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Résumé
Parmi les méthodes de modélisation/simulation, les systèmes multi-agents
présentent un intérêt particulier pour simuler les systèmes complexes. Lorsque la
taille des modèles crôıt, le recours à la simulation distribuée est nécessaire mais
pose de nombreux problèmes. Dans cet article, nous nous intéressons à l’impact
de la synchronisation sur l’implémentation des modèles et leur exécution. Nous
mettons en évidence des problématiques de synchronisation à travers des in-
stances de modèles et nous analysons expérimentalement l’impact des politiques
de synchronisation sur des exécutions de grande taille. En réponse aux manques
mis en évidence, nous proposons une interface de synchronisation générique et
son implémentation dans la plateforme de simulation FPMAS.

Mots-clefs
multi-agent simulation, parallélisme, MAS, High Performance Computing, syn-
chronisation

1 Introduction

La simulation numérique est devenue le troisième pilier de la science en
tant qu’étape de validation de la théorie, déterminante pour le passage à
l’expérimentation. Elle vise à virtualiser le monde réel, à en reproduire les
comportements, par exemple pour explorer son évolution dans différentes con-
figurations ou pour comprendre comment le contrôler. Dans les systèmes com-
plexes, plusieurs phénomènes peuvent ainsi être étudiés simultanément mais
les comportements sont souvent trop élaborés et interdépendants pour pouvoir
être modélisés par une loi unique. Les systèmes multi-agents sont alors souvent
utilisés pour modéliser les comportements dynamiques des entités qui composent
le système car ils reposent sur une description algorithmique simple d’agents qui

1



interagissent entre eux. De nombreuses plateformes [24, 11, 23] proposent un
environnement de développement pour de tels modèles.

La qualité d’une simulation dépend bien souvent de la taille et de la précision
du modèle. Or l’accroissement de la taille du modèle et de sa précision entrâıne,
de fait, une augmentation du nombre de calculs réalisés et rend nécessaire le
recours à des exécutions parallèles, voire à l’utilisation de moyens de calcul
haute performance (HPC: High Performance Computing). Si la simulation sur
un seul ordinateur est souvent complexe, l’exécution distribuée parallèle d’une
simulation est un vrai enjeu car elle pose de nombreux problèmes comme la
distribution de l’environnement, la communication entre les instances parallèles
de la plateforme, etc. Il existe des plateformes multi-agents (Parallel and Dis-
tributed MAS ou PDMAS) qui prennent en charge tout ou partie de l’exécution
distribuée. Plusieurs instances, ou processus, de la plateforme coopèrent pour
faciliter la mise en œuvre d’un modèle sur un ensemble d’ordinateurs ou au sein
d’un cluster. Parmi les solutions proposées nous pouvons distinguer plusieurs
approches architecturales de découpage des fonctions de la plateforme entre
les processus. Dans certaines approches toutes les machines ne jouent pas un
rôle symétrique, par exemple pour les architectures hétérogènes où chaque ma-
chine peut jouer un rôle différent dans la mise en place de la simulation [25].
Pour les modèles de grande taille, les méthodes de distribution homogènes et
décentralisées sont en général mieux adaptées et permettent l’exploitation ef-
ficace de machines de type cluster de calcul. Ce type de solution est souvent
caractérisé par l’utilisation de la librairie MPI.

Dans ce contexte, la synchronisation des données reste l’un des points clefs
pour l’exécution efficace d’une simulation multi-agents parallèle du fait des nom-
breux échanges et dépendances temporelles qu’elle induit. Nous nous intéressons
donc, dans cet article, aux problèmes posés par la synchronisation au sein de
simulations multi-agents distribuées parallèles, en visant plus particulièrement
les exécutions à large échelle. Comme les plateformes multi-agents fonctionnent
fréquemment par pas de temps, il est nécessaire de s’interroger sur la manière
d’échanger les données entre les processus distribués d’une même simulation au
regard de ce mode de fonctionnement.

Les contributions proposées dans cet article sont, d’une part, la définition
de politiques — ou modes — de synchronisation qui peuvent être utilisées au
sein de simulations multi-agents parallèles et leur mise en évidence au travers
d’exemples de modèles et, d’autre part, l’analyse expérimentale de l’impact
des modes de synchronisation sur des exécutions de grande taille, jusqu’à 512
cœurs, dans les systèmes multi-agents parallèles et distribués. Sur la base de
cette analyse et des manques mis en évidence, nous avons défini une interface
générique des modes de synchronisation, rendant possible l’implémentation de
divers modes dans la plateforme FPMAS ainsi que leur application à n’importe
quel modèle.

L’article est organisé comme suit. Dans la Section 2 nous présentons un
état de l’art sur les PDMAS et leur synchronisation. Nous proposons une
étude des problématiques de synchronisation des systèmes multi-agents dis-
tribués dans la Section 3. Puis, dans la Section 4, nous présentons une étude
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expérimentale de l’impact de différents modes de synchronisation sur l’exécution
de trois modèles agents. Enfin, la définition d’une interface générique permet-
tant l’implémentation de divers modes de synchronisation est proposée dans la
Section 5.

2 PDMAS et synchronisation

Par nature les agents interagissent entre eux, soit directement en consultant les
données d’autres agents, soit indirectement, à travers les modifications réalisées
sur l’environnement ou par échange de messages. Dans un PDMAS, les agents
du modèle sont distribués entre les instances de la plateforme, ou processus,
qui prennent en charge leur animation. De la même manière, les données de
l’environnement sont distribuées entre les processus. Un agent peut donc avoir
à interagir avec des agents ou utiliser des données de l’environnement situées sur
un autre processus. Ces accès nécessitent alors la mise en place d’une synchro-
nisation entre les processus pour maintenir un état cohérent et permettre aux
agents d’accéder à la valeur à jour des données avec l’objectif que la simulation
distribuée donne le même résultat que la simulation séquentielle.

À noter que nous nous intéressons dans cet article à la simulation de systèmes
multi-agents sur une architecture distribuée. Les processus étant distribués,
la synchronisation des données est réalisée sous la forme de communications.
L’accès à ces données est alors plus coûteux qu’un simple accès local et il est
important d’implémenter la synchronisation au plus juste, de manière à limiter
les surcoûts. Cette implémentation suppose de caractériser les propriétés atten-
dues. Dans la littérature, la caractérisation de la synchronisation de modèles
parallèles repose sur le mode de dépendance de données et le respect de la
causalité, donc de la synchronisation temporelle.

2.1 Modes de dépendance de données

On distingue deux modes de gestion de la dépendance de données dans les
simulations numériques: (i) le mode ghost qui utilise les données calculées au pas
de temps précédent (le ghost) et (ii) le mode non ghost qui n’utilise qu’une seule
instance des données, dans laquelle les résultats des calculs sont directement
reportés. Le ghost n’est accessible qu’en lecture alors que, sans ghost, les données
sont accessibles en lecture et en écriture et l’ordre d’accès aux données impacte
les résultats [14]. Dans le cas des PDMAS, le mode ghost permet de ne diffuser
les données modifiées qu’à la fin des pas de temps. À noter que, pour limiter le
coût de ces mises à jour, plusieurs PDMAS utilisent des zones de recouvrement,
copies locales des données distantes limitées à la zone de perception des agents.

Le mode non ghost nécessite une gestion de la concurrence des lectures
et écritures réalisés par les processus parallèles. Bien que la résolution de ce
problème soit relativement triviale en mémoire partagée grâce à l’utilisation de
mécanismes de verrouillage, l’extension de ces solutions aux architectures dis-
tribuées pose problème. La librairie BCL [2] est un exemple d’implémentation de
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pointeurs distants et de structures de données distribuées. La gestion de l’accès
concurrent en lecture/écriture aux éléments des structures n’est cependant pas
abordée. De plus, ces travaux à eux seuls ne permettent pas de résoudre tous les
problèmes inhérents à l’exécution distribuée des simulations de SMA (schéma
d’exécution, équilibrage de charge, continuité des données, etc).

Dans [13], les auteurs proposent de gérer la concurrence d’accès aux cellules
de l’environnement via un fichier partagé par tous les processus de la simula-
tion. L’attribution des cellules à chaque agent se fait cependant de manière
centralisée et la concurrence d’accès entre les agents n’est pas abordée. De plus
les nombreuses opérations d’écriture dans un fichier, plus coûteuses que des
accès mémoire directs, posent des problèmes de passage à l’échelle. D’autres
travaux se basent également sur la gestion centralisée des conflits [21, 16], mais
ces méthodes posent des problèmes de généricité, de passage à l’échelle, et ren-
dent possible l’échec de la demande d’action d’un agent, ce qui peut avoir un
impact sur la modélisation du système étudié. Il est cependant intéressant de
noter que ce type d’interaction est compatible avec la méthode générique de
modélisation par Influence/Réaction [10].

Nous analysons en 3.1 l’incidence du mode de dépendance de données sur
la synchronisation dans les modèles multi-agents et nous montrons que le choix
du mode est déterminé par le modèle.

