Politiques de synchronisation dans les systemes
multi-agents distribués paralleles

Paul Breugnot, Bénédicte Herrmann, Christophe Lang, Laurent Philippe

Institut Femto-ST, Université de Bourgogne-Franche-Comté/CNRS, France
email: nom.prénom@@univ-fcomte.fr

Alban Rousset, LuxProvide S.A., Luxembourg, alban.rousset@lxp.lu

Résumé
Parmi les méthodes de modélisation/simulation, les systémes multi-agents
présentent un intérét particulier pour simuler les systemes complexes. Lorsque la
taille des modeles croit, le recours a la simulation distribuée est nécessaire mais
pose de nombreux problemes. Dans cet article, nous nous intéressons a I'impact
de la synchronisation sur 'implémentation des modeles et leur exécution. Nous
mettons en évidence des problématiques de synchronisation a travers des in-
stances de modeles et nous analysons expérimentalement I'impact des politiques
de synchronisation sur des exécutions de grande taille. En réponse aux manques
mis en évidence, nous proposons une interface de synchronisation générique et
son implémentation dans la plateforme de simulation FPMAS.

Mots-clefs
multi-agent simulation, parallélisme, MAS, High Performance Computing, syn-
chronisation

1 Introduction

La simulation numérique est devenue le troisieme pilier de la science en
tant qu’étape de validation de la théorie, déterminante pour le passage a
I'expérimentation. Elle vise a virtualiser le monde réel, & en reproduire les
comportements, par exemple pour explorer son évolution dans différentes con-
figurations ou pour comprendre comment le controler. Dans les systemes com-
plexes, plusieurs phénomeénes peuvent ainsi étre étudiés simultanément mais
les comportements sont souvent trop élaborés et interdépendants pour pouvoir
étre modélisés par une loi unique. Les systémes multi-agents sont alors souvent
utilisés pour modéliser les comportements dynamiques des entités qui composent
le systeme car ils reposent sur une description algorithmique simple d’agents qui

interagissent entre eux. De nombreuses plateformes [24, 11, 23] proposent un
environnement de développement pour de tels modeles.

La qualité d’une simulation dépend bien souvent de la taille et de la précision
du modele. Or ’accroissement de la taille du modele et de sa précision entraine,
de fait, une augmentation du nombre de calculs réalisés et rend nécessaire le
recours a des exécutions paralleles, voire a 1'utilisation de moyens de calcul
haute performance (HPC: High Performance Computing). Si la simulation sur
un seul ordinateur est souvent complexe, ’exécution distribuée parallele d’une
simulation est un vrai enjeu car elle pose de nombreux problémes comme la
distribution de I’environnement, la communication entre les instances paralleles
de la plateforme, etc. Il existe des plateformes multi-agents (Parallel and Dis-
tributed MAS ou PDMAS) qui prennent en charge tout ou partie de I’exécution
distribuée. Plusieurs instances, ou processus, de la plateforme cooperent pour
faciliter la mise en ceuvre d’un modele sur un ensemble d’ordinateurs ou au sein
d’un cluster. Parmi les solutions proposées nous pouvons distinguer plusieurs
approches architecturales de découpage des fonctions de la plateforme entre
les processus. Dans certaines approches toutes les machines ne jouent pas un
role symétrique, par exemple pour les architectures hétérogenes ou chaque ma-
chine peut jouer un réle différent dans la mise en place de la simulation [25].
Pour les modeles de grande taille, les méthodes de distribution homogenes et
décentralisées sont en général mieux adaptées et permettent ’exploitation ef-
ficace de machines de type cluster de calcul. Ce type de solution est souvent
caractérisé par 'utilisation de la librairie MPI.

Dans ce contexte, la synchronisation des données reste 1'un des points clefs
pour I'exécution efficace d’une simulation multi-agents parallele du fait des nom-
breux échanges et dépendances temporelles qu’elle induit. Nous nous intéressons
donc, dans cet article, aux problemes posés par la synchronisation au sein de
simulations multi-agents distribuées paralleéles, en visant plus particulierement
les exécutions a large échelle. Comme les plateformes multi-agents fonctionnent
fréquemment par pas de temps, il est nécessaire de s’interroger sur la maniere
d’échanger les données entre les processus distribués d’'une méme simulation au
regard de ce mode de fonctionnement.

Les contributions proposées dans cet article sont, d’'une part, la définition
de politiques — ou modes — de synchronisation qui peuvent étre utilisées au
sein de simulations multi-agents paralleles et leur mise en évidence au travers
d’exemples de modeles et, d’autre part, I’analyse expérimentale de I'impact
des modes de synchronisation sur des exécutions de grande taille, jusqu’a 512
coeurs, dans les systemes multi-agents paralleles et distribués. Sur la base de
cette analyse et des manques mis en évidence, nous avons défini une interface
générique des modes de synchronisation, rendant possible I'implémentation de
divers modes dans la plateforme FPMAS ainsi que leur application & n’importe
quel modele.

L’article est organisé comme suit. Dans la Section 2 nous présentons un
état de lart sur les PDMAS et leur synchronisation. Nous proposons une
étude des problématiques de synchronisation des systemes multi-agents dis-
tribués dans la Section 3. Puis, dans la Section 4, nous présentons une étude

expérimentale de I'impact de différents modes de synchronisation sur I’exécution
de trois modeles agents. Enfin, la définition d’une interface générique permet-
tant 'implémentation de divers modes de synchronisation est proposée dans la
Section 5.

2 PDMAS et synchronisation

Par nature les agents interagissent entre eux, soit directement en consultant les
données d’autres agents, soit indirectement, a travers les modifications réalisées
sur I'environnement ou par échange de messages. Dans un PDMAS, les agents
du modele sont distribués entre les instances de la plateforme, ou processus,
qui prennent en charge leur animation. De la méme maniere, les données de
I’environnement sont distribuées entre les processus. Un agent peut donc avoir
a interagir avec des agents ou utiliser des données de I’environnement situées sur
un autre processus. Ces acces nécessitent alors la mise en place d’une synchro-
nisation entre les processus pour maintenir un état cohérent et permettre aux
agents d’accéder a la valeur a jour des données avec ’objectif que la simulation
distribuée donne le méme résultat que la simulation séquentielle.

A noter que nous nous intéressons dans cet article & la simulation de systemes
multi-agents sur une architecture distribuée. Les processus étant distribués,
la synchronisation des données est réalisée sous la forme de communications.
L’acces a ces données est alors plus cotiteux qu'un simple acces local et il est
important d’implémenter la synchronisation au plus juste, de maniere a limiter
les surcouts. Cette implémentation suppose de caractériser les propriétés atten-
dues. Dans la littérature, la caractérisation de la synchronisation de modeles
paralleles repose sur le mode de dépendance de données et le respect de la
causalité, donc de la synchronisation temporelle.

2.1 Modes de dépendance de données

On distingue deux modes de gestion de la dépendance de données dans les
simulations numériques: (i) le mode ghost qui utilise les données calculées au pas
de temps précédent (le ghost) et (ii) le mode non ghost qui n’utilise qu’une seule
instance des données, dans laquelle les résultats des calculs sont directement
reportés. Le ghost n’est accessible qu’en lecture alors que, sans ghost, les données
sont accessibles en lecture et en écriture et I'ordre d’acces aux données impacte
les résultats [14]. Dans le cas des PDMAS, le mode ghost permet de ne diffuser
les données modifiées qu’a la fin des pas de temps. A noter que, pour limiter le
cout de ces mises a jour, plusieurs PDMAS utilisent des zones de recouvrement,
copies locales des données distantes limitées a la zone de perception des agents.

Le mode mon ghost nécessite une gestion de la concurrence des lectures
et écritures réalisés par les processus paralleles. Bien que la résolution de ce
probléeme soit relativement triviale en mémoire partagée grace a 'utilisation de
mécanismes de verrouillage, ’extension de ces solutions aux architectures dis-
tribuées pose probléme. La librairie BCL [2] est un exemple d’implémentation de

pointeurs distants et de structures de données distribuées. La gestion de I'acces
concurrent en lecture/ écriture aux éléments des structures n’est cependant pas
abordée. De plus, ces travaux a eux seuls ne permettent pas de résoudre tous les
problemes inhérents a I’exécution distribuée des simulations de SMA (schéma
d’exécution, équilibrage de charge, continuité des données, etc).

Dans [13], les auteurs proposent de gérer la concurrence d’acces aux cellules
de I'environnement via un fichier partagé par tous les processus de la simula-
tion. L’attribution des cellules a chaque agent se fait cependant de maniere
centralisée et la concurrence d’acces entre les agents n’est pas abordée. De plus
les nombreuses opérations d’écriture dans un fichier, plus cotiteuses que des
acces mémoire directs, posent des problemes de passage a ’échelle. D’autres
travaux se basent également sur la gestion centralisée des conflits [21, 16], mais
ces méthodes posent des problemes de généricité, de passage a ’échelle, et ren-
dent possible I'échec de la demande d’action d’un agent, ce qui peut avoir un
impact sur la modélisation du systeme étudié. Il est cependant intéressant de
noter que ce type d’interaction est compatible avec la méthode générique de
modélisation par Influence/Réaction [10].

Nous analysons en 3.1 'incidence du mode de dépendance de données sur
la synchronisation dans les modeles multi-agents et nous montrons que le choix
du mode est déterminé par le modele.

2.2 Synchronisation temporelle

Deux approches de synchronisation sont définies dans le domaine des systémes
a évenements discrets : ’approche conservative et 'approche optimiste. Dans
Papproche conservative (ou pessimiste), lorsqu’un processus traite un événement
de date T', pour respecter la causalité, il doit étre sir qu’aucun évenement avec
une date 7" < T ne pourra étre requ ultérieurement. On doit donc s’assurer
que tous les processus sont au pas de temps T pour commencer a traiter les
évenements. Les premiers algorithmes utilisant 'approche conservative ont été
proposés par Chandy et al. [3]. Cette approche limite ’exploitation du par-
allélisme d’un modele: en effet, 'avancée globale de la simulation est limitée
par le processus le plus lent.

