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Abstract
This study presents a cost-optimal sizing and energy management approach for a grid-integrated
hybrid renewable energy system—comprising solar PV, wind turbines, and hydrogen production
via electrolyzers with compressed storage—to meet both the electricity demand of Dijon, France,
and hydrogen demand for mobility. To better plan the refueling of the hydrogen bus fleet, two
case scenarios are analyzed: (i) refueling is flexibly scheduled over 24 hours and (ii) refueling
is optimally scheduled but restricted to 3h–7h, both for cost optimization. A Mixed-Integer
Linear Programming (MILP) model is formulated and resolved in the developed tool KLMS-
OPT using the Pyomo modeling interface in Python with the objective of minimizing total
annual cost. In the flexible scenario compared to the restricted scenario, the optimal configuration
reduces the number of electrolyzers and refueling points from three to one. The hydrogen storage
capacity remains below 100 kg, avoiding the need for legal authorization required in France for
larger installations. This configuration yields a 0.35% reduction in annual cost. Ultimately, the
formulated problem in KLMS-OPT demonstrates strong computational efficiency, solving all
scenarios in less than 20 minutes.

1. Introduction
Alongside the heat and electricity sectors, transportation remains a major contributor to global greenhouse gas (GHG)
emissions [1]. The growing population and rising mobility demands, particularly in urban areas, underscore the urgent
need for sustainable alternatives. The transition toward low-carbon transport can be viewed from two perspectives:
first, as a change in mobility behavior, where communities adopt reduced travel, increased use of public transportation,
and car-sharing; and second, as an energy transition within the transport sector, shifting from fossil fuels to renewable
energy sources. Battery electric vehicles (BEVs), fuel cell electric vehicles (FCEVs), and hybrid vehicles (HVs) are
among the key technologies being adopted [2]. Among these, hydrogen-powered FCEVs represent one of the most
promising options. Although the technology has gained attention, the development of hydrogen refueling stations
(HRSs) and supporting gas networks remains in its early stages [3], raising critical questions about achieving a cost-
effective transition to decarbonized hydrogen mobility in urban areas.
To effectively mitigate GHG emissions, priority should be given to producing green or low-carbon hydrogen (H2)
via electrolysis powered by renewable energy sources. As the adoption of FCEVs expands, the resulting increase in
H2 demand will require additional onsite production and distribution infrastructure, including HRSs. A typical HRS
comprises several components, including storage tanks, compressors, and dispensers [4]. Compressors increase the
pressure of H2 gas to 350–1000 bar, depending on storage and dispensing requirements [5], while pre-cooling systems
enable safe and efficient high-pressure dispensing. The deployment of refueling stations also requires selecting optimal
locations that maximize vehicle coverage while remaining economically viable [6]. As of 2020, approximately 550
HRSs were operational worldwide: 50% in Asia, 33.36% in Europe, and 13.63% in the United States, supporting around
34,800 FCEVs [7]. By 2024, China, South Korea, Japan, France, and Germany each had over 100 active stations,
collectively representing 79% of the global total [8]. Integrating the hydrogen ecosystem—including production,
storage, and distribution—into hybrid renewable energy systems (HRES) has become increasingly important [9],
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[10]. Typically, these systems optimize economic and environmental performance, offering crucial guidance for the
development of sustainable H2 infrastructure that aligns with decarbonization goals.
While numerous studies have investigated the sizing and operational management of HRES for onsite H2 production
and distribution, few link these aspects with downstream H2 dispensing at refueling stations [11], [12]. [12] developed
a predictive operation strategy for onsite H2 production at HRS, focusing on intelligent electrolysis scheduling. The
strategy leveraged periods of low electricity prices and wind energy integration through participation in the spot market
alongside a wind farm. Using real H2 demand data over a one-week period (168 kg), the study demonstrated reduced
H2 production costs but did not address system sizing or flexible demand management. [13] developed a fully islanded
green H2 system integrating solar photovoltaic (PV), wind turbines (WT), electrolyzers (Elz), batteries, and H2 storage,
designed to meet a constant hourly demand of 10 kg/h. The system achieved a levelized cost of H2 (LCOH) of €2.89/kg
H2, suitable for isolated communities in the Czech Republic. However, dynamic rescheduling of H2 demand was not
considered. Similarly, [14] performed a techno-economic analysis of onsite PV-WT hybrid systems for H2 production
in Turkey and Spain, determining optimal configurations for daily H2 demands of 120 kg for 24 FCEVs. LCOH values
were 6.15 $/kg H2 in Niğde and 5.83 $/kg H2 in Zaragoza. Although system sizing and sensitivity analyses were
included, optimal dispatching to minimize costs was not addressed.
A dynamic analysis of a self-sustaining HRS powered by renewables was conducted by [15], who measured real-time
H2 demand at a public station in Irvine, California. LCOH could be reduced to 6.71 $/kg H2 using either 200 kW of
WT or 360 kW of solar PV; however, cost-optimal rescheduling of H2 production was not investigated. Similarly, [16]
examined a decentralized H2 system in Halle, Belgium, powered by 1.5 MW WT and 1 MW PV. Results suggested
that reducing capital costs by 80% could lower LCOH to €6.70/kg H2, but system sizing and demand optimization
were not considered. [17] performed a comprehensive evaluation of hybrid solar PV and WT systems, optimizing the
configuration to minimize costs. Their methodology employed a Monte Carlo simulation to model the H2 refueling
demand profile. The results revealed an annual production of 40,000 kg of green H2, supported by an optimized storage
capacity of 600 kg in the H2 tanks. [3] focused on profitability of onsite HRS production from wind energy, providing
insights into H2 dispensed per refueling event but not on scheduling or dispatch optimization.
Although extensive research has been conducted on the sizing and operation of energy systems, few studies focus on
developing or scheduling optimized H2 dispatch strategies tailored to urban mobility. Such strategies must balance
renewable energy availability, electrolyzer operation, tank capacity, and cost-effectiveness. Optimizing these factors
ensures efficient H2 production aligned with bus fleet demand, identifying cost-minimizing refueling hours and
maximizing renewable energy utilization. This area represents a key opportunity for research, particularly integrating
renewable generation, electrolyzer performance, and storage capacity with refueling profiles reflecting actual fleet
behavior. Past research generally addressed H2 demand with three main formulations: behavior-based, decision
variable-based, and target-based, as summarized in Table 1. Behavior-based models studied by [18], [19], and [20]
simulated user or vehicle refueling behavior to predict demand from FCEV travel behavior or probabilistic trip data.
Decision variable–based models as presented in [6] and [21] incorporate H2 demand directly into optimization models
as an endogenous variable influencing supply and capacity. Target-based studies according to [22], [23], and [24], used
prespecified or estimated H2 demand – typically derived from forecast FCEV deployment – as a prespecified input
for network planning or capacity determination. At the strategic and design levels, these studies optimize network
topology, installation placement, and storage capacity [19], [21], [22], and [23] under static or aggregate demand.
More recent operational-level research studies consider H2 dispatch and scheduling approaches that dynamically adapt
production and storage based on electricity price uncertainty and short-term demand. For example, [20] developed a
time-of-use electrolysis scheduling model for electric and H2 buses, whereas [6] and [21] optimized the flows of H2under conditions of uncertain demand. These articles, however, focus primarily on energy management at a single
station and not on coordinating refueling operations across a fleet of vehicles.
Recent studies have further explored the operation of HRS in connection with HRES and mobility demand coordina-
tion. For instance, two recent works [25], [26] analyze integrated renewable–H2 configurations in which electrolyzer
operation and refueling activities are coordinated to reduce energy cost and environmental impact. While these
contributions provide valuable insights into station operation and energy management, they typically assume a fixed
hourly H2 demand profile or a fixed refueling time window. In contrast, the present study proposes a city-scale Mixed
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Integer Linear Programming (MILP) framework in which the hourly refueling pattern and the number of active
dispensers are decision variables co-optimized together with PV, wind, and electrolyzer capacities, thereby linking
infrastructure sizing with hourly refueling operations in a unified framework.
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[6] ✗ ✓ ✗ ✓ Buses & Trucks Demand estimated from freight and bus data;
satisfaction treated as a decision variable.

[19] ✓ ✗ ✗ ✓ Passenger FCEV Demand estimated from FCEV trip distributions
and probabilistic surveys.

[20] ✓ ✓ ✗ ✗ H2 and electric buses Demand predicted from user travel data; used as
a scheduling decision variable.

[21] ✗ ✓ ✗ ✓ FCEV Demand treated as an uncertain decision
parameter in a two-stage stochastic model.

[22] ✗ ✗ ✓ ✓ FCEV Forecast-based demand (2020–2022 data);
robust model ensures ≥95% satisfaction.

[23] ✗ ✗ ✓ ✗ Heavy-duty trucks Forecast from operational data ( 40 trucks/day);
demand defined as Hload(d+1).

[24] ✗ ✗ ✓ ✗ Not specified Demand implicitly satisfied through integrated
renewable–storage optimization.

This study ✗ ✓ ✗ ✗ H2 buses 30 buses (414 kg H2/day); multi-year hourly
operation and simulation; cost optimization.