2.2 Synchronisation temporelle

Deux approches de synchronisation sont définies dans le domaine des systèmes
à évènements discrets : l’approche conservative et l’approche optimiste. Dans
l’approche conservative (ou pessimiste), lorsqu’un processus traite un événement
de date T , pour respecter la causalité, il doit être sûr qu’aucun évènement avec
une date T ′ < T ne pourra être reçu ultérieurement. On doit donc s’assurer
que tous les processus sont au pas de temps T pour commencer à traiter les
évènements. Les premiers algorithmes utilisant l’approche conservative ont été
proposés par Chandy et al. [3]. Cette approche limite l’exploitation du par-
allélisme d’un modèle: en effet, l’avancée globale de la simulation est limitée
par le processus le plus lent.

Contrairement à l’approche conservative, l’approche optimiste permet aux
processus d’avancer indépendamment : chaque processus traite les événements
dont il a connaissance sans attendre les autres processus, ce qui permet en
principe de maximiser l’utilisation des ressources de calcul. Cette connaissance
des événements à traiter étant locale, et donc partielle, elle peut impliquer
l’omission de certains événements provenant d’autres processus et donc ne pas
respecter la causalité. Lorsque le processus reçoit une donnée dont la date
T ′ est antérieure à la date locale T , un retour en arrière est effectué par des
mécanismes de Rollback [12] qui impliquent de sauvegarder plusieurs points de
récupération par processus. Ainsi Xu et al. [29] définissent le lookahead comme
étant la durée jusqu’au prochain pas de temps auquel il faudra mettre à jour les
données. Ceci laisse la possibilité de continuer un processus tant qu’il n’est pas
arrivé à son lookahead. A noter que cette approche est difficilement généralisable
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à tous les modèles et qu’elle n’est pas efficace lorsque le temps d’exécution passé
à effectuer des Rollback devient très important, un Rollback pouvant entrâıner
une réaction en châıne de Rollback.

Les tentatives de mise en place de la synchronisation optimiste dans le cas
de la simulation distribuée de systèmes multi-agents sont rares et complexes [22,
15, 17]. En effet, cette méthode semble difficilement justifiable dans le cas des
SMA où les agents interagissent classiquement de manière intensive et régulière
avec les autres, augmentant grandement les probabilités de Rollback. De plus, la
maintenance d’un historique des transactions pour permettre les Rollback peut
rapidement engendrer un coût en mémoire démesuré, compte tenu du nombre
d’agents à simuler.

Nous considérons en particulier des PDMAS où les événements sont planifiés
tous les pas de temps. L’utilisation des approches conservatives ou optimistes
peut alors s’entendre comme le respect strict ou non de la frontière du pas de
temps : cette étude est limitée au cas conservatif, comme pour la plupart des
plateformes existantes.

2.3 La synchronisation des données dans les PDMAS

Dans [18] nous avons proposé une étude des plateformes multi-agents parallèles
et distribuées. Parmi les plateformes que nous avons évaluées, seules quatre
d’entre elles permettent d’envisager une exécution sur des ressources de grande
taille, de type HPC.

D-Mason La plateforme D-Mason [7] implémente des mécanismes de synchro-
nisation conservatifs et le mode ghost de gestion de dépendance des données.
Pour réaliser une synchronisation conservative, chaque pas de temps est divisé
en deux étapes: (1) la communication et synchronisation et (2) l’exécution de la
simulation. Il y a donc une barrière de synchronisation à chaque pas de temps.
Les agents d’une cellule (partition) c ne peuvent pas exécuter le pas de temps
i tant que les cellules voisines n’ont pas terminé d’exécuter le pas de temps
i− 1. A la fin d’un pas de temps, chaque cellule envoie aux cellules voisines les
informations concernant les agents qui se situent dans la zone de recouvrement
ou les agents qui doivent être migrés d’un processus à un autre. Pour le pas de
temps i les comportements des agents de la cellule c sont ainsi calculés à partir
du ghost des cellules voisines.

RepastHPC Pour gérer le partage de données, la plateforme RepastHPC
propose au programmeur de faire une copie, sur les processus distants, des agents
susceptibles d’y être utilisés. La synchronisation entre les processus s’effectue
notamment dans trois cas [5]:

• lorsque les processus importent les copies des agents depuis d’autres pro-
cessus pour maintenir la simulation dans un état cohérent

• pour mettre à jour ces copies
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• pour effectuer la migration des agents entre les processus

Avec les outils de la plateforme, les programmeurs ont à définir un ensemble
de méthodes nécessaires à la synchronisation des agents. La plateforme permet
d’implémenter le mode de dépendance de données ghost, car la mise à jour
des agents copie s’effectue par une communication collective en fin de pas de
temps. La synchronisation est donc conservative. Même si RepastHPC fournit
des fonctionnalités avancées en terme de planification de tâches et d’exécution
des agents, la plateforme ne supporte pas la synchronisation optimiste pour le
moment.

Flame Dans la plateforme Flame, tous les échanges entre les agents se font par
messages, la synchronisation conservative repose donc sur celle de tableaux de
messages [4]. Elle est effectuée en deux étapes: la demande de synchronisation
puis l’exécution de la synchronisation. Dans un premier temps, lorsqu’un pro-
cessus a terminé d’exécuter ses agents, il verrouille son tableau de messages et
envoie aux autres processus une demande de synchronisation. Après cette étape,
il est encore possible de faire des actions qui ne nécessitent pas l’utilisation du
tableau de messages. Lorsque tous les processus ont verrouillé leurs tableaux
de messages, une seconde étape d’exécution de la synchronisation est effectuée
par échange de messages entre les tableaux. Après ces deux étapes, les tableaux
de messages sont débloqués et la simulation se poursuit. Puisqu’il n’y a pas de
modification des données entre deux synchronisations des tableaux de messages,
la plateforme Flame repose sur un mode ghost.

Pandora Dans la plateforme Pandora la synchronisation est conservative [20]
et repose sur une grille 2D. Les données et les agents situés dans les zones
de recouvrement sont copiés et envoyés aux cellules voisines à chaque pas de
temps. Pour résoudre le problème de la dépendance de données, la simulation
est découpée en parties, numérotées de 0 à 3. Au cours d’un pas de temps tous
les processus exécutent séquentiellement chacune des parties, dans le même
ordre: la partie 0, puis 1, 2 et 3. Une fois l’exécution d’une partie terminée,
les zones de recouvrement sont envoyées aux cellules voisines. De cette façon, il
n’y a pas de conflits de cohérence car les parties exécutées en parallèle ne sont
pas adjacentes. Cette approche originale réduit les coûts de synchronisation
avec un modèle en partie ghost et en partie non ghost, suivant l’emplacement
des données. Cela limite tout de même l’utilisation de Pandora à des modèles
spatiaux à deux dimensions.

Synthèse Les PDMAS existants utilisent principalement une approche con-
servative quant à la causalité, certains laissant cette gestion au développeur.
Ceci parâıt justifié car l’approche optimiste convient peu aux systèmes multi-
agents qui animent les agents par pas de temps, donc de manière uniforme au
sein de processus parallèles à l’inverse des systèmes à événements discrets où les
processus ont une répartition temporelle des événements différente entre eux. Il
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est donc moins intéressant de faire avancer plus vite certains processus et une
politique de répartition de la charge peut s’avérer plus efficace.

Les plateformes proposent principalement un mode ghost, moins lourd
qu’une mise à jour systématique, qui recopie les données vers les autres pro-
cessus au changement de pas de temps, lorsque tous les agents sont dans un
état fixe.

Une analyse de plusieurs types de modèles permet cependant de montrer
que tous n’ont pas les mêmes besoins de synchronisation. Nous proposons donc,
dans la section suivante, une étude des besoins de synchronisation de modèles
multi-agents et différentes politiques pouvant répondre à ces besoins.

3 Impact des synchronisations

La synchronisation est un point clé pour une exécution efficace d’une simu-
lation multi-agents distribuée, du fait des nombreux échanges et dépendances
temporelles qu’elle induit. Son importance dépend néanmoins du modèle lui-
même: dans un modèle où les agents n’interagissent pas, aucune synchronisation
n’est nécessaire. Mais l’intérêt des modèles agents repose justement sur la ca-
pacité des agents à interagir [9]. Notre objectif est donc d’étudier l’impact de la
synchronisation sur les temps d’exécution et l’impact des politiques de synchro-
nisation plus relâchées. En effet, dans les systèmes multi-agents, l’observation
d’un phénomène s’effectue en général au niveau macroscopique et non micro-
scopique. De ce point de vue, il est possible que, dans les simulations composées
d’un grand nombre d’agents, des synchronisations erronées ou fausses se com-
pensent et limitent ainsi l’impact d’une synchronisation relâchée. Il est donc
intéressant de mettre en relation l’erreur possible avec le surcoût dû à la synchro-
nisation. Nous proposons dans la suite différentes politiques de synchronisation
et étudions leur impact.