Contrairement a ’approche conservative, ’approche optimiste permet aux
processus d’avancer indépendamment : chaque processus traite les événements
dont il a connaissance sans attendre les autres processus, ce qui permet en
principe de maximiser ['utilisation des ressources de calcul. Cette connaissance
des événements a traiter étant locale, et donc partielle, elle peut impliquer
I’omission de certains événements provenant d’autres processus et donc ne pas
respecter la causalité. Lorsque le processus regoit une donnée dont la date
T’ est antérieure & la date locale T, un retour en arriere est effectué par des
mécanismes de Rollback [12] qui impliquent de sauvegarder plusieurs points de
récupération par processus. Ainsi Xu et al. [29] définissent le lookahead comme
étant la durée jusqu’au prochain pas de temps auquel il faudra mettre a jour les
données. Ceci laisse la possibilité de continuer un processus tant qu’il n’est pas
arrivé a son lookahead. A noter que cette approche est difficilement généralisable

a tous les modeles et qu’elle n’est pas efficace lorsque le temps d’exécution passé
a effectuer des Rollback devient tres important, un Rollback pouvant entrainer
une réaction en chaine de Rollback.

Les tentatives de mise en place de la synchronisation optimiste dans le cas
de la simulation distribuée de systémes multi-agents sont rares et complexes [22,
15, 17]. En effet, cette méthode semble difficilement justifiable dans le cas des
SMA ou les agents interagissent classiquement de maniére intensive et réguliere
avec les autres, augmentant grandement les probabilités de Rollback. De plus, la
maintenance d’un historique des transactions pour permettre les Rollback peut
rapidement engendrer un colit en mémoire démesuré, compte tenu du nombre
d’agents a simuler.

Nous considérons en particulier des PDMAS ou les événements sont planifiés
tous les pas de temps. L’utilisation des approches conservatives ou optimistes
peut alors s’entendre comme le respect strict ou non de la frontiere du pas de
temps : cette étude est limitée au cas conservatif, comme pour la plupart des
plateformes existantes.

2.3 La synchronisation des données dans les PDMAS

Dans [18] nous avons proposé une étude des plateformes multi-agents paralleles
et distribuées. Parmi les plateformes que nous avons évaluées, seules quatre
d’entre elles permettent d’envisager une exécution sur des ressources de grande
taille, de type HPC.

D-Mason La plateforme D-Mason [7] implémente des mécanismes de synchro-
nisation conservatifs et le mode ghost de gestion de dépendance des données.
Pour réaliser une synchronisation conservative, chaque pas de temps est divisé
en deux étapes: (1) la communication et synchronisation et (2) I'exécution de la
simulation. Il y a donc une barriere de synchronisation a chaque pas de temps.
Les agents d’une cellule (partition) ¢ ne peuvent pas exécuter le pas de temps
1 tant que les cellules voisines n’ont pas terminé d’exécuter le pas de temps
1 — 1. A la fin d’un pas de temps, chaque cellule envoie aux cellules voisines les
informations concernant les agents qui se situent dans la zone de recouvrement
ou les agents qui doivent étre migrés d’un processus a un autre. Pour le pas de
temps ¢ les comportements des agents de la cellule ¢ sont ainsi calculés a partir
du ghost des cellules voisines.

RepastHPC Pour gérer le partage de données, la plateforme RepastHPC
propose au programmeur de faire une copie, sur les processus distants, des agents
susceptibles d’y étre utilisés. La synchronisation entre les processus s’effectue
notamment dans trois cas [5]:

e lorsque les processus importent les copies des agents depuis d’autres pro-
cessus pour maintenir la simulation dans un état cohérent

e pour mettre a jour ces copies

e pour effectuer la migration des agents entre les processus

Avec les outils de la plateforme, les programmeurs ont & définir un ensemble
de méthodes nécessaires a la synchronisation des agents. La plateforme permet
d’implémenter le mode de dépendance de données ghost, car la mise a jour
des agents copie s’effectue par une communication collective en fin de pas de
temps. La synchronisation est donc conservative. Méme si RepastHPC fournit
des fonctionnalités avancées en terme de planification de taches et d’exécution
des agents, la plateforme ne supporte pas la synchronisation optimiste pour le
moment.

Flame Dans la plateforme Flame, tous les échanges entre les agents se font par
messages, la synchronisation conservative repose donc sur celle de tableaux de
messages [4]. Elle est effectuée en deux étapes: la demande de synchronisation
puis I'exécution de la synchronisation. Dans un premier temps, lorsqu’un pro-
cessus a terminé d’exécuter ses agents, il verrouille son tableau de messages et
envoie aux autres processus une demande de synchronisation. Apres cette étape,
il est encore possible de faire des actions qui ne nécessitent pas 'utilisation du
tableau de messages. Lorsque tous les processus ont verrouillé leurs tableaux
de messages, une seconde étape d’exécution de la synchronisation est effectuée
par échange de messages entre les tableaux. Aprés ces deux étapes, les tableaux
de messages sont débloqués et la simulation se poursuit. Puisqu’il n’y a pas de
modification des données entre deux synchronisations des tableaux de messages,
la plateforme Flame repose sur un mode ghost.

Pandora Dans la plateforme Pandora la synchronisation est conservative [20]
et repose sur une grille 2D. Les données et les agents situés dans les zones
de recouvrement sont copiés et envoyés aux cellules voisines a chaque pas de
temps. Pour résoudre le probleme de la dépendance de données, la simulation
est découpée en parties, numérotées de 0 & 3. Au cours d’un pas de temps tous
les processus exécutent séquentiellement chacune des parties, dans le méme
ordre: la partie 0, puis 1, 2 et 3. Une fois ’exécution d’une partie terminée,
les zones de recouvrement sont envoyées aux cellules voisines. De cette fagon, il
n’y a pas de conflits de cohérence car les parties exécutées en parallele ne sont
pas adjacentes. Cette approche originale réduit les cotuts de synchronisation
avec un modele en partie ghost et en partie non ghost, suivant I’emplacement
des données. Cela limite tout de méme 'utilisation de Pandora a des modeles
spatiaux a deux dimensions.

Synthése Les PDMAS existants utilisent principalement une approche con-
servative quant a la causalité, certains laissant cette gestion au développeur.
Ceci paralt justifié car 'approche optimiste convient peu aux systemes multi-
agents qui animent les agents par pas de temps, donc de maniere uniforme au
sein de processus paralleles a I'inverse des systéemes a événements discrets ot les
processus ont une répartition temporelle des événements différente entre eux. Il

est donc moins intéressant de faire avancer plus vite certains processus et une
politique de répartition de la charge peut s’avérer plus efficace.

Les plateformes proposent principalement un mode ghost, moins lourd
qu’une mise & jour systématique, qui recopie les données vers les autres pro-
cessus au changement de pas de temps, lorsque tous les agents sont dans un
état fixe.

Une analyse de plusieurs types de modeles permet cependant de montrer
que tous n’ont pas les mémes besoins de synchronisation. Nous proposons donc,
dans la section suivante, une étude des besoins de synchronisation de modeles
multi-agents et différentes politiques pouvant répondre a ces besoins.

3 Impact des synchronisations

La synchronisation est un point clé pour une exécution efficace d’une simu-
lation multi-agents distribuée, du fait des nombreux échanges et dépendances
temporelles qu’elle induit. Son importance dépend néanmoins du modele lui-
méme: dans un modele ot les agents n’interagissent pas, aucune synchronisation
n’est nécessaire. Mais l'intérét des modeles agents repose justement sur la ca-
pacité des agents & interagir [9]. Notre objectif est donc d’étudier I'impact de la
synchronisation sur les temps d’exécution et 'impact des politiques de synchro-
nisation plus relachées. En effet, dans les systémes multi-agents, 1’observation
d’un phénomeéne s’effectue en général au niveau macroscopique et non micro-
scopique. De ce point de vue, il est possible que, dans les simulations composées
d’un grand nombre d’agents, des synchronisations erronées ou fausses se com-
pensent et limitent ainsi I'impact d’une synchronisation relachée. Il est donc
intéressant de mettre en relation I’erreur possible avec le surcotit du a la synchro-
nisation. Nous proposons dans la suite différentes politiques de synchronisation
et étudions leur impact.

3.1 Quand synchroniser?

Pour garantir 'acces a des données a jour et la cohérence des actions, en respec-
tant les régles du modele, plusieurs étapes de synchronisation sont nécessaires
au cours d’une exécution distribuée, que la simulation soit en mode ghost ou
non ghost:

e 4 la fin de chaque pas de temps pour permettre le passage au pas de temps
suivant et garantir que tous les processus exécutent le méme pas de temps.

e 3 la migration d’un agent d’un processus a un autre pour continuer a
exécuter ses comportements.

e 3 la mise a jour des zones de recouvrement pour garder la continuité des
champs de perception des agents lorsque I’environnement est distribué sur
plusieurs processus.

Dans les modeles agents, il existe des modeles qui nécessitent que les agents
accedent aux données de 'environnement ou d’autres agents uniquement en
lecture, d’autres en lecture et en écriture. La distribution de ces données sur
plusieurs processus suppose d’en gérer les acces a distance et de synchroniser
ces derniers pour garantir la cohérence de ces données.

Ainsi une exécution en mode ghost garantit uniquement la cohérence des
modeles sans écriture concurrente, c’est a dire ou deux entités ne modifient
pas la méme donnée au cours d’'un pas de temps. En effet, utiliser le mode
ghost avec des écritures concurrentes peut conduire a une violation des regles
du modele. Par exemple, dans un modele proie-prédateur, plusieurs prédateurs
pourraient manger une méme proie au cours d'un pas de temps puisque, suite a
une premiere attaque, la mort de la proie est enregistrée dans la copie de travail
et non dans la copie ghost qui est utilisée pour connaitre I'état du systeme.
C’est seulement au changement de pas de temps que la mort de la proie sera
reportée dans la copie ghost. A noter que ceci est vrai, méme si la simulation
n’est pas parallele.

A I'opposé, dans le mode non ghost, les informations sont accessibles en
lecture et en écriture. Ceci nécessite alors des mécanismes de synchronisation
supplémentaires pour les données détenues par d’autres processus ou situées
dans les zones de recouvrement. Dans ce cas, les points de synchronisation
précédemment définis ne sont pas suffisants car ils ne permettent pas de gérer
les écritures dans les zones de recouvrement. L’acces aux données doit donc
étre géré pour garantir qu’aucune incohérence (ou biais) n’est injectée dans la
simulation et que les informations sont a jour. Cela revient a introduire une
politique de synchronisation des données a l'intérieur du pas de temps.