Table 1: Comparison of H2 Demand Modeling in Recent Studies

The research contribution, summarized alongside existing literature in Table 2, specifically determines the optimal
number of buses to refuel each hour and the efficient utilization of refueling points. The model integrates a H2-based
HRES comprising solar PV, wind turbines, the power grid, electrolyzers, and H2 storage tanks, and couples two energy
sectors: city-wide electricity and H2 demand for mobility. The analysis evaluates multiple technical, economic, and
environmental indicators while excluding the sale of excess renewable electricity back to the grid to focus on local
utilization.
The paper is structured as follows: section 2 outlines the methodology and problem statement, including a detailed
description of the case study location, the optimization framework, and the mathematical formulation used for
scheduling. The performance indicators employed to analyze the simulation results are presented in subsection 2.5.
The results and corresponding discussions are provided in section 3. Finally, the key conclusions of the study are
summarized in section 4.
1.1. Novelty of the study
The present study proposes an integrated modeling and optimization framework for a grid-connected HRES dedicated
to H2 mobility at the city scale. The system combines PV, WT, and grid electricity to supply a HRS serving a fleet
of fuel-cell buses. The framework simultaneously addresses system sizing and operational scheduling in a unified
formulation.
Unlike previous studies that treat the H2 demand or the refueling profile as fixed inputs, the hourly refueling pattern
and the number of active dispensers are here introduced as decision variables of the optimization problem. This choice
enables a realistic coupling between the station’s service capacity, the temporal distribution of bus refueling, and the
sizing of generation and storage assets.
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Level Highlights Objectives Literatures

Strategic Network layout, siting, sizing, and
capacity design

City- or multi-site level planning;
long-term demand forecasting

[19], [21], [22], [27],
[28]

Design Optimizing station capacity, sizing
storage, and integrating components

Techno-economic optimization with
renewable integration

[23], [24]
Energy Management Operation of integrated charging stations

combining electric and H2 systems
Scheduling and dispatch optimization for
hybrid ICS

[20]
Operational–Refueling
(Existing Studies)

Station-level refueling optimization;
stochastic or predictive modeling

Modeling of refueling patterns or
arrival-based demand; single-station
focus; no fleet-level scheduling or cost
optimization

[25], [26]

Operational–Refueling
(This Study)

Fleet-level, hourly optimization of H2refueling schedules, dispenser utilization,
and on-site H2 production

Cost minimization and operational
scheduling for a bus fleet

This Study (2025)

Table 2: Comparison of H2 Refueling Studies Across Levels

The model integrates service-time and dispenser-throughout constraints, ensuring that the hourly number of refueled
buses remains feasible with respect to the available equipment and average refueling duration. It also accounts for
electrolyzer operating limits, H2 storage bounds, and a power-balance equation that couples renewable and grid
electricity with H2 production, providing an accurate representation of the system’s operation.
The optimization is formulated as a Mixed-Integer Linear Programming (MILP) problem that remains computationally
tractable for city-scale scenarios. The solution provides actionable design and operational insights—such as the
required number of dispensers, electrolyzers, and storage capacity—under both flexible and restricted refueling
policies.
Finally, the study quantifies how refueling flexibility influences the overall techno-economic performance of the HRES,
including the total annual cost (TAC), the levelized cost of H2 (LCOH), and component utilization. This analysis
highlights that strategic coordination between refueling schedules and renewable energy availability can substantially
reduce infrastructure needs while maintaining reliable service for the bus fleet.
Overall, the main novelty of this work lies in the joint optimization of system sizing and hourly refueling scheduling,
under realistic service and operational constraints, within a comprehensive city-scale MILP framework.
While the present framework adopts a deterministic hourly demand profile, this assumption reflects the lack of
available high-resolution stochastic data for bus operations in the Dijon case study. It ensures a transparent and
reproducible comparison between refueling policies without compromising generality. The model structure remains
readily extensible to stochastic or predictive formulations as finer temporal demand data become available [29], [30].

2. Problem statement and Methodology
Figure 1 presents a urban energy system composed of two interconnected sectors aimed at meeting both electricity
and H2 demands. The city of Dijon, France, is selected as a representative European case study due to its average
geographic and demographic features, along with the availability of relevant data on energy consumption and planned
H2-based public transportation. A "Power-to-H2" subsystem is incorporated within the broader energy network, which
addresses electricity needs through a hybrid approach that combines renewable energy sources with grid-supplied
power. Key attributes of Dijon—its latitude (47.317), longitude (5.017), time zone (UTC+1), population (261,901),
area (40.41 km²), and number of households (155,834)—offer a valuable reference for urban energy modeling in a
European context. The system utilizes renewable technologies, specifically solar PV and WT, to supply electricity for
both general consumption and H2 production via electrolyzers, thereby supporting continuous operation of the H2refueling infrastructure.
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Figure 1: System architecture (blue highlighted texts represent the decision variables).

Dijon, France, has set a goal to establish itself as a leading H2 city, focusing on the local production and consumption of
decarbonized H2 to support a zero-emission mobility strategy. Although Dijon is not the only city with such aspirations,
it stands out through its concrete initiatives. The city’s H2 production primarily relies on renewable sources like solar
photovoltaics, as well as electricity generated from waste incineration. By 2023, the aim was to operate 8 H2-powered
garbage collection trucks and begin transitioning the city’s entire bus fleet—comprising around 27 buses—to H2 fuel,
in alignment with agreements made by Dijon Métropole, the public transportation authority, and other local partners
[31]. In 2024, Dijon launched its first operational H2 station, which has a daily production capacity of 430 kg of H2 per
day [32]. The facility is capable of refueling approximately 20 vehicles per day and is outfitted with three dispensing
units delivering H2 at 350 bars, tailored for heavy-duty vehicles like buses and trucks. Notably, the refueling process
takes less than 20 minutes, contributing to improved efficiency and user convenience. The deployment of this station
was structured in two distinct phases, as outlined by [31]:

(i) Northern Dijon: Establishment of 4 distribution stations to support zero-emission vehicles across the country.
(ii) Southern Dijon: Development of 175 distribution stations aimed at powering zero-emission buses throughout

the community and its surrounding areas.
Among planned cases, only two H2 production and distribution stations are currently in operation, serving both the
northern and southern regions of Dijon as shown in Figure 2.

2.1. Assumptions
To effectively schedule the refueling of the bus fleet, several assumptions are made based on the case scenarios of the
available facilities, using the case study of Dijon, France, as illustrated in Figure 3. These assumptions are outlined
below:

1. On-site H2 production and consumption: H2 is produced and consumed on-site, primarily using renewable
energy sources, with supplemental power from the electrical grid as needed.
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Figure 2: H2 production and distribution station into service in Dijon by KEOLIS (retrieved from [31])
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Figure 3: Diagram representing the assumptions made on the case study

2. Daily refueling requirement: A total of 30 buses is considered in this case study for daily refueling with
a total need of 414 kg of H2, consistent with the contract of Dijon, France [31]. The daily fuel demand is
assumed constant to maintain model tractability, while additional sensitivity tests have been performed with
representative summer and winter renewable profiles to verify that seasonal variations have a negligible impact
on the comparative results.

3. Consistent fuel consumption: Each bus is assumed to need only one full refueling session per day, leading to a
uniform fuel consumption pattern across the fleet. In addition, the refueling schedule is assumed to be the same
every day of the year.

4. Uniform refueling time and bus changeover: The time required to refuel each bus, along with the delays
associated with switching buses, is considered to be the same for all buses.

5. Restricted refueling periods: Refueling or recharging may be limited during specific times, necessitating
consideration of downtime and restricted operational windows when planning refueling schedules.
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6. Compressor operation: Compressor electricity consumption is neglected, as it accounts for less than 3–4%
of the total station energy demand in typical bus refueling applications. This simplification has a negligible
influence on the comparative results and overall techno-economic trends.

2.2. Other Inputs

Components Parameters Values Sources

Solar PV Module name CECMod [33]
Module efficiency 17 %
Module Area 1.3 m²
Nominal Power 175 W
Azimuth Angle 180 degrees (South)
Tilt Angle 45 degrees
Temperature Coefficient (𝜓) -0.5072 %/°C
Derating Factor 0.8
Technical lifetime project lifetime assumed

WT Module name GE Energy 3.2-130 [34]
Nominal Power 3.2 MW
Cut-in wind speed 3 m/s
Cut-out wind speed 25 m/s
Hub height 110 m
Rotor diameter 130 m
Rated wind speed 12.5 m/s
Roughness length 0.1
Technical lifetime project lifetime assumed

Elz Nominal Power 2 MW [35]
Efficiency 66.5%
Technical lifetime project lifetime assumed

H2 tank Technical lifetime project lifetime assumed
Other Converter efficiency (𝜂𝑐𝑜𝑛𝑣) 95% [36]

Compressor efficiency (𝜂𝑐𝑜𝑚𝑝) 75% assumed
Number of bus 30 assumed
Refueling time 20 min/bus assumed
Demand 6.4 kg H2/100 km assumed
Travel distance 200 km/bus assumed
Time horizon (𝑇 ) 5 years, 43800 hours multi-year
Time step (𝑡) 1 hour
Electricity purchase price 1 Price range (France, 2019-2023)
Electricity carbon intensity (𝜖𝑒𝑚𝑠) 68 gCO2/kWh (France, 2022) [37]
H2 production carbon footprint < 3.38 kgCO2/kg H2 [38]
H2 production carbon footprint2 < 3 kgCO2/kg H2 [39]

1The daily grid electricity prices were analyzed from August 2023 to the present, using data from "le gestionnaire du réseau de transport
d’électricité français" [40].