3.1 Quand synchroniser?

Pour garantir l’accès à des données à jour et la cohérence des actions, en respec-
tant les règles du modèle, plusieurs étapes de synchronisation sont nécessaires
au cours d’une exécution distribuée, que la simulation soit en mode ghost ou
non ghost :

• à la fin de chaque pas de temps pour permettre le passage au pas de temps
suivant et garantir que tous les processus exécutent le même pas de temps.

• à la migration d’un agent d’un processus à un autre pour continuer à
exécuter ses comportements.

• à la mise à jour des zones de recouvrement pour garder la continuité des
champs de perception des agents lorsque l’environnement est distribué sur
plusieurs processus.
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Dans les modèles agents, il existe des modèles qui nécessitent que les agents
accèdent aux données de l’environnement ou d’autres agents uniquement en
lecture, d’autres en lecture et en écriture. La distribution de ces données sur
plusieurs processus suppose d’en gérer les accès à distance et de synchroniser
ces derniers pour garantir la cohérence de ces données.

Ainsi une exécution en mode ghost garantit uniquement la cohérence des
modèles sans écriture concurrente, c’est à dire où deux entités ne modifient
pas la même donnée au cours d’un pas de temps. En effet, utiliser le mode
ghost avec des écritures concurrentes peut conduire à une violation des règles
du modèle. Par exemple, dans un modèle proie-prédateur, plusieurs prédateurs
pourraient manger une même proie au cours d’un pas de temps puisque, suite à
une première attaque, la mort de la proie est enregistrée dans la copie de travail
et non dans la copie ghost qui est utilisée pour connâıtre l’état du système.
C’est seulement au changement de pas de temps que la mort de la proie sera
reportée dans la copie ghost. À noter que ceci est vrai, même si la simulation
n’est pas parallèle.

À l’opposé, dans le mode non ghost, les informations sont accessibles en
lecture et en écriture. Ceci nécessite alors des mécanismes de synchronisation
supplémentaires pour les données détenues par d’autres processus ou situées
dans les zones de recouvrement. Dans ce cas, les points de synchronisation
précédemment définis ne sont pas suffisants car ils ne permettent pas de gérer
les écritures dans les zones de recouvrement. L’accès aux données doit donc
être géré pour garantir qu’aucune incohérence (ou biais) n’est injectée dans la
simulation et que les informations sont à jour. Cela revient à introduire une
politique de synchronisation des données à l’intérieur du pas de temps.

Les besoins en lecture / écriture des modèles agents étant variables, la syn-
chronisation est à considérer au cas par cas. Pour illustrer ceci, nous analysons
différents types de modèles dans la suite.

3.2 Analyse de modèles

Pour évaluer l’impact de la synchronisation sur les résultats d’exécution des
simulations multi-agents, nous utilisons trois modèles agents (Proie-prédateur,
Virus et Flocking) qui nécessitent des niveaux de synchronisation différents pour
s’exécuter de manière cohérente.

Il est important de noter que le système modélisé et son implémentation
ont un impact important sur la synchronisation qui doit être mise en place
pour garantir la qualité des résultats obtenus par la simulation parallèle. Ceci
est, en particulier, vrai si le choix d’implémentation utilise un ghost ou non.
Ainsi, parmi les modèles suivants, nous avons choisi l’approche que nous avons
le plus souvent trouvée par rapport à ce choix d’implémentation. Changer
ce choix modifierait les contraintes de synchronisation et conduirait à d’autres
conclusions.

Le modèle Flocking [27] Le modèle Flocking simule le vol d’une nuée
d’oiseaux afin d’étudier le comportement collectif. Le modèle est composé d’un
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seul type d’agent, les oiseaux qui sont localisés dans l’espace et ont une zone de
perception réduite. Chaque agent oiseau a trois comportements:

1. la cohésion qui le pousse à se rapprocher des oiseaux proches

2. l’alignement qui le pousse à se déplacer dans la même direction que les
oiseaux voisins

3. la séparation qui le pousse à tourner pour éviter un oiseau qui est trop
près.

Ces comportements déterminent la nouvelle position de l’oiseau en fonction de la
position des oiseaux qui composent son voisinage. Le modèle possède plusieurs
paramètres: la taille de l’environnement, la distance maximale qu’un oiseau peut
parcourir par pas de temps, la durée d’un pas de temps, les taux de cohésion,
d’alignement et de séparation.

Ce modèle fonctionne en mode ghost. Les agents calculent leur déplacement
en fonction de la position des oiseaux voisins obtenue au pas de temps précédent.
La mise à jour des données des zones de recouvrement à chaque pas de temps
garantit que chaque agent oiseau dispose des informations correctes pour calculer
son déplacement. Il n’y a donc pas de problème de concurrence d’accès sur ces
données puisqu’elles sont accédées uniquement en lecture.

Le modèle Virus [28] Le modèle Virus permet de simuler la transmission
et la survie d’un virus dans une population [30]. Il est composé d’un seul type
d’agent: les personnes qui sont localisées sur une grille en deux dimensions et
n’ont qu’une connaissance partielle de l’environnement dans lequel ils évoluent.
Les agents ont cinq comportements:

1. le vieillissement, jusqu’à ce qu’ils meurent

2. le déplacement de manière aléatoire sur l’environnement

3. l’infection des personnes de leur voisinage

4. la récupération qui permet à un agent infecté de devenir immunisé avec
une certaine probabilité

5. la reproduction, pour les personnes non contaminées, qui renouvelle la
population.

Le modèle possède plusieurs paramètres: la capacité de transport du virus, l’âge
maximum, le taux de natalité, le taux de reproduction et le nombre de personnes
porteuses du virus à l’initialisation du modèle.

Le modèle Virus fonctionne en mode non ghost. Il est donc possible que,
dans un même pas de temps, un agent A, qui a été infecté, infecte à son tour
un agent B. Si les deux agents ne sont pas exécutés sur le même processus, il
est nécessaire de mettre à jour les données distantes. Pour finir, nous pouvons
remarquer qu’un agent ne change pas son état même s’il est infecté plusieurs
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fois. Cette propriété, que nous appelons écriture idempotente, fait que nous
n’avons pas à gérer de concurrence en écriture sur le changement de l’état de
l’agent, puisque même si deux agents infectent un même agent l’ordre des deux
exécutions n’a pas d’incidence sur le résultat final.

Le modèle Proie-prédateur [26] Le modèle Proie-prédateur explore la sta-
bilité des écosystèmes. Le modèle étudié possède trois types d’agents: les loups
(prédateurs), les moutons (proies/prédateurs) et l’herbe (proie). Les loups et
les moutons se déplacent au hasard dans l’environnement. L’herbe disparâıt
lorsqu’elle est mangée et repousse après un temps fixé. Chaque étape coûte
de l’énergie aux loups et aux moutons qui, lorsqu’ils n’en ont plus, meurent.
L’énergie peut-être reconstituée pour un loup en mangeant un mouton et pour
un mouton en mangeant de l’herbe. Pour permettre à la population de perdurer,
les loups et les moutons ont une probabilité de se reproduire à chaque pas de
temps. Tous les agents sont localisés sur une grille à deux dimensions et ne con-
naissent que leur zone de perception. A chaque pas de temps, les agents loups
et moutons exécutent les quatre comportements suivants dans l’ordre donné:

1. se déplacer aléatoirement sur l’environnement

2. se nourrir de proies si elles se situent dans leur champ de perception

3. mourir s’ils n’ont plus d’énergie

4. se reproduire.

Le modèle possède plusieurs paramètres: la taille de l’environnement, le
nombre de loups, le nombre de moutons, le taux de natalité, le taux de re-
production, le gain de vie lorsqu’un prédateur mange une proie et le temps de
croissance des agents herbe.

Le modèle Proie-prédateur fonctionne en mode non ghost. Dans la mesure
où les prédateurs mangent les proies, ils en changent l’état, ce qui engendre
une écriture dans les données de l’agent. Comme pour le modèle virus cela
oblige une synchronisation pendant le pas de temps pour prendre en compte la
modification mais il est, en plus, nécessaire de gérer les écritures concurrentes. A
cause du parallélisme, plusieurs prédateurs situés dans des processus différents
peuvent être tentés de manger une même proie dans la zone de recouvrement. Si
tous les prédateurs la mangent alors chacun bénéficiera d’un apport en énergie
et donc d’une augmentation de sa durée de vie, ce qui constitue une erreur par
rapport au modèle séquentiel. Il est donc nécessaire de synchroniser tous les
agents qui souhaiteraient manger une proie pour garantir qu’un seul prédateur
la mangera.

Synthèse L’analyse de ces modèles met en évidence différents besoins en ter-
mes de synchronisation. Ces besoins dépendent des caractéristiques du modèle
et nous permettent de définir trois types en fonction des interactions entre les
agents:
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1. les modèles en lecture (L), comme Flocking.

2. les modèles en écriture idempotente (EI), comme le modèle virus, où l’état
de l’agent ne change plus après une écriture.