Les besoins en lecture / écriture des modeles agents étant variables, la syn-
chronisation est a considérer au cas par cas. Pour illustrer ceci, nous analysons
différents types de modeles dans la suite.

3.2 Analyse de modeles

Pour évaluer I'impact de la synchronisation sur les résultats d’exécution des
simulations multi-agents, nous utilisons trois modeles agents (Proie-prédateur,
Virus et Flocking) qui nécessitent des niveaux de synchronisation différents pour
s’exécuter de maniere cohérente.

Il est important de noter que le systéme modélisé et son implémentation
ont un impact important sur la synchronisation qui doit étre mise en place
pour garantir la qualité des résultats obtenus par la simulation parallele. Ceci
est, en particulier, vrai si le choix d’implémentation utilise un ghost ou non.
Ainsi, parmi les modeles suivants, nous avons choisi ’approche que nous avons
le plus souvent trouvée par rapport a ce choix d’implémentation. Changer
ce choix modifierait les contraintes de synchronisation et conduirait a d’autres
conclusions.

Le modéle Flocking [27] Le modele Flocking simule le vol d’une nuée
d’oiseaux afin d’étudier le comportement collectif. Le modele est composé d’un

seul type d’agent, les oiseaux qui sont localisés dans I’espace et ont une zone de
perception réduite. Chaque agent oiseau a trois comportements:

1. la cohésion qui le pousse a se rapprocher des oiseaux proches

2. lalignement qui le pousse & se déplacer dans la méme direction que les
oiseaux voisins

3. la séparation qui le pousse a tourner pour éviter un oiseau qui est trop
pres.

Ces comportements déterminent la nouvelle position de I’oiseau en fonction de la
position des oiseaux qui composent son voisinage. Le modele possede plusieurs
parametres: la taille de I’environnement, la distance maximale qu’un oiseau peut
parcourir par pas de temps, la durée d’'un pas de temps, les taux de cohésion,
d’alignement et de séparation.

Ce modele fonctionne en mode ghost. Les agents calculent leur déplacement
en fonction de la position des oiseaux voisins obtenue au pas de temps précédent.
La mise a jour des données des zones de recouvrement a chaque pas de temps
garantit que chaque agent oiseau dispose des informations correctes pour calculer
son déplacement. Il n’y a donc pas de probleme de concurrence d’acces sur ces
données puisqu’elles sont accédées uniquement en lecture.

Le modele Virus [28] Le modele Virus permet de simuler la transmission
et la survie d’un virus dans une population [30]. Il est composé d’un seul type
d’agent: les personnes qui sont localisées sur une grille en deux dimensions et
n’ont qu'une connaissance partielle de ’environnement dans lequel ils évoluent.
Les agents ont cinqg comportements:

1. le vieillissement, jusqu’a ce qu’ils meurent
2. le déplacement de maniere aléatoire sur ’environnement
3. linfection des personnes de leur voisinage

4. la récupération qui permet a un agent infecté de devenir immunisé avec
une certaine probabilité

5. la reproduction, pour les personnes non contaminées, qui renouvelle la
population.

Le modele possede plusieurs parametres: la capacité de transport du virus, I’age
maximum, le taux de natalité, le taux de reproduction et le nombre de personnes
porteuses du virus a l’initialisation du modele.

Le modele Virus fonctionne en mode non ghost. Il est donc possible que,
dans un méme pas de temps, un agent A, qui a été infecté, infecte a son tour
un agent B. Si les deux agents ne sont pas exécutés sur le méme processus, il
est nécessaire de mettre a jour les données distantes. Pour finir, nous pouvons
remarquer qu’'un agent ne change pas son état méme s’il est infecté plusieurs

fois. Cette propriété, que nous appelons écriture idempotente, fait que nous
n’avons pas a gérer de concurrence en écriture sur le changement de ’état de
I’agent, puisque méme si deux agents infectent un méme agent U'ordre des deux
exécutions n’a pas d’incidence sur le résultat final.

Le modéle Proie-prédateur [26] Le modele Proie-prédateur explore la sta-
bilité des écosystemes. Le modele étudié possede trois types d’agents: les loups
(prédateurs), les moutons (proies/prédateurs) et I’herbe (proie). Les loups et
les moutons se déplacent au hasard dans l’environnement. L’herbe disparait
lorsqu’elle est mangée et repousse apres un temps fixé. Chaque étape cotute
de l'énergie aux loups et aux moutons qui, lorsqu’ils n’en ont plus, meurent.
L’énergie peut-étre reconstituée pour un loup en mangeant un mouton et pour
un mouton en mangeant de I’herbe. Pour permettre a la population de perdurer,
les loups et les moutons ont une probabilité de se reproduire a chaque pas de
temps. Tous les agents sont localisés sur une grille & deux dimensions et ne con-
naissent que leur zone de perception. A chaque pas de temps, les agents loups
et moutons exécutent les quatre comportements suivants dans ’ordre donné:

1. se déplacer aléatoirement sur I’environnement

2. se nourrir de proies si elles se situent dans leur champ de perception
3. mourir s’ils n’ont plus d’énergie

4. se reproduire.

Le modele possede plusieurs parametres: la taille de I'environnement, le
nombre de loups, le nombre de moutons, le taux de natalité, le taux de re-
production, le gain de vie lorsqu’un prédateur mange une proie et le temps de
croissance des agents herbe.

Le modele Proie-prédateur fonctionne en mode non ghost. Dans la mesure
ou les prédateurs mangent les proies, ils en changent 1’état, ce qui engendre
une écriture dans les données de I'agent. Comme pour le modele virus cela
oblige une synchronisation pendant le pas de temps pour prendre en compte la
modification mais il est, en plus, nécessaire de gérer les écritures concurrentes. A
cause du parallélisme, plusieurs prédateurs situés dans des processus différents
peuvent étre tentés de manger une méme proie dans la zone de recouvrement. Si
tous les prédateurs la mangent alors chacun bénéficiera d’un apport en énergie
et donc d’'une augmentation de sa durée de vie, ce qui constitue une erreur par
rapport au modele séquentiel. Il est donc nécessaire de synchroniser tous les
agents qui souhaiteraient manger une proie pour garantir qu'un seul prédateur
la mangera.

Synthése L’analyse de ces modeéles met en évidence différents besoins en ter-
mes de synchronisation. Ces besoins dépendent des caractéristiques du modele
et nous permettent de définir trois types en fonction des interactions entre les
agents:

10

1. les modeles en lecture (L), comme Flocking.

2. les modeles en écriture idempotente (EI), comme le modele virus, ot I’état
de I'agent ne change plus apres une écriture.

3. les modeles en écriture concurrente (EC), comme le modele proie-
prédateur.

Il est alors possible d’assister le modélisateur en lui fournissant le choix de la
politique de synchronisation qui permet I'implémentation correcte de son modele
tout en limitant I'impact sur les performances. Ainsi nous définissons dans la
section suivante plusieurs politiques de synchronisation.

3.3 Politiques de synchronisation

Nous proposons ici plusieurs politiques de synchronisation, issues de I’analyse
des modeles précédents. Ces politiques sont définies et implémentées au sein
de modes de synchronisation. Nous souhaitons évaluer I'impact de 'utilisation
d’un mode de synchronisation sur les résultats et sur le temps d’exécution des
simulations, sachant que d’autres modes pourraient présenter un intérét pour
d’autres modeles. A ces propositions nous ajoutons le cas “aucune synchronisa-
tion” qui sert de référence en ayant un cotit de communication et synchronisation
minimal.

Le mode aucune synchronisation (NS) distribue la simulation en n por-
tions sans zone de recouvrement ni écritures distantes. Les agents peuvent se
déplacer d'un processus a un autre en ayant un champ de perception tronqué
lorsqu’ils sont proches des limites des processus.

Le mode overlapping zones (OLZ) ne geére que des zones de recouvrement,
ou des agents d’autres processus sont copiés et mis a jours a la fin de chaque pas
de temps. Les écritures n’y sont pas reportées sur les originaux et sont écrasées
au pas de temps suivant par la mise a jour. Ce mode est I'implémentation
basique du mode ghost.

Le mode écritures asynchrones (EA) fait des écritures a distance sans
attendre une confirmation ou une valeur de retour. Elle est utilisée lorsqu’un
agent modifie une donnée de la zone de recouvrement et que cette écriture doit
étre prise en compte dans le pas de temps courant mais que ’agent n’attend pas
de donnée en retour.

Le mode synchronisation stricte (SS) gere les zones de recouvrement
et les écritures concurrentes distantes pour garantir au maximum la repro-
duction du cas séquentiel. Chaque demande en écriture est bloquante jusqu’a
I’acquittement de sa prise en compte, ainsi la cohérence des données est garantie.
Elle est ce qu’il y a de plus strict en termes de synchronisation sans revenir a
une exécution séquentielle.

Contrairement a la synchronisation stricte, la synchronisation stricte
décalée (SSD) s’effectue de maniére non-bloquante. Ainsi, lorsqu’un agent ef-
fectue une demande de synchronisation, il est mis en attente de réponse jusqu’a

11

la fin du pas de temps afin que 'exécution des autres agents se poursuive, as-
surant ainsi un meilleur recouvrement calcul-communication.

Pour diriger le choix d’'un mode de synchronisation pour un modele, il est
nécessaire de connaitre I'incidence qu’aura le choix de ce mode sur le modele dis-
tribué. Les spécifications données précédemment permettent d’évaluer cette in-
cidence et les propriétés garanties. Pour connaitre I'impact de chacun des modes
sur les performances de la simulation, nous présentons dans la suite les mesures
de performance réalisées en implémentant ces modes sur les modeles étudiés.
A noter que les modeles choisis sont tous spatialisés mais ces problématiques
s’appliquent de la méme maniere sur des modeles non-spatialisés puisqu’elles
sont liées aux échanges de données entre agents plutot qu’a la position de ceux-
ci. Par exemple, dans les modeles de représentation de réseaux sociaux, la
distance entre deux agents peut étre représentée par le nombre de sauts dans le
graphe des connexions et ainsi servir de base pour grouper les agents proches et
définir des zones de recouvrement sur lesquelles il faudrait appliquer les modes
de synchrnisation.

