ¥ oors oos00 aos0
0.076 1 00800 0075
076 ooms
00741 o075
00775 0074 00750 oo
12345678 91011121314151617181920all 12345678091011121314151617181920all 12345678091011121314151617181920all 1234567891011121314151617181920all 12345678 91011121314151617181920all 1234567891011121314151617181920all
“Number of models used in the vote Number of models used in the vote Number of models used in the vote Number of models used in the vote Number of models used in the vote Number of models used in the vote
—— X voting o bascline  --¢-- smote2  --¢- smote-4 -+ smote-6
Fig. 6. Area IoU performance on full database between voting, classic, and SMOTE models.
ToU on samples >= 2 — xgboost ToU on samples >= 2 — catboost ToU on samples >=2 — Ig ToU on samples >= 2 — NetMLP ToU on samples >=2 — GRU ToU on samples >=2 — LSTM
. ot
041 040 0.40
™
040 039
o3
™ 039 [‘ ™
£ 038 oo | §ose] BHEEEELEERRCELE R4 | g
- 2o V s \ H
el Ao 036
035 036 035
038 0 o
0.34
034
2345678 91011121314151617181920all 12345678 91011121314151617181920all 1234567891011121314151617181920all 12345678091011121314151617181920all 12345678 91011121314151617181920all 1234567891011121314151617181920all
Number of models used in the vote “Number of models used in the vote Number of models used in the vote Number of models used in the vote “Number of models used in the vote Number of models used in the vote
—— X voting o bascline  --¢-- smote2  --#- smote-4 -+ smole-6
Fig. 7. IoU performance on samples of true risk (or predicted) on samples of class superior or equal to 2 between voting, classic, and SMOTE models.
ToU on samples >=3 — xgboost ToU on samples >=3 — catboost ToU on samples >=3 — Ig ToU on samples >=3 — NetMLP ToU on samples >=3 — GRU ToU on samples >=3 — LSTM
040 040
040
040
038 038 038 038
036 036 036 036
03 I E i ) % 0x
$ 2ttty ettt tattts } LS S0 a0 a4 M40 4
032 032
0 P
.................. 050
00 030 /’”\/r/

T2345067801011120304151617181920all

Number of models used in the vote

12345678 01001120314151617181920all
Number of models used in the vote

12345678 01001120314151617181920all
Number of models used in the vote

—— x voling bascline -4~

Fig. 8. IoU performance on samples of true risk (or predicted) on samples

Weights

Similar or better than vanilla

[ 1| ill

Better generalisation, Better score in 'Medium' days (2)
Better score in high days (3-4)

Not fully validated
% B3LE BTLE ooy e
S8 NxER SIS 8.8 g g
D g £ R
2 B2 2 2272 v ?
Bt e @ R a Xl L@
ER g L8 3 a a
= g 3 2.8 =1
3 g 2 27 &
g . f 3% £
g v E
0 h @ & &
a P

Rank — Target

Fig. 9. Average score obtained by each model trained on a derived signal. X
axis is formatted as position-kernel-size.

distillation-based strategy could shrink the footprint: the task-
specific ensemble would act as the *teacher* and a smaller
network would serve as the *student™.
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