23 kgCO2/kg H2 is defined in "Delegated regulation for a minimum threshold for GHG savings of recycled carbon fuels annex" [39]

Table 3: Technical Parameters of the study

Components 𝐶𝑎𝑝𝑒𝑥(FIXED) 𝑂𝑝𝑒𝑥 (FIXED) Lifetime (years) Sources

Solar PV 120,000 €/MW 9,600 €/MW/year 20 [35]
WT 1,120,000 €/MW 14,000 €/MW/year 20 [35]
Elz 750,000 €/MW 5% of 𝐶𝑎𝑝𝑒𝑥 €/MW/year 20 [35]
H2 Tank 57,000 €/MWh 5% of 𝐶𝑎𝑝𝑒𝑥 €/MWh/year 20 [35]
Refueling points 107,000 € 5350 €/year 20 [3]

Project lifetime is considered 20 years, discount rate for the project is taken to be 7.8% .

Table 4: Economic Parameters of the Study
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This study employs solar irradiance and wind speed data sourced from the National Solar Radiation Database (NSRDB)
[41] and the MERRA-2 reanalysis dataset [42], respectively. These datasets are used to generate power output profiles
for solar PV and WT systems. For this purpose, the Python-based libraries pvlib [33] and windpowerlib [43] are utilized.
These tools allow for detailed modeling based on parameters such as solar radiation, PV module specifications, wind
turbine characteristics, wind speed, and manufacturer power curves. The solar irradiation and wind speed data are
presented in Appendix A, Figures (a) and (b).
Electricity demand data for Dijon, covering the period from January 1, 2019, to December 31, 2023, is sourced from
Open Data Réseaux Énergies (ODRÉ) [44]. The data reveals a peak load of 395 MW, as illustrated in Appendix A,
Figure (c). In addition, historical electricity spot prices in France over the same period (2019–2023) are incorporated
into the analysis, based on data provided by the French transmission system operator, RTE [40]. These price trends are
depicted in Appendix A, Figure (d).
The technical and economic parameters of different components involved are presented in Table 3 and Table 4.
2.3. Optimization framework
The model formulates a single-objective optimization problem with the goal of minimizing the Total Annual Cost
(TAC) over a 5-year period, equivalent to 43,800 hours of planning horizon (𝑇 ), divided into hourly time steps (𝑡). As
part of the optimization process, along with all the optimal sizing of all the components such as solar PV, WT, Elz, and
H2 tank, the model also determines the optimal number of active refueling points and the number of buses refueled
during each hour within a 24-hour daily cycle. These decisions are then uniformly extended across the entire 5-year
horizon to ensure a cost-efficient refueling strategy. To construct the optimization framework, inputs, a set of decision
variables, and operational constraints are defined, as described in the following section.
The major inputs to the optimization problem are:

(a) Meteorological data, including five-year solar irradiance and wind speed data.
(b) Five years of electricity demand and prices data.
(c) H2 demand is assumed to be uniformly distributed across all days of five years and scheduled dynamically within

the optimal cost optimization framework.
(d) The techno-economic data of all the components, i.e., PV, WT, Elz, H2 tank, converters, compressor and H2refueling points.

The decision variables represented in bold italics format are given as:
(a) Numbers of solar photovoltaic panels, wind turbines, electrolyzers and refueling points (𝑵𝑷𝑽 , 𝑵𝑾 𝑻 , 𝑵𝑬𝒍𝒛,

𝑵𝒑𝒖𝒎𝒑 ).
(b) Maximum capacity of the H2 tank (𝑳𝑶𝑯𝑯𝟐𝒕𝒂𝒏𝒌,𝒎𝒂𝒙

) in kg.
The decision variables based on the operations represented in bold italics are given as:

(a) Grid operation (𝑷𝒈𝒓𝒊𝒅,𝒊𝒏𝒊𝒕(𝑡)) in MW ∀𝑡 ∈ 𝑇 .
(b) Waste of power (𝑷𝒘𝒂𝒔𝒕𝒆(𝑡)) in MW ∀𝑡 ∈ 𝑇 .
(c) Number of buses visiting the refueling station daily at each hour 𝑵𝒃𝒖𝒔𝒆𝒔(𝑡) in numbers ∀𝑡 for one day, i.e., 24h.
(d) 𝑹𝒔(𝒕) represents the portion of renewable power allocated to the electrolyzer in MW, and 𝑮𝒔(𝒕) represents the

portion of grid power allocated to the electrolyzer in MW ∀𝑡 ∈ 𝑇 .
The decision variables in the optimization model include both integer and continuous decision variables. The integer
variables represent the sizing of key system components—-specifically, the number of solar PV panels, WT, and Elz
and the number of buses refueled per hour in a day (𝑵𝒃𝒖𝒔𝒆𝒔(𝑡)). The number of buses to be refueled each hour in
each day (𝑵𝒃𝒖𝒔𝒆𝒔(𝑡)) is simplified and considered the same for each day throughout the time horizon. This reduced the
number of integer variables to be optimized, which aids in increasing the computational efficiency. Each component
type, such as solar PV, WT, and Elz, is modeled as a standardized module with a defined nominal capacity, as detailed
in Table 3. The total installed capacity of each component is calculated by multiplying the number of selected modules,
denoted as 𝑵𝑷𝑽 , 𝑵𝑾 𝑻 , and 𝑵𝑬𝒍𝒛, respectively. Time-dependent decision variables, including grid electricity input
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(𝑷𝒈𝒓𝒊𝒅,𝒊𝒏𝒊𝒕(𝑡)), energy from waste (𝑷𝒘𝒂𝒔𝒕𝒆(𝑡)), and share of renewable generation and grid to electrolyzer (𝑹𝒔(𝑡) and
𝑮𝒔(𝑡)), are modeled as continuous variables and optimized over the time horizon to minimize total cost. The inclusion
of both integer and continuous variables makes this a Mixed-Integer Linear Programming (MILP) problem. MILP
problems are generally NP-hard, meaning that they cannot be solved in polynomial time and are computationally
intensive, especially as the number of integer decision variables increases. An important distinction is whether the
daily H2 demand profile based on the number of buses refueled per hour on a day (𝑵𝒃𝒖𝒔𝒆𝒔(𝑡)) is treated as a fixed
parameter or as an additional set of integer decision variables. When treated as an integer decision variable, the choice
substantially increases the problem’s dimensionality: from zero integer variables (when treated as a parameter) to 24
additional integer variables (one for each hour), resulting in greater computational complexity and longer solution
times.
A customized and tractable MILP problem is addressed using a fully developed optimization tool named "KLMS-OPT"
[45], built on the Python-based Pyomo framework [46]. This tool is specifically designed to model and solve energy
system problems, enabling practical evaluation of the solutions obtained. The general hybrid system formulation builds
upon the structure introduced in [47], which is extended here to include hourly H2 refueling scheduling, policy-based
operational constraints, and a real-scale application to the Dijon case. The model is implemented in Python 3.9 and
executed using the Spyder IDE, with optimization performed via the GurobiTM solver (version 10.0.1). All simulations
are carried out on a personal laptop equipped with an 11th Gen Intel® CoreTM i5-1145G7 CPU @ 2.60GHz.
2.4. Modeling and Constraint
The comprehensive modeling approach used in this study is detailed in [47]. A complete list of model symbols, indices
and variables is provided at the end of the paper. The MILP formulation includes several groups of constraints that
describe the operation of the hybrid renewable–H2 system and ensure feasibility of the sizing and scheduling problem.
All constraints are linear, preserving MILP tractability. The main groups are summarized below:

2.4.1. Solar Panel Model
This model accounts for direct normal irradiance (𝐷𝑁𝐼), global horizontal irradiance (𝐺𝐻𝐼), and diffuse horizontal
irradiance (𝐷𝐻𝐼), which are extracted from the National Solar Radiation Database (NSRDB) [41] for the geographical
coordinates of Dijon, France. Then the model is applied as per Badescu [48] to calculate the global irradiance 𝑇𝑖(𝑡) in
the tilted surface of solar PV with tilt angle (𝜃) set at 45° given as follows:

𝐺𝑑𝑖𝑟𝑒𝑐𝑡(𝑡) = 𝐷𝑁𝐼(𝑡) × 𝑐𝑜𝑠(𝐴(𝑡)) ∀𝑡 ∈ [0, 𝑇 − 1] (W/m²) (1)

𝐺𝑑𝑖𝑓𝑓𝑢𝑠𝑒𝑑(𝑡) = 𝐷𝐻𝐼(𝑡) ×
3 + 𝑐𝑜𝑠(2𝜃)

4
∀𝑡 ∈ [0, 𝑇 − 1] (W/m²) (2)

𝐺𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑒𝑑(𝑡) = 𝐺𝐻𝐼(𝑡) × 𝑎𝑙𝑏𝑒𝑑𝑜 ×
1 − 𝑐𝑜𝑠(𝜃)

2
∀𝑡 ∈ [0, 𝑇 − 1] (W/m²) (3)