4 Etude expérimentale de I'impact des modes
de synchronisation

L’objectif de cette section est de mettre en évidence le lien entre les perfor-
mances d’exécution d’'un modele et le mode de synchronisation choisi en fonc-
tion de la variation d’extensibilité ou de montée en charge. Comme aucune des
plateformes vues précédemment n’offre de politique de synchronisation, nous les
avons d’abord implémentées dans des modeles pour les tester.

4.1 Modeles et modes de synchronisation

Nous utilisons les trois modeles vus précédemment, choisis pour leurs différents
besoins de synchronisation. La table 1 donne les modes de synchronisation
utilisées avec chacun des modeéles.

Modele Ghost Type Modes

Flocking ~ Oui L NS — OLZ
Virus Non EI EA — OLZ — SSD
PP Non EC OLZ — SSD — SS

Table 1: Modes de synchronisation utilisés

Le modele Flocking est un modele L. Deux modes de synchronisation sont
donc testés: aucune synchronisation (NS) et utilisation de zones de recouvre-
ment (OLZ), car le modele de nécessite pas d’écriture. Le modele Virus est un
modele EI. Les modes de synchronisation utilisés sont donc 1’écriture asynchrone

12

(EA), la synchronisation stricte décalée (SSD) et enfin les zones de recouvre-
ment (OLZ) afin d’évaluer l'impact de l'absence d’écritures distantes sur les
résultats du modele. Le mode de synchronisation stricte (SS) n’est pas utilisé
puisque l’écriture idempotente ne change pas 1’état d’un agent contaminé. 11
n’est donc pas nécessaire de gérer I’écriture concurrente sur son changement
d’état puisque 'ordre d’exécution de deux écritures n’a pas d’incidence sur le
résultat final. En revanche, le mode SSD qui implique un réordonnancement
de I'exécution des agents est susceptible d’avoir un impact sur les résultats. Le
modele proie-prédateur est un modele EC puisqu’une proie ne peut étre mangée
qu’une seule fois. Les modes de synchronisation utilisés sont la synchronisa-
tion stricte décalée (SSD), la synchronisation stricte (SS) et enfin les zones de
recouvrement (OLZ) pour les mémes raisons que pour le modele Virus.

4.2 La plateforme de test

L’implémentation des modeles a été effectuée a partir d’une version
expérimentale, notée 0.1, de notre plateforme FPMAS [19], une plateforme
multi-agents parallele qui repose sur la bibliotheque Zoltan pour gérer la dis-
tribution de la simulation. Dans FPMAS le modele agent est représenté par
un graphe afin de tirer parti des algorithmes de partitionnement paralleéles de
Zoltan. En réponse aux manques identifiés dans les plateformes existantes,
comme cela a été souligné en 2.3, FPMAS a été congue pour facilement intro-
duire des mécanismes de synchronisation, et en particulier la synchronisation
stricte. Puisque les plateformes existantes ne proposent pas de tels modes de
synchronisation, il n’a pas été possible de mettre en place des courbes compar-
atives entre plateformes.

Une fois le modele et ses modes de synchronisation implémentés, FPMAS
peut I'exécuter dans un environnement parallele adapté au calcul haute perfor-
mance. La simulation est divisée en N portions, chacune associée a un processus.
Les performances dépendent alors du modele exécuté. A noter que les modes
de synchronisation sont implémentés directement dans les modeles, ce qui peut
engendrer quelques différences de performances d’un modele a 'autre. Pour
cette raison nous ne faisons par la suite que des comparaisons entre modes par
rapport & un modele donné.

Pour exécuter les simulations, nous avons utilisé le Mésocentre de calcul
de Franche-Comté. Le cluster est constitué de nceuds bi-processeurs, avec des
processeurs Xeon E5 (8*2 coeurs) cadencés a 2.6 Ghz et 32 Go de mémoire
vive. Le cluster possede un total de 1280 coeurs gérés par le systéeme de batch
SGE!. Les noeuds sont interconnectés par un réseau non bloquant QDR infini-
Band? organisé en fat tree. Au cours des expériences conduites les variations
de performances se sont avérées trés faibles, entre 0.1% et 0.6%. Chaque point
des courbes représente donc une moyenne de 10 exécutions avec 10 graines
différentes.

Ihttps://en.wikipedia.org/wiki/Oracle_Grid_Engine
®https://fr.wikipedia.org/wiki/Bus_InfiniBand

13

4.3 Impact de ’extensibilité

L’extensibilité des modeles est étudiée en fixant le nombre d’agents de la sim-
ulation et en faisant varier le nombre de processus sur lesquels elle s’exécute.
Nous mesurons 'impact de 'extensibilité a ’aide de deux métriques: le temps
d’exécution et le speed-up.

Pour chacun des modeles nous avons calculé un speed-up avec comme
référence le temps d’une exécution paralléle sur 16 cceurs car la taille des données
des modeles est trop grande pour un seul processus. Le speed-up sur p processus
est donné par T(pres)/T(p) oit T(pres) est le temps d’exécution parallele sur le
nombre de processus de référence et T'(p) est le temps d’exécution sur p proces-
sus. Pour les trois modeles I'extensibilité est bonne avec un speed-up de plus ou
moins 20 suivant les modeles, alors que le speed-up idéal est de 32. Les résultats
obtenus par les modes sans synchronisation, ou avec moins de synchronisation,
sont meilleurs que ceux ayant des synchronisations plus strictes.

Pour des raisons de reproductibilité, la méme configuration initiale est
utilisée pour toutes les exécutions, seule la graine varie d’'une exécution a une
autre.

Modeéle Flocking L’environnement du modele Flocking est basé sur un cube
de 1000 x 1000 x 1000 cellules. A l’initialisation, 100000 oiseaux sont répartis
de maniere aléatoire dans l’espace. Les taux de cohésion, de séparation et
d’alignement sont fixés a 1 tandis que le taux d’aléa est lui fixé a 1.5. Ces
parametres ont été choisis afin de ne pas favoriser I'un des trois critéres com-
posant les comportements des oiseaux. Seul le taux d’aléa est supérieur aux
autres taux dans le but de générer des déplacements plus chaotiques et donc
de tester davantage la synchronisation. Chaque simulation est exécutée durant
2000 pas de temps.

10000

1000+

Running time (sec.) (log scale)

100
0 100 200 300 400 500
Number of cores

NS 4 OLZ

Figure 1: Temps d’exécution du modele Flocking
La figure 1 donne les temps d’exécution du modele Flocking pour les modes

de synchronisation NS et OLZ. La différence des temps d’exécution entre les
deux modes de synchronisation est d’environ 15% pour 16 cceurs, 26% pour 128

14

ceeurs, et 65% pour 512 cceurs. Lorsque le nombre de cceurs augmente, plus de
messages sont nécessaires pour mettre a jour les zones de recouvrement, ce qui
explique cette différence croissante.

Modele Virus Le modele Virus a été exécuté sur une grille de 1000 x 1000 cel-
lules qui représente I’environnement avec une capacité maximale de 500000 per-
sonnes. A Dinitialisation 9600 personnes sont saines et 640 sont infectées par le
virus. Tous les agents sont positionnés de maniere aléatoire sur I’environnement.
Le taux d’infection est fixé & 0.65 et le taux de reproduction est fixé a 0.2. Le
taux de récupération, c’est a dire le fait qu’une personne infectée devienne im-
munisée, est fixé a 0.5. Ces valeurs sont issues du modele Virus de NetLogo.
Seule la taille de ’environnement et la capacité maximale ont été adaptées pour
obtenir un modele de grande taille. Pour finir, chaque simulation est exécutée
durant 800 pas de temps.

10000

1000+

Running time (sec.) (log scale)

0 100 200 300 400 500
Number of cores

EA 4 OLZ SSD

Figure 2: Temps d’exécution du modele Virus

La figure 2 donne les temps d’exécution du modele virus pour les synchroni-
sations OLZ, FA et SSD. Pour les courbes OLZ il n’y a pas de point pour 512
coeurs car nous n’avons pas eu assez de temps sur le calculateur pour réaliser
Iexpérimentation. Les résultats obtenus avec le modele Flocking se confirment
ici avec une différence de 27% pour 16 ceceurs, seulement 15% pour 128 et 47%
pour 512 ceoeurs. Deux raisons expliquent ce surcout: le traitement additionnel
en fin de pas de temps de la synchronisation SSD et 'augmentation du nom-
bre de messages nécessaires a la synchronisation due au plus grand nombre de
coeurs. Cette figure nous montre également le colt induit par la synchronisa-
tion des agents. Pour 16 cceurs, les temps d’exécution de la courbe OLZ sont
environ 8 fois meilleurs que la courbe SSD. Cette différence tend & décroitre
avec 'augmentation du nombre de coeurs, par exemple, pour 256 coeurs cette
différence n’est plus que de 6.6. Pour les courbes FA et SSD le ratio n’est que
de 1.27 pour 16 cceurs, et de 1.4 pour 512 coeurs. Il croit donc avec le nombre
de cceurs du fait du nombre plus important de messages.

15

Modeéle Proie-prédateur Le modele Proie-prédateur (PP) utilisé pour les
expérimentations est basé sur un environnement grille de 400 x 400 ou 25000
moutons et 17000 loups sont initialement positionnés de maniere aléatoire. Le
modele des comportements et l'initialisation de 1’énergie des agents loups et
moutons est issue du modele NetLogo. L’énergie gagnée par un mouton lorsqu’il
mange de ’herbe est fixée a 5 et a 20 lorsqu’un loup mange un mouton. En ce
qui concerne les taux de reproduction, ils sont fixés a 0.5 pour les moutons et a
0.4 pour les loups. Le temps de croissance de 1’herbe est de 8. Les simulations
sont exécutées durant 2000 pas de temps.

A

1000+

100+

Running time (sec.) (log scale)

0 100 200 300 400 500
Number of cores

OLZ 4SS SSD

Figure 3: Temps d’exécution du modele PP

La figure 3 présente les temps d’exécution du modele PP pour les modes
de synchronisation OLZ, SSD et SS. Pour la méme raison que précédemment,
aucun calcul n’a été effectué sur 512 coeurs avec OLZ. Les points de 16 a 64 coeurs
permettent cependant de mettre en évidence, comme pour le modele Virus, le
colt important a payer pour avoir des modes de synchronisations strictes. La
courbe SSD montre que la relaxation de la synchronisation de ce mode a la
fin du pas de temps permet un gain de temps d’exécution par rapport a la
synchronisation stricte. Ce gain est du au fait que le traitement des agents n’est
plus bloqué en attente de la réponse a une écriture concurrente: on a donc un
meilleur recouvrement calcul-communication.

