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Abstract

Physics-based simulations are now widely employed in mechanical engineering. Flexible
Multibody dynamic Simulations (FMBSs) have proven to be effective in representing the
behavior of complex structures with local damping and stiffness nonlinearities. However,
due to the broad range of component flexibilities as well as contact behavior between
structural elements, time integration analyses can result in high computational burden.
The challenge addressed in this article concerns the implementation of an efficient model
reduction procedure in order to provide an acceptable tradeoff between calculation time
and loss of accuracy in the prediction of system responses and dynamic loads. In most
FMBS commercial software, the behavior of linear elastodynamic components is taken
into account via imported Craig–Bampton superelements. In this context, dynamic mode
selection techniques have been shown to provide a better order reduction than the standard
low-frequency truncation. This article provides a review of dynamic mode selection
methods that can be found in the literature, followed by a comparison based on simulations
of an aircraft engine stator integrated in the full industrial engine model and tested on a
speed ramp-up with unbalance.

Keywords: Craig–Bampton superelement; multibody simulation; local elastic modes;
model order reduction; rotating machinery

1. Introduction
Flexible Multibody dynamic Simulations (FMBSs) are a powerful tool for analyzing

the behavior of complex machinery under real-world operational conditions, especially
in the field of rotating machines where large rotational displacements are involved [1].
The general framework was established several decades ago [2] but is still the topic of
recent works [3]: each structural component is first modeled using the Finite Element
Method (FEM), then reduced through Component Mode Synthesis (CMS) [4], and then
assembled using various types of connections (clamp, pivot, etc.) available in commercial
software (ADAMS, SIMPACK, and SIMSCAPE).

In the context of turbomachinery architecture evolution and the growing availability of
computational resources, coupled with the expensive nature of experiments, engineers are
increasingly leaning towards high-fidelity virtual prototyping. While Flexible Multibody
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Software (FMBS) solvers exhibit commendable speed given the intricate nature of the mod-
els, the rising complexity of engine models leads to a substantial increase in computational
burden. Indeed, the structures involve numerous components and connections featuring
local damping or nonlinear stiffness. Furthermore, the behavior of these structures must be
studied across a broad frequency spectrum. Consequently, the time integration for a single
scenario can exceed ten hours, which is a deal-breaker in the design optimization phase.

Although the general framework for FMBS is now fairly standard, several significant
scientific obstacles remain, particularly in the context of model reduction and CMS. Firstly,
traditionally, CMS assumes linear behavior, but several contributors are seeking to incorporate
nonlinearities into the behavior of these components: [5,6], for geometric nonlinearity; [7],
for material nonlinearity; or [8], for friction nonlinearities. Secondly, there is great interest in
CMS as it allows for parametric evolutions to be captured when dealing with materials that
depend on frequency or temperature [9] or when dealing with an optimization process or
nonlinear simulation [10]. Finally, research is focusing on linear CMS model improvement.
An important way to optimize the reduced model is mode selection, as it reduces the number
of variables. Recent approaches are mainly based on energy criteria [11] or truncation error
criteria [12]. Recently, Janssen et al. [13] proposed double criteria based on the frequency range
of interest and the ability to capture the connection behavior. Our work focuses on this aspect
and aims to compare several approaches dedicated to this objective. A key factor influencing
computation time is the number of modes considered for modal superposition within each
flexible body. Indeed, across all simulations conducted in Section 3.3 using various modes in
the modal basis, we observed a quadratic relationship between the number of modes and the
time required for time integration.

Traditionally, a Craig–Bampton superelement [4] for each flexible component is im-
ported in FMBS software, consisting in mass and stiffness operators projected onto a basis
comprising static modes (Guyan) and fixed-interface modes, also depicted as fixed-interface
modes or constrained normal modes. Subsequently, a modal basis is internally recalculated
based on the imposed boundary conditions in the model and truncated to the relevant
maximal frequency of interest. Depending on the component’s geometry and material
properties, a significant number of modes may be retained, but only a few actively con-
tribute to the system’s response. Indeed, some of them may represent local mode shapes
that are either not likely to be excited or contribute negligibly to the loads at the interface.