3. les modèles en écriture concurrente (EC), comme le modèle proie-
prédateur.

Il est alors possible d’assister le modélisateur en lui fournissant le choix de la
politique de synchronisation qui permet l’implémentation correcte de son modèle
tout en limitant l’impact sur les performances. Ainsi nous définissons dans la
section suivante plusieurs politiques de synchronisation.

3.3 Politiques de synchronisation

Nous proposons ici plusieurs politiques de synchronisation, issues de l’analyse
des modèles précédents. Ces politiques sont définies et implémentées au sein
de modes de synchronisation. Nous souhaitons évaluer l’impact de l’utilisation
d’un mode de synchronisation sur les résultats et sur le temps d’exécution des
simulations, sachant que d’autres modes pourraient présenter un intérêt pour
d’autres modèles. A ces propositions nous ajoutons le cas “aucune synchronisa-
tion” qui sert de référence en ayant un coût de communication et synchronisation
minimal.

Le mode aucune synchronisation (NS) distribue la simulation en n por-
tions sans zone de recouvrement ni écritures distantes. Les agents peuvent se
déplacer d’un processus à un autre en ayant un champ de perception tronqué
lorsqu’ils sont proches des limites des processus.

Le mode overlapping zones (OLZ) ne gère que des zones de recouvrement,
où des agents d’autres processus sont copiés et mis à jours à la fin de chaque pas
de temps. Les écritures n’y sont pas reportées sur les originaux et sont écrasées
au pas de temps suivant par la mise à jour. Ce mode est l’implémentation
basique du mode ghost.

Le mode écritures asynchrones (EA) fait des écritures à distance sans
attendre une confirmation ou une valeur de retour. Elle est utilisée lorsqu’un
agent modifie une donnée de la zone de recouvrement et que cette écriture doit
être prise en compte dans le pas de temps courant mais que l’agent n’attend pas
de donnée en retour.

Le mode synchronisation stricte (SS) gère les zones de recouvrement
et les écritures concurrentes distantes pour garantir au maximum la repro-
duction du cas séquentiel. Chaque demande en écriture est bloquante jusqu’à
l’acquittement de sa prise en compte, ainsi la cohérence des données est garantie.
Elle est ce qu’il y a de plus strict en termes de synchronisation sans revenir à
une exécution séquentielle.

Contrairement à la synchronisation stricte, la synchronisation stricte
décalée (SSD) s’effectue de manière non-bloquante. Ainsi, lorsqu’un agent ef-
fectue une demande de synchronisation, il est mis en attente de réponse jusqu’à
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la fin du pas de temps afin que l’exécution des autres agents se poursuive, as-
surant ainsi un meilleur recouvrement calcul-communication.

Pour diriger le choix d’un mode de synchronisation pour un modèle, il est
nécessaire de connâıtre l’incidence qu’aura le choix de ce mode sur le modèle dis-
tribué. Les spécifications données précédemment permettent d’évaluer cette in-
cidence et les propriétés garanties. Pour connâıtre l’impact de chacun des modes
sur les performances de la simulation, nous présentons dans la suite les mesures
de performance réalisées en implémentant ces modes sur les modèles étudiés.
À noter que les modèles choisis sont tous spatialisés mais ces problématiques
s’appliquent de la même manière sur des modèles non-spatialisés puisqu’elles
sont liées aux échanges de données entre agents plutôt qu’à la position de ceux-
ci. Par exemple, dans les modèles de représentation de réseaux sociaux, la
distance entre deux agents peut être représentée par le nombre de sauts dans le
graphe des connexions et ainsi servir de base pour grouper les agents proches et
définir des zones de recouvrement sur lesquelles il faudrait appliquer les modes
de synchrnisation.

4 Étude expérimentale de l’impact des modes
de synchronisation

L’objectif de cette section est de mettre en évidence le lien entre les perfor-
mances d’exécution d’un modèle et le mode de synchronisation choisi en fonc-
tion de la variation d’extensibilité ou de montée en charge. Comme aucune des
plateformes vues précédemment n’offre de politique de synchronisation, nous les
avons d’abord implémentées dans des modèles pour les tester.

4.1 Modèles et modes de synchronisation

Nous utilisons les trois modèles vus précédemment, choisis pour leurs différents
besoins de synchronisation. La table 1 donne les modes de synchronisation
utilisées avec chacun des modèles.

Modèle Ghost Type Modes

Flocking Oui L NS — OLZ
Virus Non EI EA — OLZ — SSD
PP Non EC OLZ — SSD — SS

Table 1: Modes de synchronisation utilisés

Le modèle Flocking est un modèle L. Deux modes de synchronisation sont
donc testés: aucune synchronisation (NS) et utilisation de zones de recouvre-
ment (OLZ), car le modèle de nécessite pas d’écriture. Le modèle Virus est un
modèle EI. Les modes de synchronisation utilisés sont donc l’écriture asynchrone
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(EA), la synchronisation stricte décalée (SSD) et enfin les zones de recouvre-
ment (OLZ) afin d’évaluer l’impact de l’absence d’écritures distantes sur les
résultats du modèle. Le mode de synchronisation stricte (SS) n’est pas utilisé
puisque l’écriture idempotente ne change pas l’état d’un agent contaminé. Il
n’est donc pas nécessaire de gérer l’écriture concurrente sur son changement
d’état puisque l’ordre d’exécution de deux écritures n’a pas d’incidence sur le
résultat final. En revanche, le mode SSD qui implique un réordonnancement
de l’exécution des agents est susceptible d’avoir un impact sur les résultats. Le
modèle proie-prédateur est un modèle EC puisqu’une proie ne peut être mangée
qu’une seule fois. Les modes de synchronisation utilisés sont la synchronisa-
tion stricte décalée (SSD), la synchronisation stricte (SS) et enfin les zones de
recouvrement (OLZ) pour les mêmes raisons que pour le modèle Virus.

4.2 La plateforme de test

L’implémentation des modèles a été effectuée à partir d’une version
expérimentale, notée 0.1, de notre plateforme FPMAS [19], une plateforme
multi-agents parallèle qui repose sur la bibliothèque Zoltan pour gérer la dis-
tribution de la simulation. Dans FPMAS le modèle agent est représenté par
un graphe afin de tirer parti des algorithmes de partitionnement parallèles de
Zoltan. En réponse aux manques identifiés dans les plateformes existantes,
comme cela a été souligné en 2.3, FPMAS a été conçue pour facilement intro-
duire des mécanismes de synchronisation, et en particulier la synchronisation
stricte. Puisque les plateformes existantes ne proposent pas de tels modes de
synchronisation, il n’a pas été possible de mettre en place des courbes compar-
atives entre plateformes.

Une fois le modèle et ses modes de synchronisation implémentés, FPMAS
peut l’exécuter dans un environnement parallèle adapté au calcul haute perfor-
mance. La simulation est divisée enN portions, chacune associée à un processus.
Les performances dépendent alors du modèle exécuté. A noter que les modes
de synchronisation sont implémentés directement dans les modèles, ce qui peut
engendrer quelques différences de performances d’un modèle à l’autre. Pour
cette raison nous ne faisons par la suite que des comparaisons entre modes par
rapport à un modèle donné.

Pour exécuter les simulations, nous avons utilisé le Mésocentre de calcul
de Franche-Comté. Le cluster est constitué de nœuds bi-processeurs, avec des
processeurs Xeon E5 (8*2 cœurs) cadencés à 2.6 Ghz et 32 Go de mémoire
vive. Le cluster possède un total de 1280 cœurs gérés par le système de batch
SGE1. Les noeuds sont interconnectés par un réseau non bloquant QDR infini-
Band2 organisé en fat tree. Au cours des expériences conduites les variations
de performances se sont avérées très faibles, entre 0.1% et 0.6%. Chaque point
des courbes représente donc une moyenne de 10 exécutions avec 10 graines
différentes.

1https://en.wikipedia.org/wiki/Oracle_Grid_Engine
2https://fr.wikipedia.org/wiki/Bus_InfiniBand
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4.3 Impact de l’extensibilité

L’extensibilité des modèles est étudiée en fixant le nombre d’agents de la sim-
ulation et en faisant varier le nombre de processus sur lesquels elle s’exécute.
Nous mesurons l’impact de l’extensibilité à l’aide de deux métriques: le temps
d’exécution et le speed-up.

Pour chacun des modèles nous avons calculé un speed-up avec comme
référence le temps d’une exécution parallèle sur 16 cœurs car la taille des données
des modèles est trop grande pour un seul processus. Le speed-up sur p processus
est donné par T (pref )/T (p) où T (pref ) est le temps d’exécution parallèle sur le
nombre de processus de référence et T (p) est le temps d’exécution sur p proces-
sus. Pour les trois modèles l’extensibilité est bonne avec un speed-up de plus ou
moins 20 suivant les modèles, alors que le speed-up idéal est de 32. Les résultats
obtenus par les modes sans synchronisation, ou avec moins de synchronisation,
sont meilleurs que ceux ayant des synchronisations plus strictes.