Sur les modeles étudiés, le calcul des speed-up montre une bonne extensibilité
et le niveau de synchronisation choisi pour implémenter le modele ne semble
pas induire d’impact. Les simulations avec un grand nombre de coeurs profitent
donc bien du parallélisme, ce qui confirme que les systemes multi-agents peuvent
bénéficier d’une parallélisation. Néanmoins, les modes de synchronisation ont
un colit trés important (jusqu’a un facteur 8), qui est dit aux communications
engendrées. En effet, dans les modeles étudiés, les agents ont un comportement
relativement simple qui s’exécute beaucoup plus rapidement qu’une communi-
cation méme si le réseau utilisé pour les expériences est a tres faible latence et
haut débit.

16

4.4 Impact de la montée en charge

La montée en charge est réalisée en fixant le nombre de processus et en faisant
varier le nombre d’agents. Le modele Proie-prédateur n’est pas présenté dans
cette section car il est tres difficile d’y faire varier le nombre d’agents puisque
la population s’auto-équilibre.

Modéele Flocking Le jeu de valeurs utilisé pour évaluer la montée en charge
du modele Flocking est le méme que précédemment, a la différence que le nombre
d’agents oiseaux qui composent la simulation varie de 100000 a 1000000.

4000 -

w
o
o
o

2000

[
(=]
o
o

Running time (sec.)

o

250000 500000 750000 100000C
Number of agents

NS -4 OLZ

Figure 4: Montée en charge du modele Flocking

La figure 4 présente 'impact de la montée en charge sur 512 coeurs. Les
modes NS et OLZ supportent bien la charge jusqu’a 500000 agents. Au
dela de 500000 agents, les courbes croissent plus rapidement. Sans surprise,
la version sans synchronisation supporte mieux la charge que la version avec
zone de recouvrement, qui consomme environ un tiers de performance en plus.
L’accroissement de la charge a partir de 500000 agents s’explique par un manque
d’optimisation lors de la recherche du voisinage des agents. Au lieu de mettre
a jour uniquement les agents qui arrivent ou partent du voisinage, un parcours
de 'environnement est effectué a chaque pas de temps pour établir le champ de
perception de chaque agent.

Modele Virus Les parametres utilisés pour la montée en charge sont les
mémes que précédemment.

La figure 5 montre I'impact de la montée en charge du modele Virus de
100000 a 700000 agents et 800 pas de temps. Seulement 64 cceurs ont été
utilisés pour cette courbe car il n’a pas été possible d’obtenir & nouveau autant
de ressources de calcul (512 cceurs) sur le cluster partagé.

La courbe OLZ supporte mieux la montée en charge puisqu’elle ne gere pas
les écritures. Pour les autres, on constate que EA supporte mieux la charge
que SSD. La courbe SSD reste linéaire, alors que la courbe FA croit tres peu
de 500000 a 700000 agents. Ceci est du au surcout lié a I'accumulation des

17

6000 -

N
o
o
o

N
o
o
o

Running time (sec.)

|

2e+05 4e+05 6e+05
Number of agents

EA -& OLZ % SSD

Figure 5: Montée en charge du modele Virus

synchronisations en fin de pas de temps. Le ratio de performance obtenu entre
100k et 700k pour la courbe FA est de 1.9, 1.73 pour SSD et 7.5 pour OLZ.

Les résultats sur la montée en charge confirment que, quelle que soit le
mode de synchronisation utilisé, I’exécution distribuée est bénéfique pour les
modeles multi-agents. Les résultats obtenus avec le mode de synchronisation
OLZ montrent que ce mode est plus efficace que les modes plus contraints.
Nous avons donc étudié 'impact des modes de synchronisation sur les résultats
des exécutions, ce que nous présentons dans la suite.

4.5 Impact sur les résultats

Pour étudier I'impact des différents modes, nous observons deux résultats: le
résultat de la simulation lui-méme et le nombre d’interactions incohérentes.
Le résultat d’'une simulation est ce qui est attendu par le modélisateur. Nous
étudions I'impact d’une exécution plus ou moins synchronisée sur les résultats
de 'exécution. Par ailleurs, dans les cas ou les écritures dans les zones de
recouvrement sont gérées, c’est a dire avec les modes EA, SS et SSD, des inter-
actions peuvent mettre en évidence une incohérence entre 'information locale
et 'information distante. Par exemple pour le modele Proie-prédateur, une in-
cohérence peut apparaitre si un mouton est vivant dans la représentation locale
a un processsus de la zone recouvrement alors qu’il est mort dans le processus
distant qui posséde le mouton. En conséquence, prendre seulement en compte
I’état local de la zone de recouvrement mene & une action incohérente si un
loup du premier processus mange ce mouton. De méme, pour le modele Virus,
un agent essaie d’en infecter un autre seulement si ce dernier est sain. Ainsi,
pour analyser I'impact des interactions sur les résultats des simulations nous
comptabilisons le nombre total de demandes de synchronisation, les synchroni-
sations pour lesquelles l'information était cohérente (notées CO) et celles pour
lesquelles l'information était incohérente (notées NCO). Cette analyse n’inclut
pas le modele Flocking car elle ne s’applique pas a un modele en lecture.

A noter que nous souhaitons ici mettre en évidence 'impact des modes de

18

synchronisation sur les résultats des exécutions. Or, que ce soit dans le cas
du modele virus ou du modele proie-prédateur, faire la moyenne des résultats
de plusieurs exécutions pourrait conduire a un lissage des erreurs, une erreur
pouvant en compenser une autre. Nous avons donc fait le choix ici, pour la mise
en évidence de la problématique, de comparer des exécutions uniques (avec
la méme graine) pour chacun des modes de synchronisation. Ces expériences
permettent donc de mettre en évidence que la problématique existe: les résultats
different entre deux exécutions avec des modes de synchronisation différents. 11
faudrait plus d’expériences, et cette fois un calcul de moyenne ou d’indicateurs
statistiques pour la quantifier.

Modeéle Virus La figure 6 présente le détail des demandes de synchronisation
pour les synchronisations FA et SSD.

EA

= 4e+05
v

‘G 3e+05

SSD
£2e+05
£
p=}
2 1e+05 I I
oe+00 1 A= e fm I H

16 32 64 128 16 32 64 128
Number of cores

Total EA CALL | Total EACO Total SSD NCO
[l Total Eanco [l Total 5SD CALUJ Total SSD CO

Figure 6: Détail des synchronisations du modele Virus

Pour les deux modes de synchronisation le nombre total de demandes de
synchronisation croit de maniere linéaire avec le nombre de coeurs car, lorsque
le nombre de cceurs augmente la simulation est divisée en plus de processus. Il
y a donc plus de zones de recouvrement et plus d’interactions potentielles. Le
nombre d’interactions NCO est tres faible pour EA. Il croit d’environ 10% pour
SSD a cause des synchronisations gérées en fin de pas de temps. Les agents
qui effectuent une demande de synchronisation sont suspendus et exécutés a la
réception de la réponse, en fin de pas de temps. De ce fait, certaines interactions
qui étaient potentiellement CO au moment de la demande de synchronisation
peuvent devenir NCO si les agents concernés n’avaient pas encore été exécutés.
Il faut donc poser la question de savoir quel est I'impact de ces interactions NCO
sur les résultats.

La figure 7 présente les résultats de 'exécution sur 128 coeurs. Les résultats
pour SSD (figure 7(a)) et EA (7(b)) sont quasi identiques. Les quelques vari-
ations s’expliquent par les interactions NCO traitées en fin de pas temps par
le mode SSD. En revanche, les résultats de OLZ (figure 7(c)) présentent de
nombreuses différences, malgré une tendance identique.

19

5e+05-

Number of agents
N
58
? 9
& &

2 2

0e+00-,

4e+05-

le+05-

[AL 5e+05

4e+05

3e+05

2e+05

Number of agents

1e+05

0e+00

0 200 400 600 800 [200 400 600 800
Number of timesteps Number of timesteps
— Immune - Infected = TotalAgent — Immune - Infected = TotalAgent
(a) SSD (b) EA

5e+05

4e+05

3e+05,

2e+05

lumber of agents

Ni
i
)
b4
)
]

0e+00 f i | | |
0 200 400 600 800
Number of timesteps

—— Immune - Infected =~ TotalAgent

(c) OLZ

Figure 7: Résultats d’une exécution du modele Virus

Modeéle Proie-prédateur La figure 8 présente le détail des synchronisations
lors de 'exécution du modele PP. Comme pour le modele Virus, le nombre de
demandes de synchronisation croit de maniere linéaire avec le nombre de coeurs.
Le nombre d’appels NCO reste plus faible pour le mode SS que pour le mode

SSD.

ss SSD

4e+05
T 3e+05
o
kS
5 2e+05
o
S
2 1e+05

0e+00 I I .

16 32 64 128 16 32 64 128

Number of cores

Total SSCALL | Total SSDNCO | Total SS NCO
[l Total ssp cALL i Total sspco [Total S CO

Figure 8: Détail des synchronisations du modele PP

La figure 9 présente les résultats sur 128 cceurs des modes SSD, SS et OLZ.
Le modele PP est un modele tres sensible: la modification d’un parameétre peut
conduire a une instabilité qui se traduit par la mort d’une des especes. Le
changement de mode induit ainsi des différences de résultats entre les courbes

20

SSD (figure 9(a)) et les courbes SS (figure 9(c)). La figure 9(b) qui représente
I’exécution sans synchronisation montre des résultats proches du mode SSD
(figure 9(a)). Nous retrouvons tout de méme des courbes cycliques qui tendent
a s’équilibrer.