𝑇𝑖(𝑡) = 𝐺𝑑𝑖𝑟𝑒𝑐𝑡(𝑡) + 𝐺𝑑𝑖𝑓𝑓𝑢𝑠𝑒(𝑡) + 𝐺𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑒𝑑(𝑡) ∀𝑡 ∈ [0, 𝑇 − 1] (W/m²) (4)
The cell temperature is expressed as :

𝑇𝑐𝑒𝑙𝑙(𝑡) = 𝑇𝑆𝑇𝐶 +
𝑇𝑁𝑂𝐶𝑇 − 𝑇 𝑎𝑁𝑂𝐶𝑇

𝐺𝑁𝑂𝐶𝑇
× 𝑇𝑖(𝑡) ∀𝑡 ∈ [0, 𝑇 − 1] (°C) (5)

The PV generator efficiency is expressed as :
𝜂𝑃𝑉 (𝑡) = 𝜂𝑚𝑜𝑑 × (1 − 𝜓 × (𝑇𝑐𝑒𝑙𝑙(𝑡) − 𝑇𝑆𝑇𝐶 )) ∀𝑡 ∈ [0, 𝑇 − 1] (%) (6)

The power output then is derived as per the existing literature [33] given as:
𝑃𝑃𝑉 ,𝑖𝑛𝑖𝑡(𝑡) = 𝜂𝑃𝑉 (𝑡) ×𝐷𝐹 × 𝐴𝑃𝑉 × 𝑇𝑖(𝑡) ∀𝑡 ∈ [0, 𝑇 − 1] (W) (7)
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Figure 4: Wind power curve profile

2.4.2. Wind Turbine Model
The power produced by each wind turbine is predicted by using the power curve as shown in Figure 4. There are
several existing models, such as the linear model, the model based on the Weibull parameter predicting wind speed
distributions, and quadratic and cubic models [49], [50]. Similar to [50], the cubic model has been chosen because of
its adequate fit in calculating the wind power output.

𝑃𝑊 𝑇 ,𝑖𝑛𝑖𝑡(𝑡) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0, 𝑉 (𝑡) ≤ 𝑉𝑐𝑖𝑛 𝑜𝑟 𝑉 (𝑡) ≥ 𝑉𝑐𝑜𝑢𝑡
𝑃𝑅𝑊 𝑇

, 𝑉𝑅 ≤ 𝑉 (𝑡) ≤ 𝑉𝑐𝑜𝑢𝑡

𝑃𝑅𝑊 𝑇
×
𝑉 (𝑡)3 − 𝑉 3

𝑐𝑖𝑛

𝑉 3
𝑅 − 𝑉 3

𝑐𝑖𝑛

, 𝑉𝑐𝑖𝑛 ≤ 𝑉 (𝑡) ≤ 𝑉𝑅

∀𝑡 ∈ [0, 𝑇 − 1] (MW) (8)

2.4.3. Grid
The grid is used as backup power to maintain the electrolyzer operation as well as satisfy the electricity need during
the unavailability of renewable generation. It is considered to have unlimited capacity. The efficiency of the power
converter is considered, enabling connection to the grid as depicted in Equation 9.

𝑃𝑔𝑟𝑖𝑑(𝑡) = 𝑷𝒈𝒓𝒊𝒅,𝒊𝒏𝒊𝒕(𝑡) × 𝜂𝑐𝑜𝑛3 ∀𝑡 ∈ [0, 𝑇 − 1] (MW) (9)
2.4.4. Total Renewable Generation
The total renewable generation, denoted as 𝑅𝑔(𝑡), is the combined power output from two renewable sources: wind
turbines 𝑃𝑊 𝑇 (𝑡) and photovoltaic panels 𝑃𝑃𝑉 (𝑡).The power output of photovoltaic panels is given by:

𝑃𝑃𝑉 (𝑡) = 𝑃𝑃𝑉 ,init(𝑡) × 𝜂𝑐𝑜𝑛1 𝑡 ∈ [0, 𝑇 − 1] (MW) (10)
The power output of wind turbines is given by:

𝑃𝑊 𝑇 (𝑡) = 𝑃𝑊 𝑇 ,init(𝑡) × 𝜂𝑐𝑜𝑛2 𝑡 ∈ [0, 𝑇 − 1] (MW) (11)
To consider losses in the converters for both PV and WT, efficiency factors (𝜂con1 for PV and 𝜂con2 for WT) are
incorporated in Equation 10 and Equation 11. The decision variables 𝑵𝑾 𝑻 and 𝑵𝑷𝑽 enable adjustment of these
components, making the model adaptable for optimization studies that accurately reflect the available renewable power
as given in Equation 12.

𝑅𝑔(𝑡) = 𝑵𝑷𝑽 × 𝑃𝑃𝑉 (𝑡) +𝑵𝑾 𝑻 × 𝑃𝑊 𝑇 (𝑡) 𝑡 ∈ [0, 𝑇 − 1] (MW) (12)
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2.4.5. Power balance and Energy management
As depicted in Figure 1, it is crucial to meet both the electricity demand of households and the power demand of the
Elz for H2 production. To achieve this, two time-dependent decision variables are introduced: 𝑹𝒔(𝑡), representing the
portion of renewable power allocated to the Elz, and 𝑮𝒔(𝑡), representing the portion of grid power allocated to the Elz.
When intermittent renewable sources cannot fully power the Elz, grid power is utilized to ensure its operation. The
combined contribution of these two variables to satisfy the Elz power demand is formulated in equation 13.

(a) power balance in the electrolyzer side :
𝑃𝐸𝑙𝑧(𝑡) = 𝑹𝒔(𝑡) +𝑮𝒔(𝑡) ∀𝑡 ∈ [0, 𝑇 − 1] (MW) (13)

The remaining share is allocated to satisfy the electricity demand, as depicted in Equation 14. Surplus renewable
generation occurs when renewable sources exceed demand, leading to potential waste of power (𝑷𝒘𝒂𝒔𝒕𝒆), particularly
during the maximum renewable production period.

(b) power balance in the electric load side :
𝑃𝑙𝑜𝑎𝑑(𝑡) =

(

𝑅𝑔(𝑡) −𝑹𝒔(𝑡)
)

+
(

𝑃𝑔𝑟𝑖𝑑(𝑡) −𝑮𝒔(𝑡)
)

− 𝑷𝒘𝒂𝒔𝒕𝒆(𝑡) ∀𝑡 ∈ [0, 𝑇 − 1] (MW) (14)
2.4.6. Electrolyzer
With current technology development, the electrolyzer (Elz) exhibits a minimum operating point within the range of
10-50% [51]. Optimal flexibility allows the electrolyzer to operate at a minimum of 10% [51], thus establishing the
minimum operational threshold (𝑧𝑚𝑖𝑛) for the Elz in this case as 15%.
The operating power of the Elz is constrained as :

𝑃𝐸𝑙𝑧(𝑡) ≤ 𝑵𝑬𝒍𝒛 × 𝑃𝐸𝑙𝑧𝑢𝑛𝑖𝑡,𝑚𝑎𝑥 𝑡 ∈ [0, 𝑇 − 1] (MW) (15)

𝑃𝐸𝑙𝑧(𝑡) ≥ 𝑵𝑬𝒍𝒛 × 𝑃𝐸𝑙𝑧𝑢𝑛𝑖𝑡,𝑚𝑎𝑥 × 𝑧𝑚𝑖𝑛 𝑡 ∈ [0, 𝑇 − 1] (MW) (16)
The mass of H2 produced from the electrolyzer is expressed as :

𝑚𝐻2𝐸𝑙𝑧,𝑜𝑢𝑡 (𝑡) =
𝑃𝐸𝑙𝑧(𝑡) × Δ𝑡 × 𝜂𝐸𝑙𝑧

𝐻𝐻𝑉
𝑡 ∈ [0, 𝑇 − 1] (kg) (17)

The mass of produced H2 charged to the compressed H2 tank at the pressure of 350 bar considering the losses that
occurred in the compressor is given as :

𝑚𝑐ℎ(𝑡) = 𝑚𝐻2𝐸𝑙𝑧,out (𝑡) × 𝜂𝑐𝑜𝑚𝑝 𝑡 ∈ [0, 𝑇 − 1] (kg) (18)
2.4.7. Hydrogen storage tank
The constraint in the H2 tank is based on the level of H2 in the tank (𝐿𝑂𝐻𝐻2𝑡𝑎𝑛𝑘 ) (Equation 19) which is determined at
any time for each time step (𝑡) throughout the time horizon (𝑇 ). At any time step (𝑡), the level of H2 in the storage tank
is based on the H2 charged in the previous time step including the compressor losses which is described in Equation 20.