Pour des raisons de reproductibilité, la même configuration initiale est
utilisée pour toutes les exécutions, seule la graine varie d’une exécution à une
autre.

Modèle Flocking L’environnement du modèle Flocking est basé sur un cube
de 1000 × 1000 × 1000 cellules. A l’initialisation, 100000 oiseaux sont répartis
de manière aléatoire dans l’espace. Les taux de cohésion, de séparation et
d’alignement sont fixés à 1 tandis que le taux d’aléa est lui fixé à 1.5. Ces
paramètres ont été choisis afin de ne pas favoriser l’un des trois critères com-
posant les comportements des oiseaux. Seul le taux d’aléa est supérieur aux
autres taux dans le but de générer des déplacements plus chaotiques et donc
de tester davantage la synchronisation. Chaque simulation est exécutée durant
2000 pas de temps.
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Figure 1: Temps d’exécution du modèle Flocking

La figure 1 donne les temps d’exécution du modèle Flocking pour les modes
de synchronisation NS et OLZ. La différence des temps d’exécution entre les
deux modes de synchronisation est d’environ 15% pour 16 cœurs, 26% pour 128
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cœurs, et 65% pour 512 cœurs. Lorsque le nombre de cœurs augmente, plus de
messages sont nécessaires pour mettre à jour les zones de recouvrement, ce qui
explique cette différence croissante.

Modèle Virus Le modèle Virus a été exécuté sur une grille de 1000×1000 cel-
lules qui représente l’environnement avec une capacité maximale de 500000 per-
sonnes. À l’initialisation 9600 personnes sont saines et 640 sont infectées par le
virus. Tous les agents sont positionnés de manière aléatoire sur l’environnement.
Le taux d’infection est fixé à 0.65 et le taux de reproduction est fixé à 0.2. Le
taux de récupération, c’est à dire le fait qu’une personne infectée devienne im-
munisée, est fixé à 0.5. Ces valeurs sont issues du modèle Virus de NetLogo.
Seule la taille de l’environnement et la capacité maximale ont été adaptées pour
obtenir un modèle de grande taille. Pour finir, chaque simulation est exécutée
durant 800 pas de temps.
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Figure 2: Temps d’exécution du modèle Virus

La figure 2 donne les temps d’exécution du modèle virus pour les synchroni-
sations OLZ, EA et SSD. Pour les courbes OLZ il n’y a pas de point pour 512
cœurs car nous n’avons pas eu assez de temps sur le calculateur pour réaliser
l’expérimentation. Les résultats obtenus avec le modèle Flocking se confirment
ici avec une différence de 27% pour 16 cœurs, seulement 15% pour 128 et 47%
pour 512 cœurs. Deux raisons expliquent ce surcoût: le traitement additionnel
en fin de pas de temps de la synchronisation SSD et l’augmentation du nom-
bre de messages nécessaires à la synchronisation due au plus grand nombre de
cœurs. Cette figure nous montre également le coût induit par la synchronisa-
tion des agents. Pour 16 cœurs, les temps d’exécution de la courbe OLZ sont
environ 8 fois meilleurs que la courbe SSD. Cette différence tend à décrôıtre
avec l’augmentation du nombre de cœurs, par exemple, pour 256 cœurs cette
différence n’est plus que de 6.6. Pour les courbes EA et SSD le ratio n’est que
de 1.27 pour 16 cœurs, et de 1.4 pour 512 cœurs. Il crôıt donc avec le nombre
de cœurs du fait du nombre plus important de messages.
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Modèle Proie-prédateur Le modèle Proie-prédateur (PP) utilisé pour les
expérimentations est basé sur un environnement grille de 400 × 400 où 25000
moutons et 17000 loups sont initialement positionnés de manière aléatoire. Le
modèle des comportements et l’initialisation de l’énergie des agents loups et
moutons est issue du modèle NetLogo. L’énergie gagnée par un mouton lorsqu’il
mange de l’herbe est fixée à 5 et à 20 lorsqu’un loup mange un mouton. En ce
qui concerne les taux de reproduction, ils sont fixés à 0.5 pour les moutons et à
0.4 pour les loups. Le temps de croissance de l’herbe est de 8. Les simulations
sont exécutées durant 2000 pas de temps.
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Figure 3: Temps d’exécution du modèle PP

La figure 3 présente les temps d’exécution du modèle PP pour les modes
de synchronisation OLZ, SSD et SS. Pour la même raison que précédemment,
aucun calcul n’a été effectué sur 512 cœurs avec OLZ. Les points de 16 à 64 cœurs
permettent cependant de mettre en évidence, comme pour le modèle Virus, le
coût important à payer pour avoir des modes de synchronisations strictes. La
courbe SSD montre que la relaxation de la synchronisation de ce mode à la
fin du pas de temps permet un gain de temps d’exécution par rapport à la
synchronisation stricte. Ce gain est dû au fait que le traitement des agents n’est
plus bloqué en attente de la réponse à une écriture concurrente: on a donc un
meilleur recouvrement calcul-communication.

Sur les modèles étudiés, le calcul des speed-up montre une bonne extensibilité
et le niveau de synchronisation choisi pour implémenter le modèle ne semble
pas induire d’impact. Les simulations avec un grand nombre de cœurs profitent
donc bien du parallélisme, ce qui confirme que les systèmes multi-agents peuvent
bénéficier d’une parallélisation. Néanmoins, les modes de synchronisation ont
un coût très important (jusqu’à un facteur 8), qui est dû aux communications
engendrées. En effet, dans les modèles étudiés, les agents ont un comportement
relativement simple qui s’exécute beaucoup plus rapidement qu’une communi-
cation même si le réseau utilisé pour les expériences est à très faible latence et
haut débit.
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4.4 Impact de la montée en charge

La montée en charge est réalisée en fixant le nombre de processus et en faisant
varier le nombre d’agents. Le modèle Proie-prédateur n’est pas présenté dans
cette section car il est très difficile d’y faire varier le nombre d’agents puisque
la population s’auto-équilibre.

Modèle Flocking Le jeu de valeurs utilisé pour évaluer la montée en charge
du modèle Flocking est le même que précédemment, à la différence que le nombre
d’agents oiseaux qui composent la simulation varie de 100000 à 1000000.
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Figure 4: Montée en charge du modèle Flocking

La figure 4 présente l’impact de la montée en charge sur 512 cœurs. Les
modes NS et OLZ supportent bien la charge jusqu’à 500000 agents. Au
delà de 500000 agents, les courbes croissent plus rapidement. Sans surprise,
la version sans synchronisation supporte mieux la charge que la version avec
zone de recouvrement, qui consomme environ un tiers de performance en plus.
L’accroissement de la charge à partir de 500000 agents s’explique par un manque
d’optimisation lors de la recherche du voisinage des agents. Au lieu de mettre
à jour uniquement les agents qui arrivent ou partent du voisinage, un parcours
de l’environnement est effectué à chaque pas de temps pour établir le champ de
perception de chaque agent.

Modèle Virus Les paramètres utilisés pour la montée en charge sont les
mêmes que précédemment.

La figure 5 montre l’impact de la montée en charge du modèle Virus de
100000 à 700000 agents et 800 pas de temps. Seulement 64 cœurs ont été
utilisés pour cette courbe car il n’a pas été possible d’obtenir à nouveau autant
de ressources de calcul (512 cœurs) sur le cluster partagé.

La courbe OLZ supporte mieux la montée en charge puisqu’elle ne gère pas
les écritures. Pour les autres, on constate que EA supporte mieux la charge
que SSD. La courbe SSD reste linéaire, alors que la courbe EA crôıt très peu
de 500000 à 700000 agents. Ceci est dû au surcoût lié à l’accumulation des
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Figure 5: Montée en charge du modèle Virus

synchronisations en fin de pas de temps. Le ratio de performance obtenu entre
100k et 700k pour la courbe EA est de 1.9, 1.73 pour SSD et 7.5 pour OLZ.

Les résultats sur la montée en charge confirment que, quelle que soit le
mode de synchronisation utilisé, l’exécution distribuée est bénéfique pour les
modèles multi-agents. Les résultats obtenus avec le mode de synchronisation
OLZ montrent que ce mode est plus efficace que les modes plus contraints.
Nous avons donc étudié l’impact des modes de synchronisation sur les résultats
des exécutions, ce que nous présentons dans la suite.