60000
60000

40000
40000

20000 20000

Number of agents
Number of agents

0 500 1000 1500 2000 0 500 1000 1500 2000
Number of timesteps Number of timesteps

(a) SSD (b) OLZ

80000
60000

40000

Number of agents

20000

0
0 500 1000 1500 2000
Number of timesteps

GRASS - SHEEP -+~ WOLF

(c) SS
Figure 9: Résultats d’une exécution du modele PP

Au vu des courbes, on peut s’interroger sur ce qu’il est important d’observer
dans les résultats du modele. Si nous regardons plus en détails ces figures, nous
remarquons que le nombre maximal de moutons differe, environ 60000 pour OLZ
et SSD et environ 80000 pour SS. On remarque également que sur la figure 9(c)
(synchronisation SS) la phase est réguliere avec un décalage de l'ordre de /2.
En revanche, sur les figures 9(b) et 9(a), un décalage de phase s’effectue au cours
du temps. Les courbes OLZ et SSD sont semblables et donnent des résultats
erronés.

Les résultats présentés ici ont été obtenus grace a la version expérimentale de
FPMAS (version 0.1) destinée a évaluer 'utilisation d’une structure a base de
graphes sur la distribution des modeles. Cette version expérimentale n’offrant
pas de support natif pour la synchronisation, les modes de synchronisation
ont du étre implémentés directement dans le code de chaque modele pour
étre évalués. Or les résultats mettent en évidence la nécessité de traiter avec
précaution les problématiques de synchronisation, inhérentes aux interactions
nécessaires a l'exécution du modele. Nous avons donc défini une interface
générique des modes de synchronisation, rendant possible 'implémentation de
divers modes dans la plateforme FPMAS ainsi que leur application & n’importe
quel modele. Cette interface est présentée dans la section suivante.

21

5 Interface de synchronisation générique

Dans la version 1.1 de la plateforme FPMAS, I'idée est d’offrir au modélisateur,
de maniére native, les outils nécessaires a une distribution implicite des inter-
actions pour faciliter 'implémentation en donnant un résultat exact.

Dans cette section nous présentons donc une définition formelle et générique
d’un mode de synchronisation dans le contexte de la simulation distribuée de
systemes multi-agents, ainsi que des implémentations possibles afin, notamment,
de généraliser les modes de synchronisation décrit dans la Section 3 & n’importe
quel SMA. Certains modes sont actuellement implémentés dans la version 1.1
de FPMAS, disponible sur GitHub?.

5.1 Représentation a base de graphes des SMA

Comme pour la version expérimentale, FPMAS 1.1 est basé sur le concept de
graphes distribués [1] pour représenter et simuler des SMA. Un des intéréts
principaux d’une telle représentation est la possibilité de distribuer automa-
tiquement et de maniere optimisée les simulations grace a des algorithmes
de partitionnement de graphe, ce qui a déja été validé dans nos travaux
précédents [1, 19]. Mais la structure de graphe présente également l'avantage
d’expliciter les interactions, comme dépendances de données, entre les agents:
on suppose que deux agents dans la simulation vont étre amenés a interagir,
c’est a dire a échanger des données, si et seulement si il existe au moins un lien
entre les nceuds du graphe représentant ces agents. Une telle restriction permet
de faciliter la gestion des problémes de synchronisation, car les communications
auront naturellement lieu de maniere distribuée, en se limitant au voisinage local
de chaque noeud.

La structure de graphe distribué est cependant une structure de données
relativement bas niveau facilitant la distribution et la synchronisation de la
simulation, qui ne vise pas a limiter les modeles simulés. Par exemple, dans
FPMAS, les modeles a base de grille sont eux mémes définis a partir d’un graphe.
Dans ce contexte, une grille peut étre définie comme un ensemble de cellules
connectées entre elles afin d’exprimer les dépendances spatiales. La position
des agents, eux-mémes représentés par des nceuds, peut étre représentée par un
lien entre l'agent et une cellule. Un algorithme distribué permet de construire
dynamiquement les liens entre un agent et ceux localisés dans son champ de
perception, afin de lui permettre d’interagir avec eux.

FPMAS fournit également des fonctionnalités permettant de construire au-
tomatiquement le graphe représentant une grille a partir de sa forme et de
la position des agents spécifiées par 'utilisateur. La structure sous-jacente de
graphe est ainsi rendue invisible, tout en permettant 1'utilisation de nos modes
de synchronisation sur un modele a base de grille.

Les modes de synchronisation peuvent donc étre définis au niveau du graphe
le plus général: par conception, ils seront alors applicables sur tout modele, qu’il

Shttps://github.com/FPMAS/FPMAS

22

Vo

(a) Exemple de graphe représentant un modele.

(b) Processus 0 (c) Processus 1 (d) Processus 2 (e) Processus 3

Figure 10: Exemple de distribution du graphe.

soit basé sur une grille ou un graphe arbitraire.

A noter que RepastHPC permet également de définir des dépendances entre
agents grace a un graphe, afin de mettre a jour automatiquement les copies des
dépendances exécutées sur d’autres processus. En revanche, seule la synchroni-
sation en mode ghost est possible, et RepastHPC ne fournit pas directement de
fonctionnalité de distribution de la simulation & partir de ce graphe, méme s’il
est possible de s’interfacer relativement facilement avec les librairies de parti-
tionnement de graphe existantes [6].

5.2 Distribution du graphe

Nous considérons dans cette section un modele arbitraire déja représenté par
un graphe: les agents en sont les noeuds et les arcs les interactions possibles.
Le partitionnement de ce graphe associe un ensemble de nceuds a chaque pro-
cessus, appelés les nceuds locaux par rapport au processus, qui est alors chargé
d’exécuter les agents représentés par ces nceuds. Afin d’assurer la continuité du
modele malgré la distribution, les interactions des agents locauz avec des agents
distants sont permises par 'ajout de nceuds distants dans le graphe local et
d’arcs reliant les nceuds locauzr aux noeuds distants.

Un exemple de distribution du graphe sur 4 processus est présenté figure 10.
Une couleur est associé a chaque processus. Les noeuds pleins sont locauz, les
pointillés sont distants.

L’intérét d’une telle structure est que le voisinage de chaque noeud local est
préservé, quel que soit la distribution du modele. On peut ainsi se permettre de
définir une interface générique pour ’acces aux données de chaque noeud, qu’il
soit local ou distant, afin d’abstraire cet aspect de la distribution a I'utilisateur.

Le concept de nceuds distants est tres similaire aux copies des agents
réalisées par RepastHPC. D’autre part, pour un modele a base de grille, on
peut légitimement considérer les cellules distantes dans le graphe comme une

23

DistributedNode DistributedGraph DistributedEdge

+ getWeight(): float + synchronize(): void + getWeight(): float
+ distribute(p: Partition): void
+ getOutgoingEdges(): 0.* 1| 4 balance(lb: LoadBalancing&): void + getSourceNode(): Node*
List<Edge*> 1 0.%| + getTargetNode(): Node*
+ getIncomingEdges(): + buildNode(data: T&): Node*
List<Edge*> + removeNode(node: Node*): void + state(): LocationState
+ link(sre: Node*, tgt: Node*): Edge*
+ state(): LocationState + unlink(edge: Edge®): void
+ location(): ProcessRank) <enum’>
LocationState
LOCAL
DISTANT
interface> <interface> <interface>>
Mutex DataSync SyncLinker
+ read(): const T& + synchronize(): void + synchronize(): void
+ releaseRead(): void + link(src: Node*, tgt: Node*): Edge*
+ acquire(): T& + unlink(edge: Edge®): void
+ releaseAcquire(): void + removeNode(node: Node*): void

Figure 11: Diagramme de classe associé au graphe distribué

généralisation du concept de “zones de recouvrement” utilisées par d’autres
plateformes de simulation distribuée.

5.3 Définition de l’interface de synchronisation

Une fois la simulation distribuée, chaque processus est donc responsable d’un
ensemble de nceuds locaux et distants. Seuls les agents associés a des nceuds
locaux sont exécutés, mais chacun d’eux peut interagir avec les nceuds locaux
et distants auxquels ils sont connectés. FPMAS définit une interface générique
pour gérer I’acces a n’importe quel nceud, qu’il soit local ou distant, de sorte a
abstraire completement la distribution du point de vue de I'implémentation du
modele. La gestion de 'accés aux données est alors assurée implicitement par
le mode de synchronisation choisi pour exécuter le modele.

On définit ainsi 'interface SynchronizationMode, elle-méme constituée de
3 interfaces:

e Mutex: gere l'acces aux données des nceuds.

e DataSync: gere la synchronisation des données des noeuds en fin de pas
de temps.

e SyncLinker: permet de dynamiquement créer ou supprimer des nceuds et
des liens dans le graphe.

Le diagramme de classes associé au graphe distribué et aux modes de syn-
chronisation est présenté figure 11.

L’interface Mutex, pour Mutual Fxclusion, définit notamment les méthodes
read() et acquire() qui permettent d’accéder aux données de chaque nceud
respectivement en lecture ou écriture de maniére concurrente, indépendamment
du processus sur lequel le nceud est effectivement localisé. Les méthodes

24

releaseRead() et releaseAcquire() doivent étre appelées lorsque le travail
sur le noeud est terminé.

L’interface DataSync ne définit qu’une seule méthode: synchronize(). Le
comportement de cette méthode est compléetement déterminé par le mode de
synchronisation implémenté. La seule garantie associée est ’appel automatique
de cette méthode par FPMAS a la fin de chaque pas de temps par tous les
processus.

Il est important de noter qu’aucune contrainte n’est imposée a pro-
pos de la synchronisation des données des noeuds au niveau de l'interface
SynchronizationMode. Par exemple, il n’est pas garanti a ce niveau que ’appel
des méthodes Mutex: :acquire() et DataSync::synchronize() permette ef-
fectivement d’effectuer des écritures sur des données distantes. Comme énoncé
dans la Section 3, ce n’est effectivement pas le cas pour la synchronisation Over-
lapping Zones, contrairement & la Synchronisation Stricte. Pourtant, les
appels aux méthodes génériques de l'interface SynchronizationMode restent les
mémes, quel que soit le mode de synchronisation utilisé.