𝐿𝑂𝐻𝐻2𝑡𝑎𝑛𝑘 (𝑡) = 𝐿𝑂𝐻𝐻2𝑡𝑎𝑛𝑘 (𝑡 − 1) + 𝑚𝑐ℎ,𝑡𝑎𝑛𝑘(𝑡) − 𝑚𝑑𝑐ℎ,𝑡𝑎𝑛𝑘(𝑡) ∀𝑡 ∈ [1, 𝑇 − 1] (kg) (19)

𝑚𝑐ℎ,𝑡𝑎𝑛𝑘(𝑡) = 𝑚𝐻2𝐸𝑙𝑧,out (𝑡) × 𝜂𝑖𝑠𝑒𝑛 ∀𝑡 ∈ [0, 𝑇 − 1] (kg) (20)
H2 tank is initialized at 50% of its total capacity, as defined in Equation 21. To ensure system reliability and maintain
proper pressure, the tank’s state of charge is constrained between a minimum of 50% (𝑠𝑚𝑖𝑛) and a maximum of 100%
(𝑠𝑚𝑎𝑥), as given in Equation 22 and Equation 23. Throughout the 5-year time horizon (𝑇 ), discharge from the tank is
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set to exactly match the hourly H2 demand at each time step (𝑡), as formulated in Equation 24. This ensures a consistent
balance between supply and demand. Additionally, the refueling station is assumed to operate at 350 bar, requiring no
further compression.

𝐿𝑂𝐻𝐻2𝑡𝑎𝑛𝑘 (0) = 𝑳𝑶𝑯𝑯𝟐𝒕𝒂𝒏𝒌,𝒎𝒂𝒙
× 𝑠𝑚𝑖𝑛 (kg) (21)

𝐿𝑂𝐻𝐻2𝑡𝑎𝑛𝑘 (𝑡) ≥ 𝑳𝑶𝑯𝑯𝟐𝒕𝒂𝒏𝒌,𝒎𝒂𝒙
× 𝑠𝑚𝑖𝑛 ∀𝑡 ∈ [1, 𝑇 − 1] (kg) (22)

𝐿𝑂𝐻𝐻2𝑡𝑎𝑛𝑘 (𝑡) ≤ 𝑳𝑶𝑯𝑯𝟐𝒕𝒂𝒏𝒌,𝒎𝒂𝒙
× 𝑠𝑚𝑎𝑥 ∀𝑡 ∈ [1, 𝑇 − 1] (kg) (23)

𝑚𝑑𝑐ℎ(𝑡) = 𝑚𝐻2𝑙𝑜𝑎𝑑 (𝑡) 𝑡 ∈ [0, 𝑇 − 1] (kg) (24)
In the second case when the H2 demand is considered to be scheduled, constraints are added as given in the following
sections.
2.4.8. Number of Buses at Refueling Station
In this scenario, it is projected that a total number of buses (𝑁𝑏𝑢𝑠,𝑡𝑜𝑡) will require daily refueling, contingent on the
operational hours and availability of the points. The total number of buses available for refueling each day for a 24-hour
of time horizon is considered to be 30. All the buses are supposed to visit the station for refueling once a day throughout
the time horizon of five years, with the number of buses refueled each hour (𝑡) optimized through a cost-effective
scheduling approach. Since the daily refueling schedule is assumed to be the same each day, it leads to Equation 26.
In this study, the estimation is based on the following constraint:

∑

𝑡 for one day (24h)
𝑵𝒃𝒖𝒔𝒆𝒔(𝑡) = 𝑁𝑏𝑢𝑠,𝑡𝑜𝑡 (25)

𝑵𝒃𝒖𝒔𝒆𝒔(𝑡) = 𝑵𝒃𝒖𝒔𝒆𝒔(𝑡 + 24𝑑) ∀𝑑 ∈ [0, 1825] (26)
2.4.9. Station Scheduling
The number of buses (𝑵𝒃𝒖𝒔𝒆𝒔(𝑡)) arriving at the refueling station during a time period of 24 hours is determined by
the availability of refueling points. Each refueling point can serve up to (𝑁𝑏𝑢𝑠,ℎ𝑜𝑢𝑟), which is set to two buses per hour
in this case, given a refueling duration of 20 minutes per bus, which includes 10 minutes for transitions and other
delays. This simplified assumption reflects the average observed in existing bus depots in France and was verified to
remain feasible under peak-hour conditions. The values can be adjusted and tested under various scenarios, including
different restricted or flexible time windows and varying numbers of buses. The same number of buses is scheduled to
arrive at the station at the same times each day, consistently maintained over a five-year time horizon. The operational
constraints related to pump usage and bus arrivals at the refueling station are described as follows.

𝑵𝒃𝒖𝒔𝒆𝒔(𝑡) ≤ 𝑁𝑏𝑢𝑠,ℎ𝑜𝑢𝑟 ×𝑵𝒑𝒖𝒎𝒑, ∀𝑡 ∈ [0, 𝑇 − 1] (27)
2.4.10. Total hydrogen demand
The total H2 demand is calculated based on the total number of buses passing to the station hourly throughout the day.
The hourly H2 demand (𝑚𝐻2𝑙𝑜𝑎𝑑 (𝑡)) is determined by multiplying the daily H2 consumption of each bus (𝐷𝑑𝑎𝑖𝑙𝑦𝑝𝑒𝑟𝑏𝑢𝑠 )by the number of buses operating each hour throughout a day. Additionally, the daily H2 profile is assumed to be
uniform, which enables the creation of a consistent yearly H2 profile. A uniform profile is preferred, as it facilitates
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more predictable and stable supply chain logistics, maintenance schedules, and cost estimations, thereby providing a
more reliable framework compared to fluctuating yearly profiles. The constraint for the total H2 demand is expressed
as follows:

𝑚𝐻2𝑙𝑜𝑎𝑑 (𝑡) = 𝐷𝑑𝑎𝑖𝑙𝑦𝑝𝑒𝑟𝑏𝑢𝑠 ×𝑵𝒃𝒖𝒔𝒆𝒔(𝑡), ∀𝑡 ∈ [0, 𝑇 − 1] (kg) (28)
The total hourly H2 demand corresponds to the amount of H2 that must be discharged by the system during each hour.
2.4.11. Objective function
This study explores both single-objective minimization of Total Annual Costs (TAC) based in Net Present Value (NPV).
NPV comprises capital investment (𝐶𝑎𝑝𝑒𝑥) as presented in Equation 31 and operating and maintenance costs (𝑂𝑝𝑒𝑥)
as presented in Equation 35. 𝑂𝑝𝑒𝑥 is sometimes represented as the fraction of 𝐶𝑎𝑝𝑒𝑥 [52]. NPV is determined as the
sum of 𝐶𝑎𝑝𝑒𝑥, 𝑂𝑝𝑒𝑥, and grid purchase of electricity (𝑃𝑐ℎ𝑔𝑟𝑖𝑑) as shown in Equation 29.

NPV = 𝐶𝑎𝑝𝑒𝑥𝑡𝑜𝑡 + 𝐶𝑟𝑒𝑝,𝑡𝑜𝑡 + 𝑂𝑝𝑒𝑥𝑡𝑜𝑡 + 𝑃𝑐ℎ𝑔𝑟𝑖𝑑 (€) (29)
The capital recovery factor (𝐶𝑅𝐹 ) is defined as the ratio of a constant annuity to the present value of receiving that
annuity for a given length of time [53] and is calculated using the real discount rate (𝑖) over the economic lifetime of
𝑛, as shown in Equation 30.

𝐶𝑅𝐹 =
𝑖 ⋅ (1 + 𝑖)𝑛

(1 + 𝑖)𝑛 − 1
(30)

For this study, the economic interest rate (𝑖) is set at 7.8% over the system’s economic lifetime of 20 years [54].
Capital investment is calculated based on the capital cost (𝐶𝑎𝑝𝑒𝑥) associated with the capacity (𝐶𝑎𝑝) of the
components. The total capital investment of various components (𝐶𝑎𝑝𝑒𝑥𝑡𝑜𝑡) is presented as per equation 31. In all
equations, 𝑗 represents various components such as PV, WT, Elz, and H2 tank. In this study, the number of refueling
points is optimized based on the cost-optimal scheduling of H2 refueling.

𝐶𝑎𝑝𝑒𝑥𝑡𝑜𝑡 =
∑

𝑗
(𝐶𝑎𝑝𝑗 × 𝐶𝑎𝑝𝑒𝑥𝑗) + (𝑵𝒑𝒖𝒎𝒑 × 𝐶𝑎𝑝𝑒𝑥𝑝𝑢𝑚𝑝) (€) (31)

The capacity of certain components, such as solar photovoltaic, wind turbine, and electrolyzer, is represented based on
the number of units and their rated capacities, as follows:

𝐶𝑎𝑝𝑃𝑉 = 𝑵𝑷𝑽 × 𝑈𝑛𝑖𝑡𝑐𝑎𝑝,𝑃𝑉 (MW) (32)

𝐶𝑎𝑝𝑊 𝑇 = 𝑵𝑾 𝑻 × 𝑈𝑛𝑖𝑡𝑐𝑎𝑝,𝑊 𝑇 (MW) (33)

𝐶𝑎𝑝𝐸𝑙𝑧 = 𝑵𝑬𝒍𝒛 × 𝑈𝑛𝑖𝑡𝑐𝑎𝑝,𝐸𝑙𝑧 (MW) (34)
Operation and maintenance cost is calculated based on the O&M cost (𝑂𝑝𝑒𝑥) associated with the capacity (𝐶𝑎𝑝) of
the components. The total capital investment of various components (𝑂𝑝𝑒𝑥𝑡𝑜𝑡) is presented as per Equation 35.