4.5 Impact sur les résultats

Pour étudier l’impact des différents modes, nous observons deux résultats: le
résultat de la simulation lui-même et le nombre d’interactions incohérentes.
Le résultat d’une simulation est ce qui est attendu par le modélisateur. Nous
étudions l’impact d’une exécution plus ou moins synchronisée sur les résultats
de l’exécution. Par ailleurs, dans les cas où les écritures dans les zones de
recouvrement sont gérées, c’est à dire avec les modes EA, SS et SSD, des inter-
actions peuvent mettre en évidence une incohérence entre l’information locale
et l’information distante. Par exemple pour le modèle Proie-prédateur, une in-
cohérence peut apparâıtre si un mouton est vivant dans la représentation locale
à un processsus de la zone recouvrement alors qu’il est mort dans le processus
distant qui possède le mouton. En conséquence, prendre seulement en compte
l’état local de la zone de recouvrement mène à une action incohérente si un
loup du premier processus mange ce mouton. De même, pour le modèle Virus,
un agent essaie d’en infecter un autre seulement si ce dernier est sain. Ainsi,
pour analyser l’impact des interactions sur les résultats des simulations nous
comptabilisons le nombre total de demandes de synchronisation, les synchroni-
sations pour lesquelles l’information était cohérente (notées CO) et celles pour
lesquelles l’information était incohérente (notées NCO). Cette analyse n’inclut
pas le modèle Flocking car elle ne s’applique pas à un modèle en lecture.

À noter que nous souhaitons ici mettre en évidence l’impact des modes de
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synchronisation sur les résultats des exécutions. Or, que ce soit dans le cas
du modèle virus ou du modèle proie-prédateur, faire la moyenne des résultats
de plusieurs exécutions pourrait conduire à un lissage des erreurs, une erreur
pouvant en compenser une autre. Nous avons donc fait le choix ici, pour la mise
en évidence de la problématique, de comparer des exécutions uniques (avec
la même graine) pour chacun des modes de synchronisation. Ces expériences
permettent donc de mettre en évidence que la problématique existe: les résultats
diffèrent entre deux exécutions avec des modes de synchronisation différents. Il
faudrait plus d’expériences, et cette fois un calcul de moyenne ou d’indicateurs
statistiques pour la quantifier.

Modèle Virus La figure 6 présente le détail des demandes de synchronisation
pour les synchronisations EA et SSD.
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Figure 6: Détail des synchronisations du modèle Virus

Pour les deux modes de synchronisation le nombre total de demandes de
synchronisation crôıt de manière linéaire avec le nombre de cœurs car, lorsque
le nombre de cœurs augmente la simulation est divisée en plus de processus. Il
y a donc plus de zones de recouvrement et plus d’interactions potentielles. Le
nombre d’interactions NCO est très faible pour EA. Il crôıt d’environ 10% pour
SSD à cause des synchronisations gérées en fin de pas de temps. Les agents
qui effectuent une demande de synchronisation sont suspendus et exécutés à la
réception de la réponse, en fin de pas de temps. De ce fait, certaines interactions
qui étaient potentiellement CO au moment de la demande de synchronisation
peuvent devenir NCO si les agents concernés n’avaient pas encore été exécutés.
Il faut donc poser la question de savoir quel est l’impact de ces interactions NCO
sur les résultats.

La figure 7 présente les résultats de l’exécution sur 128 cœurs. Les résultats
pour SSD (figure 7(a)) et EA (7(b)) sont quasi identiques. Les quelques vari-
ations s’expliquent par les interactions NCO traitées en fin de pas temps par
le mode SSD. En revanche, les résultats de OLZ (figure 7(c)) présentent de
nombreuses différences, malgré une tendance identique.
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Figure 7: Résultats d’une exécution du modèle Virus

Modèle Proie-prédateur La figure 8 présente le détail des synchronisations
lors de l’exécution du modèle PP. Comme pour le modèle Virus, le nombre de
demandes de synchronisation crôıt de manière linéaire avec le nombre de cœurs.
Le nombre d’appels NCO reste plus faible pour le mode SS que pour le mode
SSD.
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Figure 8: Détail des synchronisations du modèle PP

La figure 9 présente les résultats sur 128 cœurs des modes SSD, SS et OLZ.
Le modèle PP est un modèle très sensible: la modification d’un paramètre peut
conduire à une instabilité qui se traduit par la mort d’une des espèces. Le
changement de mode induit ainsi des différences de résultats entre les courbes
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SSD (figure 9(a)) et les courbes SS (figure 9(c)). La figure 9(b) qui représente
l’exécution sans synchronisation montre des résultats proches du mode SSD
(figure 9(a)). Nous retrouvons tout de même des courbes cycliques qui tendent
à s’équilibrer.
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Figure 9: Résultats d’une exécution du modèle PP

Au vu des courbes, on peut s’interroger sur ce qu’il est important d’observer
dans les résultats du modèle. Si nous regardons plus en détails ces figures, nous
remarquons que le nombre maximal de moutons diffère, environ 60000 pour OLZ
et SSD et environ 80000 pour SS. On remarque également que sur la figure 9(c)
(synchronisation SS ) la phase est régulière avec un décalage de l’ordre de π/2.
En revanche, sur les figures 9(b) et 9(a), un décalage de phase s’effectue au cours
du temps. Les courbes OLZ et SSD sont semblables et donnent des résultats
erronés.

Les résultats présentés ici ont été obtenus grâce à la version expérimentale de
FPMAS (version 0.1) destinée à évaluer l’utilisation d’une structure à base de
graphes sur la distribution des modèles. Cette version expérimentale n’offrant
pas de support natif pour la synchronisation, les modes de synchronisation
ont du être implémentés directement dans le code de chaque modèle pour
être évalués. Or les résultats mettent en évidence la nécessité de traiter avec
précaution les problématiques de synchronisation, inhérentes aux interactions
nécessaires à l’exécution du modèle. Nous avons donc défini une interface
générique des modes de synchronisation, rendant possible l’implémentation de
divers modes dans la plateforme FPMAS ainsi que leur application à n’importe
quel modèle. Cette interface est présentée dans la section suivante.
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5 Interface de synchronisation générique

Dans la version 1.1 de la plateforme FPMAS, l’idée est d’offrir au modélisateur,
de manière native, les outils nécessaires à une distribution implicite des inter-
actions pour faciliter l’implémentation en donnant un résultat exact.

Dans cette section nous présentons donc une définition formelle et générique
d’un mode de synchronisation dans le contexte de la simulation distribuée de
systèmes multi-agents, ainsi que des implémentations possibles afin, notamment,
de généraliser les modes de synchronisation décrit dans la Section 3 à n’importe
quel SMA. Certains modes sont actuellement implémentés dans la version 1.1
de FPMAS, disponible sur GitHub3.

5.1 Représentation à base de graphes des SMA

Comme pour la version expérimentale, FPMAS 1.1 est basé sur le concept de
graphes distribués [1] pour représenter et simuler des SMA. Un des intérêts
principaux d’une telle représentation est la possibilité de distribuer automa-
tiquement et de manière optimisée les simulations grâce à des algorithmes
de partitionnement de graphe, ce qui a déjà été validé dans nos travaux
précédents [1, 19]. Mais la structure de graphe présente également l’avantage
d’expliciter les interactions, comme dépendances de données, entre les agents:
on suppose que deux agents dans la simulation vont être amenés à interagir,
c’est à dire à échanger des données, si et seulement si il existe au moins un lien
entre les nœuds du graphe représentant ces agents. Une telle restriction permet
de faciliter la gestion des problèmes de synchronisation, car les communications
auront naturellement lieu de manière distribuée, en se limitant au voisinage local
de chaque nœud.

La structure de graphe distribué est cependant une structure de données
relativement bas niveau facilitant la distribution et la synchronisation de la
simulation, qui ne vise pas à limiter les modèles simulés. Par exemple, dans
FPMAS, les modèles à base de grille sont eux mêmes définis à partir d’un graphe.
Dans ce contexte, une grille peut être définie comme un ensemble de cellules
connectées entre elles afin d’exprimer les dépendances spatiales. La position
des agents, eux-mêmes représentés par des nœuds, peut être représentée par un
lien entre l’agent et une cellule. Un algorithme distribué permet de construire
dynamiquement les liens entre un agent et ceux localisés dans son champ de
perception, afin de lui permettre d’interagir avec eux.

FPMAS fournit également des fonctionnalités permettant de construire au-
tomatiquement le graphe représentant une grille à partir de sa forme et de
la position des agents spécifiées par l’utilisateur. La structure sous-jacente de
graphe est ainsi rendue invisible, tout en permettant l’utilisation de nos modes
de synchronisation sur un modèle à base de grille.

Les modes de synchronisation peuvent donc être définis au niveau du graphe
le plus général: par conception, ils seront alors applicables sur tout modèle, qu’il

3https://github.com/FPMAS/FPMAS
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Figure 10: Exemple de distribution du graphe.

soit basé sur une grille ou un graphe arbitraire.
À noter que RepastHPC permet également de définir des dépendances entre

agents grâce à un graphe, afin de mettre à jour automatiquement les copies des
dépendances exécutées sur d’autres processus. En revanche, seule la synchroni-
sation en mode ghost est possible, et RepastHPC ne fournit pas directement de
fonctionnalité de distribution de la simulation à partir de ce graphe, même s’il
est possible de s’interfacer relativement facilement avec les librairies de parti-
tionnement de graphe existantes [6].