The local modes in the resulting Reduced-Order Model (ROM) arise from some par-
ticular internal Craig–Bampton dynamical modes preserved in the condensation. Various
methods exist in the literature, aiming to filter them by means of participation factor
computing. Notable methods include the following:

• Effective Interface Mass (EIM) and its derivatives VEIM and DEIM proposed by
Kammer in [14];

• Participation Factors introduced by Lenoir, Cogan, and Lallement [15] (denoted LPF);
• Optimal Mode Ranking (OMR) [16];
• CMSχ, where CMS stands for Component Mode Synthesis [17];
• Interior Mode Ranking (IMR) [18];
• Energy-Based Ranking (EBR) [11].

It can be noted that some of the filtering methods have been previously compared on
simple academic test cases [19,20] highlighting IMR’s effectiveness and OMR’s poor perfor-
mance. Additionally, EIM has been successfully applied to the crankshaft and the conrod
of Multibody cranktrain model [21]. In the present work, various ranking techniques are
compared using an industrial case study: the stator of a next-generation aircraft engine.
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To bring it all together, the diagram in Figure 1 outlines the general process of con-
structing an FMBS model, with a focus on the modified superelement generation. In this
process, the fixed-interface modes of the Craig–Bampton superelements are ranked, sorted,
and truncated to prioritize the most significant modes in the dynamic response of the
structure rather than low-frequency modes. The nonlinear phenomena present in the
gearbox do indeed induce high-frequency behavior related to harmonics. Nevertheless,
all the methods compared, as well as the reference Craig–Bampton superelement, use the
same frequency truncation rule: five times the maximum rotor speed for calculating the
fixed interface modes used to construct the superelement and then two and a half times
the maximum speed during modal analysis on the resulting superelement as part of the
transient calculation. This choice of cutoff frequency is debatable, but it also comes with
computational constraints. This study focuses on the frequency range described above,
in line with industrial applications and needs.

Figure 1. Workflow for flexible multibody modeling with CB mode selection. xm and xs are respec-
tively master and slave physical DOF, while q represents modal DOF.

In this paper, we aim to compare several of these methods on a realistic industrial
case study, an aircraft engine model including a stator, two rotors, and a planetary gear
train. The load case is an unbalance response. The evaluation criteria will focus on the
computational time savings and the accuracy of forces and displacements at the bearings,
which are also the interfaces of the superelements.

In this paper, we begin by recalling the basics of Craig–Bampton condensation and
provide a concise overview of the different methodologies found in the literature to op-
timally select internal dynamical modes. They will be categorized into two groups: the
a priori methods, which do not necessitate any prior knowledge of the crucial modes of the
structure to be retained, and the a posteriori methods, which require prior knowledge of
the important modes of the complete physical system to properly select the appropriate
fixed-interface modes.

Subsequently, we assess a subset of these methods using an initial voluntary simplified
industrial aircraft engine model, which involves a stator, two rotors, and a linearized
planetary gear train. The evaluation aims to identify the most efficient approach based on
criteria such as calculation time savings and the accuracy of load predictions across the
entire structure.

Finally, we apply the most promising method to a nonlinear flexible multibody system
featuring a comprehensive aircraft engine model. The assessment criteria remain centered
on computational efficiency and the precision of load predictions throughout the structure.

2. Review of Craig–Bampton Mode Selection Techniques
The Craig–Bampton method (CB) stands out as one of the most extensively employed

Component Mode Synthesis (CMS) techniques in structural dynamics. Introduced by
Donald Craig and Clark Bampton [4], it facilitates the design and the dynamic analysis of
structure assemblies.
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2.1. Theoretical Background

Each component is modeled individually, and the Craig–Bampton method provides a
reduced-order model where the interfaces with other components retain physical degrees
of freedom.

First, let us recall the conservative dynamic equation:

MÜ + KU = F. (1)

Here, M and K are n × n matrices representing the mass and stiffness matrices, respec-
tively; F is the vector of external forces; and U denotes the vector of degrees of freedom.