L’interface SyncLinker permet la gestion de la structure de graphe, ce
qui implique la création de liens (1ink()), la suppression de liens (unlink())
ou la suppression de nceuds (removeNode()). Comme ces opérations peu-
vent s’appliquer a des noeuds distants, une synchronisation des processus est
nécessaire pour les prendre en compte. Une méthode synchronize() est ainsi
définie, et son appel automatique est également garanti a la fin de chaque
pas de temps par tous les processus. Le comportement de chaque méthode
dépend du mode de synchronisation implémenté. FEn revanche, il doit étre
garanti que chaque opération soit prise en compte au plus tard au moment
du retour de la méthode synchronize(). L’implémentation de l'interface
SynchronizationMode doit donc prendre en charge la création/suppression dy-
namique de liens et de nceuds, y compris dans le cas ou au plus un nceud dis-
tant est impliqué dans 'opération. De telles fonctionnalités sont effectivement
nécessaires pour maintenir un état cohérent du graphe distribué au cours de la
simulation.

L’implémentation d’un modele avec FPMAS se base ainsi sur des appels a ces
méthodes abstraites, indépendamment de la distribution du modele ou du mode
de synchronisation actuel. Cependant, le comportement réel de chaque méthode
est déterminé au moment de I’exécution, en fonction du mode de synchronisation
choisi. Comme démontré dans la Section 4, les résultats du modele peuvent
alors varier. La section suivante présente des exemples d’implémentation des
différents composants de I'interface SynchronizationMode.

5.4 Spécification des modes de synchronisation

L’objectif de cette section est de présenter différentes implémentations pos-
sibles de l'interface SynchronizationMode a partir des modes de synchroni-
sation définis a la Section 3. Cette liste n’est pas exhaustive, et plusieurs
implémentations peuvent exister dans la méme librairie: il suffit de changer

25

un parametre dans la définition du modele pour sélectionner le mode de syn-
chronisation utilisé pour I'exécuter.

Pour le moment, seuls les modes Synchronisation Stricte et Overlap-
ping Zones ont été implémentés dans FPMAS, avec les classes respectives
HardSyncMode et GhostMode. En revanche, il est déja possible d’élaborer une
spécification permettant d’implémenter les interfaces précédentes pour les autres
modes.

GhostMode Dans ce mode de synchronisation, les données distantes sont
seulement mises a jour a la fin de chaque pas de temps. Les écritures effectuées
sur les données distantes ne sont pas reportées au processus d’origine, et sont
écrasées en fin de pas de temps.

e Mutex: les méthodes read() et acquire() renvoient simplement une
référence vers la donnée locale. L’état des données locales correspond aux
données importées a la fin du pas de temps précédent, avec les éventuelles
modifications effectuées localement au cours du pas de temps. Pour les
données locales, les modifications sont bien prises en compte. En revanche,
pour les données distantes, les modifications sont écrasées a la fin du pas
de temps. Les méthodes releaseRead() et releaseAcquire() n’ont pas
d’effet, car il n’est pas nécessaire de gérer la concurrence d’acces dans ce
mode: en effet, les écritures distantes ne sont pas permises, et les agents
sont actuellement exécutés de maniere séquentielle sur chaque processus.

e DataSync: la méthode synchronize () met a jour tous les nceuds distants
en important les données correspondantes sur les processus d’origine.

e SyncLinker: les opérations effectuées sur le graphe sont stockées pen-
dant le pas de temps, et sont exportées lors de I'appel a la méthode
synchronize(). Ce mode nécessite donc d’attendre la prochaine syn-
chronisation avant de pouvoir utiliser les liens créés au cours du pas de
temps, ou que les suppressions de liens ou de noeuds soient effectives, ce qui
correspond bien aux garanties minimales imposées au niveau de 'interface
SynchronizationMode.

HardSyncMode Les données des noeuds distants sont systématiquement im-
portées depuis le processus d’origine de maniere bloquante, en effectuant des
requétes, avec une gestion de la concurrence en lecture et en écriture, ce qui per-
met de reporter les écritures sur les données distantes au processus d’origine.
Un algorithme de terminaison [8] place les processus en attente en fin de pas
de temps jusqu’a ce que toutes les requétes de tous les processus aient été
traitées. En effet, dans un tel schéma d’exécution, méme si un processus a a
terminé I'exécution de ses agents, il se peut qu'un autre processus b ait besoin
d’une donnée du processus a afin qu’il puisse lui méme terminer I’exécution de
ses agents. L’algorithme de terminaison permet aux processus ayant terminé
I’exécution de leurs agents de répondre aux requétes des autres jusqu’a ce que

26

plus aucun processus n’ait de requétes a effectuer et qu’ils aient tous terminé
I’exécution de leurs agents.

e Mutex: les méthodes read() et acquire() envoient une requéte au pro-
cessus d’origine pour obtenir les données a jour. Les appels bloquent
jusqu’a ce que les données soient disponibles: plusieurs processus peuvent
lire simultanément la méme donnée, mais un acces exclusif doit étre as-
suré pour acquérir les données afin de pouvoir effectuer des écritures. La
méthode releaseRead () indique simplement au processus d’origine que le
processus local a terminé d’effectuer sa lecture, pour notifier que la donnée
est a nouveau disponible pour d’autres processus. Le fonctionnement de
releaseAcquire() est similaire, mais il est en plus nécessaire d’envoyer
les modifications locales au processus d’origine. Le mécanisme de requétes
s’applique également dans le cas de ’accés & une donnée locale: en effet,
le processus local doit attendre que ses propres données soit disponibles
pour gérer la concurrence avec les autres processus.

e DataSync: la méthode synchronize() applique un algorithme de ter-
minaison pour continuer a répondre aux requétes des autres processus,
jusqu’a ce que toutes les requétes aient été traitées.

e SyncLinker: les modifications du graphes sont effectuées a la volée, de
maniere bloquante, au sein du pas de temps. La méthode synchronize ()
exécute également un algorithme de terminaison pour traiter toutes les
requétes avant de passer au pas de temps suivant.

Ecriture Asynchrone Ce mode n’est pas implémenté dans la version 1.1 de
FPMAS, la spécification fournie ici est donc théorique.

Dans ce mode de synchronisation, les écritures sont effectuées de maniere
non bloquante, sans gestion de la concurrence. Les données distantes accédées
en lecture ou en écriture ne sont pas importées depuis les processus d’origine au
cours du pas de temps. Les modifications appliquées localement & ces données
sont tout de méme renvoyées au processus d’origine au sein du pas de temps,
afin de prendre en compte les écritures. En revanche, chaque écriture écrase
systématiquement les précédentes au cours du pas de temps. Les données
sont également mises & jour a la fin de chaque pas de temps, comme avec le
GhostMode, afin d’assurer une actualisation partielle des données. Ce mode
permet de prendre en compte des écritures distantes, avec un impact moindre
sur les performances comparé & HardSyncMode, car les écritures sont réalisées
de maniere non bloquante, sans gestion de la concurrence: son utilisation est
donc plus limitée que HardSyncMode, car des incohérences peuvent étre induites
pour certains modeles.

e Mutex: Les méthodes read () et acquire () renvoient une référence vers la
donnée locale, comme pour GhostMode. La méthode releaseRead() n’a
pas d’effet particulier, mais releaseAcquire() envoie de maniere non-
bloquante les modifications locales au processus d’origine.

27

e DataSync: La méthode synchronize() applique un algorithme de termi-
naison pour s’assurer que toutes les écritures distantes aient été recues. Les
données distantes sont également mises a jour & la maniere de GhostMode.

e SyncLinker: implémentation identique a celle du GhostMode.

Le modele Virus est un bon exemple d’utilisation possible de ce mode. A
chaque pas de temps, les agents vérifient ’état des agents a proximité, infectés
ou sains. Si Iagent est déja infecté, il est inutile de 'infecter & nouveau, sinon
on 'infecte, ce qui représente ici une écriture. Dans le cas ou I'agent voisin est
distant:

e Si aucune autre écriture n’a été effectuée sur le processus local, on accede
a ’état de l'agent au pas de temps précédent. S’il était déja infecté, il est
inutile de chercher a l'infecter & nouveau et aucune communication n’est
effectuée. S’il ne 'était pas, 'agent est infecté en effectuant une écriture
non bloquante, sans aller vérifier I’état réel de I'agent sur le processus
d’origine: peut-étre a-t-il déja été infecté au sein du pas de temps depuis
un autre processus, mais dans ce cas l’écriture actuelle ne modifie pas
son état final. De plus, 'infection est prise en compte au plus tot sur le
processus d’origine, ce qui pourra éviter a d’autres agents sur ce processus
d’effectuer inutilement des écritures.

e Si une écriture a déja été effectuée sur le processus actuel, ’état de la
donnée indique que l'agent a été infecté par un autre agent local et il est
donc inutile d’effectuer ’écriture a nouveau.

Dans tous les cas, 'agent distant est bien infecté, mais les communications sont
minimisées par rapport a HardSyncMode, qui aurait produit le méme état final.

Synchronisation Stricte Décalée Cette synchronisation est similaire a
HardSyncMode, sauf que cette fois les requétes doivent étre réalisées de maniere
non bloquante: on peut poursuivre ’exécution des autres agents pendant que
I'un d’eux est en attente pour accéder a des données distantes. Les agents en
attente sont alors exécutés a la fin du pas de temps. Ce mode ne peut étre
implémenté dans la version actuelle de FPMAS, car il nécessite de modifier
le schéma d’exécution des agents, ce qui n’est pas possible depuis l'interface
SynchronizationMode. FEn effet, les agents sont actuellement exécutés de
maniere séquentielle par le composant Runtime, qui détermine 'ordre (aléatoire)
d’exécution des agents en début de pas de temps.

5.5 Synthese

L’intérét de I’approche proposée ici est de décorréler I'implémentation du modele
de l'implémentation distribuée des interactions et de leur sémantique, le code
du modele ne contenant que les fonctions génériques de synchronisation. Le
concepteur de modele peut alors se reposer sur FPMAS pour I'implémentation
du mode de synchronisation adapté.

28

FPMAS permet, de plus, d’'implémenter de nombreux modes de synchroni-
sation, avec des comportements tres différents notamment en termes de gestion
des écritures, a partir de l'interface générique SynchronizationMode. On peut
d’ailleurs imaginer des nuances aux modes précédents, par exemple en combi-
nant la synchronisation des données de HardSyncMode avec la gestion du graphe
de GhostMode. L’Ecriture Asynchrone est également sujette & certaines vari-
antes: on pourrait par exemple ne pas mettre a jour les données en fin de pas
de temps, ou stocker les écritures pour les exporter seulement a ’appel de la
méthode synchronize().