5.2 Distribution du graphe

Nous considérons dans cette section un modèle arbitraire déjà représenté par
un graphe: les agents en sont les nœuds et les arcs les interactions possibles.
Le partitionnement de ce graphe associe un ensemble de nœuds à chaque pro-
cessus, appelés les nœuds locaux par rapport au processus, qui est alors chargé
d’exécuter les agents représentés par ces nœuds. Afin d’assurer la continuité du
modèle malgré la distribution, les interactions des agents locaux avec des agents
distants sont permises par l’ajout de nœuds distants dans le graphe local et
d’arcs reliant les nœuds locaux aux nœuds distants.

Un exemple de distribution du graphe sur 4 processus est présenté figure 10.
Une couleur est associé à chaque processus. Les nœuds pleins sont locaux, les
pointillés sont distants.

L’intérêt d’une telle structure est que le voisinage de chaque nœud local est
préservé, quel que soit la distribution du modèle. On peut ainsi se permettre de
définir une interface générique pour l’accès aux données de chaque noeud, qu’il
soit local ou distant, afin d’abstraire cet aspect de la distribution à l’utilisateur.

Le concept de nœuds distants est très similaire aux copies des agents
réalisées par RepastHPC. D’autre part, pour un modèle à base de grille, on
peut légitimement considérer les cellules distantes dans le graphe comme une
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10..*

1 0..*

DistributedGraph

+ synchronize(): void
+ distribute(p: Partition): void
+ balance(lb: LoadBalancing&): void

+ buildNode(data: T&): Node*
+ removeNode(node: Node*): void
+ link(src: Node*, tgt: Node*): Edge*
+ unlink(edge: Edge*): void

DistributedNode

+ getWeight(): float

+ getOutgoingEdges():
List<Edge*>

+ getIncomingEdges():
List<Edge*>

+ state(): LocationState
+ location(): ProcessRank

DistributedEdge

+ getWeight(): float

+ getSourceNode(): Node*
+ getTargetNode(): Node*

+ state(): LocationState

�enum�
LocationState

LOCAL
DISTANT�interface�

SynchronizationMode

�interface�
DataSync

+ synchronize(): void

�interface�
Mutex

+ read(): const T&
+ releaseRead(): void
+ acquire(): T&
+ releaseAcquire(): void

�interface�
SyncLinker

+ synchronize(): void
+ link(src: Node*, tgt: Node*): Edge*
+ unlink(edge: Edge*): void
+ removeNode(node: Node*): void

Figure 11: Diagramme de classe associé au graphe distribué

généralisation du concept de “zones de recouvrement” utilisées par d’autres
plateformes de simulation distribuée.

5.3 Définition de l’interface de synchronisation

Une fois la simulation distribuée, chaque processus est donc responsable d’un
ensemble de nœuds locaux et distants. Seuls les agents associés à des nœuds
locaux sont exécutés, mais chacun d’eux peut interagir avec les nœuds locaux
et distants auxquels ils sont connectés. FPMAS définit une interface générique
pour gérer l’accès à n’importe quel nœud, qu’il soit local ou distant, de sorte à
abstraire complètement la distribution du point de vue de l’implémentation du
modèle. La gestion de l’accès aux données est alors assurée implicitement par
le mode de synchronisation choisi pour exécuter le modèle.

On définit ainsi l’interface SynchronizationMode, elle-même constituée de
3 interfaces:

• Mutex: gère l’accès aux données des nœuds.

• DataSync: gère la synchronisation des données des nœuds en fin de pas
de temps.

• SyncLinker: permet de dynamiquement créer ou supprimer des nœuds et
des liens dans le graphe.

Le diagramme de classes associé au graphe distribué et aux modes de syn-
chronisation est présenté figure 11.

L’interface Mutex, pour Mutual Exclusion, définit notamment les méthodes
read() et acquire() qui permettent d’accéder aux données de chaque nœud
respectivement en lecture ou écriture de manière concurrente, indépendamment
du processus sur lequel le nœud est effectivement localisé. Les méthodes
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releaseRead() et releaseAcquire() doivent être appelées lorsque le travail
sur le nœud est terminé.

L’interface DataSync ne définit qu’une seule méthode: synchronize(). Le
comportement de cette méthode est complètement déterminé par le mode de
synchronisation implémenté. La seule garantie associée est l’appel automatique
de cette méthode par FPMAS à la fin de chaque pas de temps par tous les
processus.

Il est important de noter qu’aucune contrainte n’est imposée à pro-
pos de la synchronisation des données des noeuds au niveau de l’interface
SynchronizationMode. Par exemple, il n’est pas garanti à ce niveau que l’appel
des méthodes Mutex::acquire() et DataSync::synchronize() permette ef-
fectivement d’effectuer des écritures sur des données distantes. Comme énoncé
dans la Section 3, ce n’est effectivement pas le cas pour la synchronisationOver-
lapping Zones, contrairement à la Synchronisation Stricte. Pourtant, les
appels aux méthodes génériques de l’interface SynchronizationMode restent les
mêmes, quel que soit le mode de synchronisation utilisé.

L’interface SyncLinker permet la gestion de la structure de graphe, ce
qui implique la création de liens (link()), la suppression de liens (unlink())
ou la suppression de nœuds (removeNode()). Comme ces opérations peu-
vent s’appliquer à des noeuds distants, une synchronisation des processus est
nécessaire pour les prendre en compte. Une méthode synchronize() est ainsi
définie, et son appel automatique est également garanti à la fin de chaque
pas de temps par tous les processus. Le comportement de chaque méthode
dépend du mode de synchronisation implémenté. En revanche, il doit être
garanti que chaque opération soit prise en compte au plus tard au moment
du retour de la méthode synchronize(). L’implémentation de l’interface
SynchronizationMode doit donc prendre en charge la création/suppression dy-
namique de liens et de nœuds, y compris dans le cas ou au plus un nœud dis-
tant est impliqué dans l’opération. De telles fonctionnalités sont effectivement
nécessaires pour maintenir un état cohérent du graphe distribué au cours de la
simulation.

L’implémentation d’un modèle avec FPMAS se base ainsi sur des appels à ces
méthodes abstraites, indépendamment de la distribution du modèle ou du mode
de synchronisation actuel. Cependant, le comportement réel de chaque méthode
est déterminé au moment de l’exécution, en fonction du mode de synchronisation
choisi. Comme démontré dans la Section 4, les résultats du modèle peuvent
alors varier. La section suivante présente des exemples d’implémentation des
différents composants de l’interface SynchronizationMode.

5.4 Spécification des modes de synchronisation

L’objectif de cette section est de présenter différentes implémentations pos-
sibles de l’interface SynchronizationMode à partir des modes de synchroni-
sation définis à la Section 3. Cette liste n’est pas exhaustive, et plusieurs
implémentations peuvent exister dans la même librairie: il suffit de changer
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un paramètre dans la définition du modèle pour sélectionner le mode de syn-
chronisation utilisé pour l’exécuter.

Pour le moment, seuls les modes Synchronisation Stricte et Overlap-
ping Zones ont été implémentés dans FPMAS, avec les classes respectives
HardSyncMode et GhostMode. En revanche, il est déjà possible d’élaborer une
spécification permettant d’implémenter les interfaces précédentes pour les autres
modes.

GhostMode Dans ce mode de synchronisation, les données distantes sont
seulement mises à jour à la fin de chaque pas de temps. Les écritures effectuées
sur les données distantes ne sont pas reportées au processus d’origine, et sont
écrasées en fin de pas de temps.

• Mutex: les méthodes read() et acquire() renvoient simplement une
référence vers la donnée locale. L’état des données locales correspond aux
données importées à la fin du pas de temps précédent, avec les éventuelles
modifications effectuées localement au cours du pas de temps. Pour les
données locales, les modifications sont bien prises en compte. En revanche,
pour les données distantes, les modifications sont écrasées à la fin du pas
de temps. Les méthodes releaseRead() et releaseAcquire() n’ont pas
d’effet, car il n’est pas nécessaire de gérer la concurrence d’accès dans ce
mode: en effet, les écritures distantes ne sont pas permises, et les agents
sont actuellement exécutés de manière séquentielle sur chaque processus.

• DataSync: la méthode synchronize() met à jour tous les nœuds distants
en important les données correspondantes sur les processus d’origine.

• SyncLinker: les opérations effectuées sur le graphe sont stockées pen-
dant le pas de temps, et sont exportées lors de l’appel à la méthode
synchronize(). Ce mode nécessite donc d’attendre la prochaine syn-
chronisation avant de pouvoir utiliser les liens créés au cours du pas de
temps, ou que les suppressions de liens ou de nœuds soient effectives, ce qui
correspond bien aux garanties minimales imposées au niveau de l’interface
SynchronizationMode.