The n degrees of freedom (DOFs) of the finite element structure are categorized into
two groups: the “master” DOFs (designated with subscript m) and the “slave” DOFs
(subscript s), such as n = nm + ns. Master nodes, also referred to as “boundary” nodes,
are retained in the FMBS environment for applying forces, modeling connections, or po-
sitioning virtual sensors. Conversely, slave nodes, or “interior” nodes, are no longer in
use. By reorganizing rows and columns of the finite element matrices, we can express
Equation (1) as follows:[

Mmm Mms

Msm Mss

]{
üm

üs

}
+

[
Kmm Kms

Ksm Kss

]{
um

us

}
=

{
R
0

}
. (2)

R are the reaction forces resulting from a interface displacement field um.
The next step involves computing static modes, commonly referred to as Guyan

modes, denoted by Ψ and determined by the following:

Ψ = −K−1
ss Ksm. (3)

Then, considering all master nodes constrained, we compute the fixed-interface modes
Φ, by solving the eigenvalue problem:

KssΦ = MssΦΩ. (4)

Ω is the diagonal matrix of square eigenvalues. The set of fixed-interface modes Φ
is reduced to a subset associated with natural frequencies lower than a cutoff frequency
set by modeling assumptions, yielding Φ̃; such that the modal properties of the resulting
superelement and the full-order model (FOM) in the frequency band of interest for the
application remain close. The modal basis used for the coordinates transformation is
represented by the matrix T:{

um

us

}
=

[
I 0
Ψ Φ̃

]
︸ ︷︷ ︸

[T]

{
um

q

}
→

{
um = um

us = Ψum + Φ̃q
. (5)

q represents the modal degrees of freedom. Finally, the projection of mass and stiffness
operators into a reduced space yields the operators of the reduced order model:

MCB = TT MT, KCB = TTKT, FCB = TT F, (6)

2.2. A Priori Selection Methods

In this section, we will go through the a priori methods for ranking internal modes. Those
techniques do not require any prior knowledge on the important modes of the structure.



Vibration 2025, 8, 81 5 of 16

On the one hand, the Effective Interface Mass (EIM) and Lenoir Participation Factors
(LPFs) are fundamentally rooted in the concept of modal masses. The EIM method, however,
distinguishes itself by additionally accounting for the influence of mass distribution at
the interface.

On the other hand, the Optimal Mode Ranking (OMR) and CMSχ methods are
grounded in the evaluation of strain energy within the structure. In essence, both ap-
proaches prioritize modes based on the amount of strain energy associated with each mode.
Nevertheless, the primary discrepancy between them lies in the treatment of frequency in
the ranking process.

For each method, we will express the modal participation factor denoted Si.

2.2.1. Lenoir Participation Factors (LPFs)

In 2002, D. Lenoir, S. Cogan and G. Lallement [15] proposed to examine the relationship
between the displacement at the interface um and the corresponding reaction forces R to
defines the excitability of the modes of the component with a clamped interface with
respect to the inertial forces generated by the interface displacement. To do so, substituting
Equation (5) in Equation (2) and premultiplying it by HT yields the following:([

K̄mm 0
0 Ω

]
− ω2

[
M̄mm Lms

Lsm I

]){
um

q

}
=

{
R
0

}
, (7)

where the eigenmodes of the component clamped at the interface satisfy the following
orthonormality relations ΦT MssΦ = I and ΦTKssΦ = Ω, and where

K̄mm = Kmm + KmsΨ,

M̄mm = Mmm + MmsΨ + ΨT Msm + ΨT MssΨ,

Lms = MmsΦ + ΨT MssΦ.

In this method, the interface mass matrices Mmm, Mms and Msm are neglected, resulting in

M̄mm = ΨT MssΨ,

Lms = ΨT MssΦ.