𝑂𝑝𝑒𝑥𝑡𝑜𝑡 =
∑

𝑗
((𝐶𝑎𝑝𝑗 × 𝑂𝑝𝑒𝑥𝑗) + (𝑵𝒑𝒖𝒎𝒑 × 𝑂𝑝𝑒𝑥𝑝𝑢𝑚𝑝)) ×

1
𝐶𝑅𝐹

(€) (35)
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The grid import cost refers to the expense incurred from purchasing energy from the grid, which is determined by the
applicable hourly tariff or purchase rate throughout the time step (𝐺𝑃𝑅(𝑡)). It is given by the expression as follows:

𝑃𝑐ℎ𝑔𝑟𝑖𝑑 =
𝑇−1
∑

0
𝑃𝑔𝑟𝑖𝑑(𝑡) × 𝐺𝑃𝑅(𝑡) ×

1
𝐶𝑅𝐹

∀𝑡 ∈ [0, 𝑇 − 1] (€) (36)

TAC then is calculated as shown in Equation 37.
TAC = NPV × 𝐶𝑅𝐹 (€/year) (37)

In which the annuity is calculated by considering the present value of the project using 𝐶𝑅𝐹 .
2.5. Indicators
Based on the optimization results, key technical and environmental indicators are defined to assess system performance.
These focus on green H2 production through electrolysis and efficient electricity use. Indicators include renewable and
grid energy shares, energy distribution to electrolyzers and loads, Levelized Cost of H2 (LCOH), and CO2 emissions
per kg of H2 produced and per unit of grid import.
2.5.1. Energy Indicators
Energy indicators are essential for evaluating the roles of solar PV, WT, and grid imports in meeting electricity and
electrolyzer demands. These metrics highlight how much renewable energy contributes to H2 production and the
system’s dependence on grid power. The key energy indicators include:

(i) Proportion of renewable share of energy to electrolyzer

𝑅𝑅𝑔,𝐸𝑙𝑧 =
∑𝑇−1

0 𝑹𝒔(𝑡) ⋅ Δ𝑡
∑𝑇−1

0 𝑃𝐸𝑙𝑧(𝑡) ⋅ Δ𝑡
𝑡 ∈ [0, 𝑇 − 1] (38)

(iii) Proportion of grid share of energy to electrolyzer

𝑅𝑔𝑟𝑖𝑑,𝐸𝑙𝑧 =
∑𝑇−1

0 𝑮𝒔(𝑡) ⋅ Δ𝑡
∑𝑇−1

0 𝑃𝐸𝑙𝑧(𝑡) ⋅ Δ𝑡
𝑡 ∈ [0, 𝑇 − 1] (39)

2.5.2. Economic Indicator
Levelized Cost of H2 (LCOH) is a key metric that measures the average cost of producing one kilogram of H2 over
the lifetime of a production facility. It is usually expressed in units of currency per kilogram of H2, such as €/kg H2.
LCOH is calculated based on the share of energy allocated to H2 production, providing a more accurate measure of
the cost to produce H2.

(i) LCOH in €/kg H2

𝐿𝐶𝑂𝐻 =
𝑅𝐸𝑙𝑧,𝑒𝑡𝑜𝑡 × 𝑇𝐴𝐶
∑𝑇−1

0 𝑚𝐻2𝐸𝑙𝑧,𝑜𝑢𝑡 (𝑡)
∀𝑡 ∈ [0, 𝑇 − 1] (€/kg H2) (40)

𝑅𝐸𝑙𝑧,𝑒𝑡𝑜𝑡 indicates proportion of the electrolyzer demand to the total energy (including renewable generation and grid
import)

𝑅𝐸𝑙𝑧,𝑒𝑡𝑜𝑡 =
∑𝑇−1

0 𝑃𝐸𝑙𝑧(𝑡) ⋅ Δ𝑡
∑𝑇−1

0 𝑅𝑔(𝑡) ⋅ Δ𝑡 + 𝑃𝑔𝑟𝑖𝑑(𝑡) ⋅ Δ𝑡
𝑡 ∈ [0, 𝑇 − 1] (41)
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2.5.3. Environmental Indicators
This study evaluates the carbon footprint of H2 production, denoted as 𝐶𝑂2,𝑓𝑝𝑟𝑖𝑛𝑡,𝐻2, based on emissions from grid
electricity use. The key factor influencing this metric is the grid’s carbon intensity, 𝜖𝑒𝑚𝑠, over the operational period.

(i) Carbon footprint of grid import of electricity in Mtonne CO2/year

𝐶𝑂2,𝑓𝑝𝑟𝑖𝑛𝑡,𝑒𝑙𝑒𝑐 =
𝑇−1
∑

0
𝑃𝑔𝑟𝑖𝑑(𝑡) ⋅ Δ𝑡 ⋅ 𝜖𝑒𝑚𝑠 𝑡 ∈ [0, 𝑇 − 1] (42)

(ii) Carbon ratio of H2 production in kgCO2/kgH2

𝐶𝑂2,𝑓𝑝𝑟𝑖𝑛𝑡,𝐻2 =
∑𝑇−1

0 𝑮𝒔(𝑡) ⋅ Δ𝑡 ⋅ 𝜖𝑒𝑚𝑠
∑𝑇−1

0 𝑚𝐻2𝐸𝑙𝑧,𝑜𝑢𝑡 (𝑡)
𝑡 ∈ [0, 𝑇 − 1] (43)

3. Results and discussions
The results obtained from the resolution of the formulated optimization problem are discussed under the following two
scenarios:

1. Flexible optimized scenario:
Allows refueling at any time throughout the day. This flexibility enables optimization based on electricity prices
and renewable energy availability, improving overall system efficiency.

2. Restricted optimized scenario:
Limits refueling to the early morning window from 3h to 7h before buses begin service. This reflects operational
constraints to ensure fleet readiness.

3.1. Hydrogen refueling profile
The study demonstrates that a flexible refueling schedule for the H2 bus fleet can significantly improve both the
economic and environmental performance of the energy system. This approach aligns refueling activities with periods
of lower electricity demand and reduced electricity prices, primarily during nighttime hours (1h–6h) and midday
(11h–17h). During the night, around 9 out of 30 buses are refueled when grid demand is low and electricity prices
are typically at their minimum. During the day, 13 buses are scheduled for refueling to coincide with peak renewable
generation, as shown in Figure 5a. This scheduling strategy demonstrates that prioritizing bus refueling during off-peak
hours not only minimizes H2 production costs—leveraging lower electricity prices and reduced grid demand—but also
ensures more economical operation of the energy system. First, by operating the electrolyzer during off-peak hours, the
system avoids high time-of-use tariffs and peak demand charges, reducing operational costs. Second, refueling during
times of high renewable availability allows greater use of low-cost, zero-emission electricity, minimizing dependence
on carbon-intensive grid imports. As a result, the flexible strategy not only reduces the cost of H2 production but also
supports more sustainable and decarbonized operation, enhancing the overall economic viability of the system.
In contrast, the restricted refueling scenario confines all refueling activity to a narrow window between 3h and 7h,
just before the buses begin operation. This results in a uniform hourly distribution, with 6 buses refueled per hour, as
depicted in Figure 5b. Consequently, this leads to higher energy costs, making the system less flexible and economically
efficient.
3.2. Sizing
While the capacities of solar PV of 211 MW and wind turbines of 349 MW remain consistent across all cases as shown
in Table 5, significant differences emerge in the sizing of other key system components—electrolyzers, refueling points,
and H2 storage capacity. The flexible scheduling scenario allows for optimized, cost-effective refueling distributed
throughout the day. As a result, only one electrolyzer and one refueling point are sufficient, while the H2 storage
capacity is drastically reduced to 90.29 kg, as shown in Figure 6. This lower capacity is fully compliant with the
French ICPE 4715 regulation (Arrêté du 13 juillet 2017), which limits on-site H2 storage to 100 kg for small-scale
stations [55]. The flexibility in scheduling enables a more balanced system operation, minimizes component oversizing,
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Figure 5: Comparison of optimized daily refueling profiles under flexible and restricted scheduling

and significantly reduced the cost.
The restricted scheduling scenario, which limits refueling to a 3h–7h morning window, lies between the other two
in terms of system demand. In this case, three electrolyzers and three refueling points are required to ensure fleet
readiness, and the storage level largely exceeds the 100 kg regulatory threshold, as presented in Figure 6, highlighting
that such an operating policy would not be legally compliant under current French regulations and would entail major
permitting and safety implications. Overall, the flexible case proves to be the most efficient in terms of component
sizing and regulatory compliance.
As shown in Table 5, the system configurations involve substantial renewable capacities—approximately 349 MW of
PV and 211 MW of wind power—with up to three electrolyzers and pumps and a maximum hydrogen storage capacity
of 714 kg in the restricted case. Although these values appear large for an urban H2 charging station, they result from
the optimization framework that simultaneously considers the region’s electricity demand, which peaks at 395 MW,
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Figure 6: Sizing and cost comparison between flexible and restricted daily optimized scenario
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Flexible 349.2 211.2 1 1 90.29 6.42 66.24 0.06 19.87
Restricted 349.4 211.2 3 3 714.19 6.42 66.24 0.06 5.32

Wind direction: 3 × rotor diameter (130 m) [56] (within environmental framework)
Crosswind spacing: 8 × rotor diameter (130 m) [56] (within environmental framework)
Area of Dijon: 4041 hectares (ha) [57]
w.r.t: with respect to
LO: Land Occupancy
BFC: Region Bourgogne–Franche–Comté, France