Dans tous les cas, comme 'implémentation des modeles avec FPMAS se base
sur des appels aux méthodes génériques de l'interface SynchronizationMode, il
est trivial de tester chaque mode de synchronisation sur un modele donné, afin
de facilement évaluer 'impact sur les résultats ou les performances.

6 Conclusion

Notre étude sur I'impact des politiques de synchronisation vise a sensibiliser la
communauté agent, et plus particulierement les modélisateurs, aux problemes
liés aux dépendances de données lors de la parallélisation d’un modele. Nous
évaluons pour cela différents modes de synchronisation en lien avec différents
modeles et nous mettons en évidence que, suivant le modele a implémenter,
le niveau de synchronisation a un impact sur les performances d’exécution et
les résultats. A travers nos expérimentations, nous quantifions le cotiit de la
synchronisation sur les performances de la simulation suivant les modeles et
nous montrons son impact sur les résultats. La synchronisation est, de fait,
dépendante des comportements des agents: c’est au modélisateur de prévoir
I’exécution du modele et donc d’adapter la modélisation pour prendre en compte
le cott et 'impact de la synchronisation lors de la conception d’un modele
parallele.

Nos travaux les plus récents ont permis de définir formellement une inter-
face générique de synchronisation, qui permet d’implémenter divers modes de
synchronisation et de les appliquer sur n’importe quel modele multi-agents. La
plateforme FPMAS permet d’abstraire ces problemes de synchronisation et de
distribution pour 'utilisateur, afin de simplifier au maximum la parallélisation
des modeles. Comme il suffit de changer un parametre pour appliquer n’importe
quel mode de synchronisation a tous les modeles, il est tres simple de comparer
les performances et 'impact sur les résultats méme pour un utilisateur avec des
connaissances limitées en parallélisme.

La suite nos travaux s’orientent vers une analyse de nombreux modeles en
vue d’identifier les besoins en synchronisation de différents types de modeles. De
nouveau modes seront éventuellement définis et implémentés dans la plateforme
FPMAS, afin d’assurer une distribution simple et efficace pour une large variété
de modeles.

Les calculs présentés dans cet article ont été effectués sur le calculateur du
Mésocentre de calcul de Franche-Comté

29

References

[1]

BREUGNOT, P., HERRMANN, B., LANG, C., AND PHILIPPE, L. A Syn-
chronized and Dynamic Distributed Graph structure to allow the native
distribution of Multi-Agent System simulations. In 2021 29th Euromicro
International Conference on Parallel, Distributed and Network-Based Pro-
cessing (PDP) (Mar. 2021), pp. 54-61.

Brock, B., Burug, A., AND YELICK, K. BCL: A Cross-Platform Dis-
tributed Data Structures Library. In Proceedings of the 48th International
Conference on Parallel Processing (New York, NY, USA, Aug. 2019), ICPP
2019, Association for Computing Machinery, pp. 1-10.

CHANDY, K., AND MISRA, J. Distributed Simulation: A Case Study in
Design and Verification of Distributed Programs. IEEE Transactions on
Software Engineering SE-5, 5 (Sept. 1979), 440-452.

CuiN, L. S., WorrH, D. J., GREENOUGH, C., COAKLEY, S., HoL-
COMBE, M., AND KiRAN, M. FLAME : An approach to the parallelisation
of agent-based applications. Rutherford Appleton Laboratory Technical Re-
ports, RAL-TR-2012-013 (2012).

COLLIER, N., AND NORTH, M. Parallel agent-based simulation with
Repast for High Performance Computing. SIMULATION (Nov. 2012).

COLLIER, N., Ozik, J., AND MAcaL, C. M. Large-Scale Agent-Based
Modeling with Repast HPC: A Case Study in Parallelizing an Agent-Based
Model. In Euro-Par 2015: Parallel Processing Workshops (Cham, 2015),
S. Hunold, A. Costan, D. Giménez, A. losup, L. Ricci, M. E. Gémez Re-
quena, V. Scarano, A. L. Varbanescu, S. L. Scott, S. Lankes, J. Weidendor-
fer, and M. Alexander, Eds., Lecture Notes in Computer Science, Springer
International Publishing, pp. 454-465.

CorDASCO, G., DE CHIARA, R., MANCUSO, A., MAZZEO, D., SCARANO,
V., AND SPAGNUOLO, C. A Framework for Distributing Agent-Based Sim-
ulations. In Euro-Par 2011: Parallel Processing Workshops (Berlin, Heidel-
berg, 2012), M. Alexander, P. D’Ambra, A. Belloum, G. Bosilca, M. Can-
nataro, M. Danelutto, B. Di Martino, M. Gerndt, E. Jeannot, R. Namyst,
J. Roman, S. L. Scott, J. L. Traff, G. Vallée, and J. Weidendorfer, Eds.,
Lecture Notes in Computer Science, Springer, pp. 460-470.

DuksTrA, E. W., FEUEN, W. H. J., AND VAN GASTEREN, A. J. M.
Derivation of a termination detection algorithm for distributed computa-
tions. In Control Flow and Data Flow: Concepts of Distributed Program-
ming (Berlin, Heidelberg, 1986), M. Broy, Ed., Springer Study Edition,
Springer, pp. 507-512.

FERBER, J. Les Systémes Multi-Agents : Vers Une Intelligence Collective.
ITA Informatique, Intelligence Artificielle. InterEditions, 1995.

30

[10]

[11]

[15]

[16]

[17]

[18]

[19]

FERBER, J., AND MULLER, J.-P. Influences and Reaction : A Model of

Situated Multiagent Systems. Proceedings of second international confer-
ence on multi-agent systems (ICMAS-96) (1996), 72-79.

GUTKNECHT, O., AND FERBER, J. MadKit: A generic multi-agent
platform. In Proceedings of the Fourth International Conference on Au-
tonomous Agents - AGENTS ’00 (Barcelona, Spain, 2000), ACM Press,
pp- 78-79.

JEFFERSON, D. R. Virtual time. ACM Transactions on Programming
Languages and Systems 7, 3 (July 1985), 404-425.

MALINOWSKI, A., AND CZARNUL, P. Multi-agent large-scale parallel
crowd simulation with NVRAM-based distributed cache. Journal of Com-
putational Science 33 (Apr. 2019), 83-94.

MATHIEU, P., AND SECQ, Y. Environment updating and agent scheduling
policies in agent-based simulators. In Proceedings of the 4th International
Conference on Agents and Artificial Intelligence (2012), vol. 1, SciTePress,
pp. 170-175.

PAWLASZCZYK, D., AND STRASSBURGER, S. Scalability in distributed
simulations of agent-based models. In Proceedings of the 2009 Winter Sim-
ulation Conference (WSC) (Dec. 2009), pp. 1189-1200.

Porov, K., RAFEA, M., HOLMGREN, F., BRAND, P., VLASSOV, V., AND
HARIDI, S. Parallel agent-based simulation on a cluster of workstations.
Parallel Processing Letters 13, 04 (Dec. 2003), 629-641.

RAo, D. M., AND CHERNYAKHOVSKY, A. Parallel simulation of the global
epidemiology of Avian Influenza. In 2008 Winter Simulation Conference
(Dec. 2008), pp. 1583-1591.

RousseT, A., HERRMANN, B., LANG, C., AND PHILIPPE, L. A sur-
vey on parallel and distributed multi-agent systems for high performance
computing simulations. Computer Science Review 22 (Nov. 2016), 27-46.

RoOUSSET, A., HERRMANN, B., LAnG, C., PHILIPPE, L., AND BRIDE,
H. Nested graphs: A model to efficiently distribute multi-agent systems
on HPC clusters. Concurrency and Computation: Practice and Experience
30, 7 (2018), e4407.

RuB10-CAMPILLO, X. Pandora: A Versatile Agent-Based Modelling Plat-
form for Social Simulation. In Proceedings of SIMUL (Jan. 2014), pp. 29-34.

SCERRI, D., DroGoUL, A., HICKMOTT, S., AND PADGHAM, L. An Ar-
chitecture for Modular Distributed Simulation with Agent-Based Models.
In Proceedings of the 9th International Conference on Autonomous Agents
and Multiagent Systems (Toronto, Canada, 2010), vol. 1, pp. 541-548.

31

[22]

[23]

[25]

[26]

[27]

[28]

SURYANARAYANAN, V., THEODOROPOULOS, G., AND LEES, M. PDES-
MAS: Distributed Simulation of Multi-agent Systems. Procedia Computer
Science 18 (Jan. 2013), 671-681.

TAILLANDIER, P., Vo, D.-A., AMOUROUX, E., AND Drocour, A.
GAMA: A Simulation Platform That Integrates Geographical Informa-
tion Data, Agent-Based Modeling and Multi-scale Control. In Principles
and Practice of Multi-Agent Systems (Berlin, Heidelberg, 2012), N. De-
sai, A. Liu, and M. Winikoff, Eds., Lecture Notes in Computer Science,
Springer, pp. 242-258.

TisUE, S., AND WILENSKY, U. NetLogo: Design and implementation
of a multi-agent modeling environment. In Proceedings of Agent (2004),
vol. 2004, Springer Cham, Switzerland, pp. 7-9.

VIGUERAS, G., ORDUNA, J. M., LozaNO, M., AND JEGOU, Y. A scal-
able multiagent system architecture for interactive applications. Science of
Computer Programming 78, 6 (June 2013), 715-724.

WILENSKY, U. NetLogo Wolf Sheep Predation model. Center for Con-
nected Learning and Computer-Based Modeling, 1997.

WILENSKY, U. NetLogo Flocking model. Center for Connected Learning
and Computer-Based Modeling, 1998.

WILENSKY, U. NetLogo Virus model. Center for Connected Learning and
Computer-Based Modeling, 1998.

Xu, Y., Car, W., AvypT, H., LEES, M., AND ZEHE, D. Relaxing Syn-
chronization in Parallel Agent-Based Road Traffic Simulation. ACM Trans-
actions on Modeling and Computer Simulation 27, 2 (May 2017).

YORKE, J. A., NATHANSON, N., PIANIGIANI, G., AND MARTIN, J. Sea-
sonality and the requirements for perpetuation and eradication of viruses in
populations. American journal of epidemiology 109, 2 (Feb. 1979), 103-123.

32