Then, we can obtain the relation between the reaction forces and the displacements at
the interfaces:

R =

(
K̄mm − ω2

[
M̄mm + ∑

i

1(ωi
ω

)2 − 1
LmiLim

])
um, (8)

where Lmi = ΨT MssΦi is the ith internal mode participation factor. This relation distin-
guishes the static component M̄mm and the dynamic component of the reduced interface
mass matrix. The product LmsLsm represents the classical modal effective mass matrix.

Finally,
SLPF

i = Lmi = ΨT MssΦi. (9)

2.2.2. Effective Interface Mass (EIM)

Developed by Kammer and Triller in 1996, the Effective Interface Mass (EIM) factor
determines the contribution of each constrained normal mode to the dynamic loads at the
interface under general displacements of the interior. It is similar to the previous method
but does not neglect the interface mass matrices.
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The modal participation factor matrix is computed as follows [14]:

P = −ΦT(MssΨ + Msm). (10)

The ith row Pi contains the modal participation factors for the ith fixed-interface mode.
They represent multiplication factors for the acceleration inputs from the interface degrees
of freedom numbered with the subscript j. The larger the jth entry in Pi, the more the ith

mode will be excited by the jth input. Finally, the EIM factor for internal mode i is obtained
through the following equations:

M̄ =
no

∑
i=1

M̄i =
no

∑
i=1

PT
i Pi = PT P, (11)

SEIM
i =

tr(M̄i)

tr(M̄)
. (12)

The authors extended EIM to consider modal velocity VEIM (13) and modal displace-
ment outputs DEIM (14), weighting low-frequency modes more heavily.

SVEIM
i =

tr
(

¯MΩ−1
i

)
tr( ¯MΩ−1)

, (13)

SDEIM
i =

tr
(

¯MΩ−2
i

)
tr( ¯MΩ−2)

, (14)

where MΩ−n = PTΩ−nP.
Instead of being ranked by increasing frequency as is the case in the classic Craig–

Bampton framework, modes are ranked by decreasing EIM factor. The number of dynamic
modes retained in the modal basis is determined by a mass-based criterion. The recom-
mended approach is to retain at least 90 percent of the system’s mass. This involves keeping
modes with higher EIM values until the cumulative sum reaches 0.9.

2.2.3. Optimal Mode Ranking (OMR)

Developed in 2004 by Givoli et al. [16], the participation factor OMR for ranking the
constrained normal modes, with eigenvalue ωi and eigenvector ϕi, is obtained with the
formula below:

SOMR
i = ωi MT

smϕiϕ
T
i Msm − MT

smϕiϕ
T
i Ksm − KT

smϕiϕ
T
i Msm +

1
ωi

KT
smϕiϕ

T
i Ksm. (15)

This method had not been tested because it showed mitigated performances on aca-
demic cases compared to other methods, probably because not enough weight is given to
the frequency of the internal modes as compared to other methods (see Equation (17)).

2.2.4. CMS “khi”

Developed in 2007 by Liao et al. [17] as a declination of OMR, the participation factor
CMSχ for ranking the constrained normal modes ϕi is obtained with the formula below:

SCMSχ
i =

1
ωi

(Msm − MssΨ)Tϕiϕ
T
i (Msm − MssΨ). (16)

A relation between some participation factors is demonstrated in [20] between Kam-
mer’s methods, OMR, and CMSχ:
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SEIM
i = ω2

i SVEIM
i = ω4

i SDEIM
i = ω2

i SCMSχ
i = ω−2

i SOMR
i , (17)

where ωi is the frequency of ϕi. It is shown that CMSχ is equivalent to VEIM while being
more computationally expensive. As a consequence, it will not be tested.

2.3. A Posteriori Selection Methods

In this section, we will go through the a posteriori methods for ranking internal modes.
In contrast to a priori methods, they require prior knowledge of the important modes
of the structure or excitation in order to choose the appropriate fixed-interface modes to
keep for the condensation, ensuring good representability of the physical model by the
superelement for the application case. But, ultimately, we want to perform the selection
without initial calculations. For the a posteriori methods, we therefore opted for a definition
of force that contains all possible components. This approach is clearly disadvantageous
for a posteriori methods but corresponds to the reality of the intended use.