Table 5: System configuration and land use for flexible vs. restricted case.

alongside the comparatively small H2 demand corresponding to a fleet of 30 buses. Consequently, the overall system
scales to a regional energy level, even though only a limited share of the PV and WT installations would actually
contribute to H2 production. In practice, such renewable capacities would not be located within the urban area of Dijon
but rather distributed across the Bourgogne–Franche–Comté (BFC) region, France, which already comprises about
327.95 MW of installed wind capacity near Dijon [58], while within the city, smaller projects such as the 15 MW
Valmy solar park illustrate the realistic urban potential [58]. Moreover, the required spacing of wind turbines—about
three rotor diameters (130 m) in the prevailing wind direction and eight diameters crosswind—renders their installation
within city limits impractical due to space, visual, and noise constraints. Therefore, the wind generation in the model
should be understood as regional renewable input rather than local urban installations. Finally, H2 storage also faces
practical limitations: while the flexible case’s 90 kg storage is technically manageable, the restricted case’s 714
kg capacity would be economically and operationally challenging in an urban environment given hydrogen’s low
volumetric energy density, flammability, and safety requirements. Nevertheless, H2 refueling infrastructure for buses
is designed to meet strict international safety standards right now, and the associated risks are well controlled through
containment, ventilation, and monitoring systems, as an 860 kg of H2 storage tank is already installed in Pau, France
[58] as an example. Overall, while the model’s assumptions are appropriate for capturing system-level interactions,
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real-world implementation would depend on regional renewable generation, limited on-site hydrogen production, and
robust safety and permitting frameworks.
3.3. Indicators
Considering the economic indicator—Total Annual Cost —In comparison, flexible optimization of the H2 refueling
schedule to better align with operational requirements leads to annual cost savings corresponding to a 0.35% reduction
in TAC over the system’s lifetime, including 66.67% reduction in capital investment (𝐶𝑎𝑝𝑒𝑥) of the refueling station,
as illustrated in the flexible optimized scenario of Figure 6. This highlights the economic benefit of adjusting the
refueling schedule, offering decision-makers valuable insights into how optimized scheduling can reduce overall costs.
The improvement is primarily due to the flexibility imposed in the refueling window, which resulted in a lower number
of system components, such as electrolyzers and refueling points, as presented in Figure 6 and Table 6.
The levelized cost of H2 shows slight variations across the different scenarios. When the H2 profile is flexibly scheduled
throughout the day, the LCOH is obtained with €5.76/kg H2, as shown in the flexible optimized scenario in Figure 7.
However, in the restricted optimized scenario—where H2 refueling is limited to specific early morning hours—the
LCOH returns to €5.78/kg H2. Despite the small differences in LCOH, an important question arises: is an LCOH above
€5/kg H2 acceptable, especially when the long-term target is to reduce the cost to below €2/kg H2 [59]? Achieving this
lower price point requires very specific conditions, including a system heavily dependent on grid imports in the case
of France with lower grid electricity prices.
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Figure 7: Indicators comparison between flexible and restricted daily optimized scenario

As shown in Figure 8, the flexibly optimized scenario, which allows refueling to occur at any time throughout the day,
creates a continuous hourly demand for H2. To keep H2 production running without interruption, the system needs
a steady and reliable electricity supply. This is especially important because of the imposed constraint to maintain at
least 50% of the H2 in the tank throughout all the time periods. Since renewable energy is intermittent, it can’t always
meet the requirement of steady electrolyzer operation. As a result, the system increasingly depends on grid electricity.
In the flexible optimized case, this reliance on the grid lowers the share of renewable energy used for H2 production to
just 25%, relying more on grid import. In the restricted scenario, where the refueling activity is scheduled within the
3h-7h window, the renewable share for H2 production increased to 75%, as illustrated in Figure 8.
Under the flexible optimized scenario, where H2 demand is spread continuously throughout the day, the system relies
more heavily on grid electricity. This leads to an increase in emission, rising to 3.01 kgCO2/kgH2, as shown in the
flexible case in Figure 7. The emission in the flexible scenario remains just above the 3 kgCO2/kgH2 threshold defined
in EU regulations for low-carbon H2 [39]; this is largely due to the high share of nuclear energy in France’s power mix.
This ultimately indicates that even when the system relies entirely on the grid, the H2 produced is decarbonized.
The outcomes underscore the effectiveness of the flexible and restricted optimized scenarios in leveraging renewable
energy for H2 production. The outcome highlights the environmental advantages of confining bus refueling activities

Basnet et al.: Preprint submitted to Elsevier Page 18 of 25



Cost-Optimal Hydrogen Refueling Scheduling for Bus Fleet in a Grid-Connected Hybrid Renewable Energy System

Figure 8: Share of energy comparison between flexible and restricted daily optimized scenario
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PL: Power Load
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Table 6: Performance comparison of flexible vs. restricted case.

to a specific time frame, especially in the early morning hours before bus services commence. This approach with
restricted time is found to maximize the integration of renewable energy for the electrolyzer operation into the system,
making it a viable and sustainable choice for decarbonizing transportation. In addition, from the logistic perspective,
it is better to refuel the bus before the service in the morning so that it will be easy for the bus company to make
a plan for the tour of the bus. When refueling activity is set or distributed during the day, finding and planning bus
hours presents additional difficulty to the bus company. From a social perspective, the requirement for staff readiness
at the refueling station between 3h and 7h in the early morning poses operational challenges and potential impacts on
employees’ work schedules.

3.4. Solution Approach and Computational Performance
In the flexible and restricted refueling optimization scenarios, the complexity of the problem increases significantly.
Over 25 additional integer decision variables are introduced to model the number of buses refueling per day and the
number of required refueling points. This increase in integer variables makes the problem much harder to solve—it now
fits the classic NP-hard definition associated with MILP problems, where the solution space grows exponentially with
the number of discrete variables. To handle these more complex cases, Gurobi likely combines the Barrier method with
advanced MILP techniques such as Branch-and-Bound. These methods are known for their effectiveness in handling
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Number Initial Flexible optimized Restricted optimized

Objective 1 1 1
Constraints 788417 832256 832256
Variables 569420 613259 613259
Binary variables 0 0 0
Integer variables 3 28 28
Continuous variables 569417 613231 613231
Nonzeros 1897834 1839343 1839324
Runtime (seconds) 296 1192.2055 (19.87 min) 319.0160 (5.32 min)

Table 7: Optimization and computational details

large MILPs, though they can be computationally intensive. As a result, the runtime increased to approximately 19
minutes and 52 seconds for the flexible case as presented in Table 7. However, the runtime significantly decreased to
about 5 minutes and 19 seconds in the restricted case because of the tighter bounds on the refueling window (limited
to 3h-7h), which greatly reduced the feasible solution space.
Initially, binary variables were used to model the on/off operational status of the electrolyzers. However, this approach
resulted in prohibitively long runtimes—extending to several days in some cases. Upon closer analysis, it was observed
that electrolyzers predominantly operated at either full or minimal capacity throughout the time horizon. As a result,
the model was reformulated to treat the electrolyzer operation as continuous, thereby eliminating binary variables. This
adjustment drastically reduced computational time—bringing the simulation down from days to just seconds—without
compromising the quality of the results. These findings highlight the importance of careful modeling decisions. The
way constraints are formulated and how decision variables are implemented can have a profound impact on the
computational performance of the optimization model. Ultimately, the choice of model formulation must align with
the study’s goals, requiring a balance between computational feasibility and the level of modeling accuracy desired by
the decision-maker.