HardSyncMode Les données des nœuds distants sont systématiquement im-
portées depuis le processus d’origine de manière bloquante, en effectuant des
requêtes, avec une gestion de la concurrence en lecture et en écriture, ce qui per-
met de reporter les écritures sur les données distantes au processus d’origine.
Un algorithme de terminaison [8] place les processus en attente en fin de pas
de temps jusqu’à ce que toutes les requêtes de tous les processus aient été
traitées. En effet, dans un tel schéma d’exécution, même si un processus a a
terminé l’exécution de ses agents, il se peut qu’un autre processus b ait besoin
d’une donnée du processus a afin qu’il puisse lui même terminer l’exécution de
ses agents. L’algorithme de terminaison permet aux processus ayant terminé
l’exécution de leurs agents de répondre aux requêtes des autres jusqu’à ce que
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plus aucun processus n’ait de requêtes à effectuer et qu’ils aient tous terminé
l’exécution de leurs agents.

• Mutex: les méthodes read() et acquire() envoient une requête au pro-
cessus d’origine pour obtenir les données à jour. Les appels bloquent
jusqu’à ce que les données soient disponibles: plusieurs processus peuvent
lire simultanément la même donnée, mais un accès exclusif doit être as-
suré pour acquérir les données afin de pouvoir effectuer des écritures. La
méthode releaseRead() indique simplement au processus d’origine que le
processus local a terminé d’effectuer sa lecture, pour notifier que la donnée
est à nouveau disponible pour d’autres processus. Le fonctionnement de
releaseAcquire() est similaire, mais il est en plus nécessaire d’envoyer
les modifications locales au processus d’origine. Le mécanisme de requêtes
s’applique également dans le cas de l’accès à une donnée locale: en effet,
le processus local doit attendre que ses propres données soit disponibles
pour gérer la concurrence avec les autres processus.

• DataSync: la méthode synchronize() applique un algorithme de ter-
minaison pour continuer à répondre aux requêtes des autres processus,
jusqu’à ce que toutes les requêtes aient été traitées.

• SyncLinker: les modifications du graphes sont effectuées à la volée, de
manière bloquante, au sein du pas de temps. La méthode synchronize()
exécute également un algorithme de terminaison pour traiter toutes les
requêtes avant de passer au pas de temps suivant.

Écriture Asynchrone Ce mode n’est pas implémenté dans la version 1.1 de
FPMAS, la spécification fournie ici est donc théorique.

Dans ce mode de synchronisation, les écritures sont effectuées de manière
non bloquante, sans gestion de la concurrence. Les données distantes accédées
en lecture ou en écriture ne sont pas importées depuis les processus d’origine au
cours du pas de temps. Les modifications appliquées localement à ces données
sont tout de même renvoyées au processus d’origine au sein du pas de temps,
afin de prendre en compte les écritures. En revanche, chaque écriture écrase
systématiquement les précédentes au cours du pas de temps. Les données
sont également mises à jour à la fin de chaque pas de temps, comme avec le
GhostMode, afin d’assurer une actualisation partielle des données. Ce mode
permet de prendre en compte des écritures distantes, avec un impact moindre
sur les performances comparé à HardSyncMode, car les écritures sont réalisées
de manière non bloquante, sans gestion de la concurrence: son utilisation est
donc plus limitée que HardSyncMode, car des incohérences peuvent être induites
pour certains modèles.

• Mutex: Les méthodes read() et acquire() renvoient une référence vers la
donnée locale, comme pour GhostMode. La méthode releaseRead() n’a
pas d’effet particulier, mais releaseAcquire() envoie de manière non-
bloquante les modifications locales au processus d’origine.
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• DataSync: La méthode synchronize() applique un algorithme de termi-
naison pour s’assurer que toutes les écritures distantes aient été reçues. Les
données distantes sont également mises à jour à la manière de GhostMode.

• SyncLinker: implémentation identique à celle du GhostMode.

Le modèle Virus est un bon exemple d’utilisation possible de ce mode. A
chaque pas de temps, les agents vérifient l’état des agents à proximité, infectés
ou sains. Si l’agent est déjà infecté, il est inutile de l’infecter à nouveau, sinon
on l’infecte, ce qui représente ici une écriture. Dans le cas où l’agent voisin est
distant :

• Si aucune autre écriture n’a été effectuée sur le processus local, on accède
à l’état de l’agent au pas de temps précédent. S’il était déjà infecté, il est
inutile de chercher à l’infecter à nouveau et aucune communication n’est
effectuée. S’il ne l’était pas, l’agent est infecté en effectuant une écriture
non bloquante, sans aller vérifier l’état réel de l’agent sur le processus
d’origine: peut-être a-t-il déjà été infecté au sein du pas de temps depuis
un autre processus, mais dans ce cas l’écriture actuelle ne modifie pas
son état final. De plus, l’infection est prise en compte au plus tôt sur le
processus d’origine, ce qui pourra éviter à d’autres agents sur ce processus
d’effectuer inutilement des écritures.

• Si une écriture a déjà été effectuée sur le processus actuel, l’état de la
donnée indique que l’agent a été infecté par un autre agent local et il est
donc inutile d’effectuer l’écriture à nouveau.

Dans tous les cas, l’agent distant est bien infecté, mais les communications sont
minimisées par rapport à HardSyncMode, qui aurait produit le même état final.

Synchronisation Stricte Décalée Cette synchronisation est similaire à
HardSyncMode, sauf que cette fois les requêtes doivent être réalisées de manière
non bloquante: on peut poursuivre l’exécution des autres agents pendant que
l’un d’eux est en attente pour accéder à des données distantes. Les agents en
attente sont alors exécutés à la fin du pas de temps. Ce mode ne peut être
implémenté dans la version actuelle de FPMAS, car il nécessite de modifier
le schéma d’exécution des agents, ce qui n’est pas possible depuis l’interface
SynchronizationMode. En effet, les agents sont actuellement exécutés de
manière séquentielle par le composant Runtime, qui détermine l’ordre (aléatoire)
d’exécution des agents en début de pas de temps.

5.5 Synthèse

L’intérêt de l’approche proposée ici est de décorréler l’implémentation du modèle
de l’implémentation distribuée des interactions et de leur sémantique, le code
du modèle ne contenant que les fonctions génériques de synchronisation. Le
concepteur de modèle peut alors se reposer sur FPMAS pour l’implémentation
du mode de synchronisation adapté.
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FPMAS permet, de plus, d’implémenter de nombreux modes de synchroni-
sation, avec des comportements très différents notamment en termes de gestion
des écritures, à partir de l’interface générique SynchronizationMode. On peut
d’ailleurs imaginer des nuances aux modes précédents, par exemple en combi-
nant la synchronisation des données de HardSyncMode avec la gestion du graphe
de GhostMode. L’Écriture Asynchrone est également sujette à certaines vari-
antes: on pourrait par exemple ne pas mettre à jour les données en fin de pas
de temps, ou stocker les écritures pour les exporter seulement à l’appel de la
méthode synchronize().

Dans tous les cas, comme l’implémentation des modèles avec FPMAS se base
sur des appels aux méthodes génériques de l’interface SynchronizationMode, il
est trivial de tester chaque mode de synchronisation sur un modèle donné, afin
de facilement évaluer l’impact sur les résultats ou les performances.

6 Conclusion

Notre étude sur l’impact des politiques de synchronisation vise à sensibiliser la
communauté agent, et plus particulièrement les modélisateurs, aux problèmes
liés aux dépendances de données lors de la parallélisation d’un modèle. Nous
évaluons pour cela différents modes de synchronisation en lien avec différents
modèles et nous mettons en évidence que, suivant le modèle à implémenter,
le niveau de synchronisation a un impact sur les performances d’exécution et
les résultats. A travers nos expérimentations, nous quantifions le coût de la
synchronisation sur les performances de la simulation suivant les modèles et
nous montrons son impact sur les résultats. La synchronisation est, de fait,
dépendante des comportements des agents: c’est au modélisateur de prévoir
l’exécution du modèle et donc d’adapter la modélisation pour prendre en compte
le coût et l’impact de la synchronisation lors de la conception d’un modèle
parallèle.

Nos travaux les plus récents ont permis de définir formellement une inter-
face générique de synchronisation, qui permet d’implémenter divers modes de
synchronisation et de les appliquer sur n’importe quel modèle multi-agents. La
plateforme FPMAS permet d’abstraire ces problèmes de synchronisation et de
distribution pour l’utilisateur, afin de simplifier au maximum la parallélisation
des modèles. Comme il suffit de changer un paramètre pour appliquer n’importe
quel mode de synchronisation à tous les modèles, il est très simple de comparer
les performances et l’impact sur les résultats même pour un utilisateur avec des
connaissances limitées en parallélisme.

La suite nos travaux s’orientent vers une analyse de nombreux modèles en
vue d’identifier les besoins en synchronisation de différents types de modèles. De
nouveau modes seront éventuellement définis et implémentés dans la plateforme
FPMAS, afin d’assurer une distribution simple et efficace pour une large variété
de modèles.

Les calculs présentés dans cet article ont été effectués sur le calculateur du
Mésocentre de calcul de Franche-Comté
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