4. Conclusion
The study focused on determining the optimal H2 refueling profile for a fleet of 30 H2 buses considering the H2 vehicle
contract of Dijon, France, with an emphasis on cost optimization, and analyzing the various environmental impacts,
above all the emissions associated with the grid import and H2 production. By incorporating contractual data on bus
fleet, operations and assumptions such as the distance traveled, fuel consumption per trip, and scheduling constraints,
the analysis aimed to refine system components, optimize operations, and identify the most cost-effective refueling
hours. Flexible and restricted scheduling of refueling profiles is explored within a time horizon of 43,800 hours at an
hourly time step. This approach leveraged renewable energy, resulting in significant environmental benefits, including
reduced CO2 emissions and a lower LCOH. A subsequent analysis of a cost-optimal refueling strategy, distributed
throughout the day and mentioned as a flexible optimized scenario, performed which revealed cost savings of 0.35%
per year compared to a restricted profile downsizing the H2 storage which eases the implementation of the system
installation under 100 kg, excluding the need for authorization in the case of France. Nevertheless, it leads to increased
dependency on the grid and associated emissions. In addition, when the refueling activity is set or distributed during the
day, finding and planning the bus hours presents additional difficulty to the bus company from the logistic perspective.
Furthermore, scheduling of H2 profile based on the restricted H2 profile within the 3h–7h time frame is considered,
which ultimately resulted in achieving small cost benefits while maximizing renewable energy utilization and
enhancing decarbonization in H2 production. However, a critical consideration lies in the social aspect—the availability
of employees during early morning hours to facilitate the refueling process. This comprehensive analysis highlighted
the trade-offs between cost efficiency and environmental performance, demonstrating that the restricted refueling
scheduling of the H2 refueling profile is more effective from the economic and emission points of view. However, the
scheduling of H2 refueling profiles, both throughout the day and within the restricted 3h–7h period, offered a holistic
approach for evaluating the impacts of optimized refueling strategies on economic and environmental indicators. In
addition, the KLMS-OPT tool allows for rapid testing of alternative scenarios, taking into account different time period
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restrictions or scheduling profiles across the entire time horizon. From an optimization perspective, the computational
efficiency of the developed tool is remarkable, as it resolves the problem within 20 minutes across all case scenarios,
thanks to the reduction in integer variables and the implementation of tight constraints. The simulator is designed
to be adaptable, enabling users to tailor it according to the specific requirements of their study. Overall, the proposed
MILP framework explicitly couples system sizing and hourly refueling operations, providing actionable insights for H2station planning at city scale. Its main advantages lie in this integrated formulation and in its computational tractability
for large instances. The current version nevertheless relies on simplified service-time representation and deterministic
daily demand replication, which could be relaxed in future stochastic or multi-day extensions.
Although this study focused on two primary scenarios—a flexible refueling schedule and a restricted time window
between 3h-7h—the developed optimization tool is inherently flexible and can accommodate a wide range of alternative
scheduling strategies. This includes testing various restricted time frames, both before and after the bus fleet’s service
hours, to identify cost-optimal refueling windows under different operational conditions. In the current analysis,
a uniform daily refueling profile is assumed across the entire 43,800-hour time horizon. While this assumption
simplifies the modeling and ensures computational tractability, future work could extend the analysis by incorporating
dynamic, time-varying refueling demands, which would increase the realism of the model but also introduce additional
computational complexity. Moreover, the study is limited to the refueling of a fixed fleet of 30 H2 buses. Expanding the
scope to include heterogeneous or randomly arriving H2-powered vehicles, such as cars or trucks, would provide a more
comprehensive assessment of real-world refueling station operations. This would involve modeling stochastic demand
patterns and vehicle arrival times, offering deeper insights into system performance under uncertainty. Finally, while
the current study primarily focused on the development and validation of the optimization framework for H2 refueling
demand scheduling in the case of Dijon, France, future work will consider a comprehensive sensitivity and uncertainty
analysis aimed at establishing the robustness of the results against fluctuating environmental, technical, and economic
conditions.

Nomenclature
Parameters

𝜃 Tilt angle (°)
𝑎𝑙𝑏𝑒𝑑𝑜 Albedo
𝐴 Angle of incidence (radian)
𝐴𝑃𝑉 Area of PV (m²)
𝐷𝐹 Derating Factor
𝐷𝐻𝐼 Direct Horizontal Irradiation (W/m2)
𝐷𝑁𝐼 Direct Normal Irradiation (W/m2)
𝐺𝐻𝐼 Global Horizontal Irradiation (W/m2)
𝐺𝑁𝑂𝐶𝑇 Global irradiance at nominal operating cell temperature (W/m2)
𝐺𝑑𝑖𝑟𝑒𝑐𝑡 Direct Irradiation (W/m2)
𝐺𝑑𝑓𝑓𝑢𝑠𝑒𝑑 Diffused Irradiation (W/m2)
𝐺𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑒𝑑 Reflected Irradiation (W/m2)
𝑃𝑅𝑊 𝑇

Wind turbine rated power output (MW)
𝑃𝑃𝑉 ,𝑖𝑛𝑖𝑡 Photovoltaic panel power initial (MW)
𝑃𝑊 𝑇 ,𝑖𝑛𝑖𝑡 Wind turbine power initial (MW)
𝑇𝑎,𝑁𝑂𝐶𝑇 Ambient temperature at nominal operating cell temperature (°C)
𝑇𝑐𝑒𝑙𝑙 Photovoltaic module cell temperature (°C)
𝑇𝑁𝑂𝐶𝑇 Nominal Operating Cell Temperature (°C)
𝑇𝑆𝑇𝐶 Cell temperature at standard conditions (°C)
𝑇𝑖 Total Irradiation (W/m2)
𝑉𝑐𝑖𝑛 Cut-in wind speed (m/s)
𝑉𝑐𝑜𝑢𝑡 Cut-out wind speed (m/s)
𝑉𝑅 Rated wind speed (m/s)
𝑉𝑡 Wind speed (m/s)
𝜂𝑚𝑜𝑑 PV module efficiency
𝜂𝑃𝑉 PV generator efficiency
𝜓 Maximum Power Temperature Coefficient (%/°C)
𝜂𝑐𝑜𝑛3 Converter efficiency 3 (%)
𝜂𝐸𝑙𝑧 Electrolyzer efficiency (%)
𝐻𝐻𝑉 Higher heating value of H2 (MJ/kg)
𝑚𝐻2𝑙𝑜𝑎𝑑 Mass of H2 load (kg)
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𝑚𝑑𝑐ℎ,𝑡𝑎𝑛𝑘 Mass of H2 discharged (kg)
𝜂𝑖𝑠𝑒𝑛 Compressor isentropic efficiency (%)
𝑃𝐸𝑙𝑧𝑢𝑛𝑖𝑡,𝑚𝑎𝑥 Electrolyzer rated power (MW)
𝑧𝑚𝑖𝑛 Electrolyzer minimum operation threshold (%)
𝑠𝑚𝑖𝑛 Minimum level of H2 in the tank (%)
𝑠𝑚𝑎𝑥 Maximum level of H2 in the tank (%)
𝑖 Discount rate (%)
𝑛 Project lifetime (years)
𝐶𝑎𝑝𝑒𝑥 Capital Investment (€/Unit)
𝑂𝑝𝑒𝑥 Operation and maintenance cost (€/Unit/year)
𝐶𝑎𝑝 Capacity of the component (Unit)
𝐶𝑎𝑝𝑗 Installed capacity of the components
𝜖𝑒𝑚𝑠 Electricity carbon intensity (kgCO2-eq/Unit)
𝐶𝑂2𝑒𝑚𝑠,𝑔𝑟𝑖𝑑 Carbon emission from the grid import of energy (kgCO2-eq)
𝑁𝑏𝑢𝑠,𝑡𝑜𝑡 Total number of bus fleet
𝑁𝑏𝑢𝑠,ℎ𝑜𝑢𝑟 Maximum number of bus in the pump per hour
𝐷𝑑𝑎𝑖𝑙𝑦𝑝𝑒𝑟𝑏𝑢𝑠 Total daily H2 demand per bus
Sets
Δ𝑡 Interval of time between two time steps
𝐽 Set of components, 𝑗 ∈ 𝐽
𝑇 Time horizon
𝑡 time step within time horizon, 𝑡 ∈ {0,… , 𝑇 − 1}

Sizing Decision Variables
𝑵𝑷𝑽 Number of solar photovoltaic panels
𝑵𝑾 𝑻 Number of wind turbines
𝑵𝑬𝒍𝒛 Number of electrolyzers
𝑵𝒑𝒖𝒎𝒑 Number of dispensers
𝑳𝑶𝑯𝑯𝟐𝒕𝒂𝒏𝒌,𝒎𝒂𝒙

Capacity of H2 tank (kg)
Operation Decision Variables
𝑷𝒈𝒓𝒊𝒅,𝒊𝒏𝒊𝒕 Imported grid power (MW)
𝑷𝒘𝒂𝒔𝒕𝒆 Waste power (MW)
𝑵𝒃𝒖𝒔𝒆𝒔 Number of buses passing to refueling station
𝑹𝒔 Share of renewable energy (MW)
𝑮𝒔 Share of grid import (MW)
Dependent Operation Variables
𝑃𝑃𝑉 Photovoltaic panel power (MW)
𝑃𝑊 𝑇 Wind turbine power (MW)
𝑅𝑔 Total renewable generation (MW)
𝑃𝑔𝑟𝑖𝑑 Total grid import (MW)
𝑃𝐸𝑙𝑧 Input power to the electrolyzer (MW)
𝑚𝐻2𝐸𝑙𝑧,𝑜𝑢𝑡 Mass of produced H2 (kg)
𝑚𝑐ℎ,𝑡𝑎𝑛𝑘 Mass of H2 charged (kg)
𝐿𝑂𝐻𝐻2𝑡𝑎𝑛𝑘 H2 tank level (kg)
𝑚𝐻2𝑙𝑜𝑎𝑑 Mass of H2 load (kg)
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(a) Solar irradiance from 2019 to 2023 in Dijon, France.

Ja
n 

20
19

M
ay

 2
01

9

Se
p 

20
19

Ja
n 

20
20

M
ay

 2
02

0

Se
p 

20
20

Ja
n 

20
21

M
ay

 2
02

1

Se
p 

20
21

Ja
n 

20
22

M
ay

 2
02

2

Se
p 

20
22

Ja
n 

20
23

M
ay

 2
02

3

Se
p 

20
23

Year

2

4

6

8

10

12

14

wi
nd

 sp
ee

d 
(m

/s
)

2019
2020
2021
2022
2023

(b) Wind speed from 2019 to 2023 in Dijon, France.
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(c) Electricity demand from 2019 to 2023 in Dijon, France.
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(d) Electricity tariff from 2019 to 2023 in France.
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