2.3.1. Energy-Based Ranking (EBR)

The mode selection criterion proposed in [11] ranks the interior modes by using scalar
coefficients representing the contribution of each interior mode to the mean kinetic and
potential elastic energy stored by the complete system in a period of the external force.
These coefficients provide a measure of the importance of each interior mode to the forced
response of the full-order system and account explicitly for both the frequencies and the
spatial distribution of the force.

The system is supposed to be excited on the master DOFs by a set of periodic external
nodal forces fe consisting of a sum of n f harmonic components fk:

f (t) =

{
fe(t)

0

}
=

n f

∑
k=1

fk(t) =
n f

∑
k=1



f1,k cos(ωkt + α1,k)
...

fnm ,k cos(ωkt + αnm ,k)

0nm+1,k
...

0n,k


, (18)

where fk is the kth harmonic component of the periodic force and fi,k, ωi,k, and αi,k are re-
spectively, the amplitude, the angular frequency, and the relative phase of the kth harmonic
component exciting the ith DOF.

The contribution of the ith interior mode to the system mean energy can be evaluated
through the scalar coefficients:

SEBR
i =

n f

∑
k=1

∣∣∣∣ 1
2

(
ω2

i + ω2
k

)(
Gηi,k fk

)2
+ ω2

k

∣∣∣ f T
k GT

ek

∣∣∣Dβe,kγi,k Mmsϕi

∣∣∣Gηi,k fk

∣∣∣∣∣∣∣ , (19)

with Gek and Gηk arising from the partition of the contributions of um and us in

[
KCB − ω2

k MCB
]−1

=

[
Gek

Gηk

]
, (20)

and with Dβe,kγi,k = diag
(
cos
(

βi,k − γς,k
))

, i = 1, . . . , s, e = 1, . . . , m, where βi,k is the
relative phase of the response of the ith DOF to the kth harmonic component and γj,k

represents the relative phase of the response of the jth interior modal coordinate to the kth

harmonic component.
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This method requires knowing the external force to be applied before generating the
reduced-order model.

2.3.2. Interior Mode Ranking (IMR)

The mode selection criterion proposed in [18], referred to as the Interior Mode Ranking
(IMR) method, aims to rank the constrained normal modes according to the contribution
they provide to the dynamics of one or more selected vibration modes of the full system
with actual boundary conditions. The eigenvector matrix of the full system is denoted V
and has the size n × n.

The participation coefficients of the interior modes i in the dynamics of the ζth normal
mode of the full order system is as follows:

SIMR
ζ,i = Γ2ζ,i

 1(
ωi
ωζ

)2
− 1

mT
(

jω f

)
ϕi i = 1, . . . , ns, (21)

where ϕi is the ith fixed interface normal mode shape, Γ2ζ,i arises from the partitioning of
the transformation matrix VT MH into Γ1 (size n × nm) and Γ2 (size n × ns) that splits the
contributions of both um and us, and the frequency of the fictitious force ω f is assumed
equal to the angular frequency of the mode of interest ωζ plus a small frequency shift and

m
(

jω f

)
is defined by the following:

m
(

jω f

)
=

ω2
ζ Msm + ω2

f MssΨ

ω2
f

(
ω2

ζ − ω2
f

) vζ,m +
Mss

ω2
f

vζ,s

, (22)

where vζ,m and vζ,s arise from the partitioning on master and slave DOFs of the modal
shape of the ζth mode of the full system.

This method requires knowing the modes of the full system that will be excited.

3. Improved Performances of Flexible Multibody Analysis
3.1. Presentation of the Industrial Application Cases

To reduce the duration of flexible multibody simulations, we have identified and
reviewed several methods to improve the construction of the Craig–Bampton superelement.
For comparative analysis, we will now apply these methods to a stator component v1
introduced into a deliberately simplified flexible multibody model featuring two rotors
and a linearized planetary gearbox (Model A in Figure 2). The Finite Element (FE) model
of this particular stator component exhibits numerous local elastic modes, facilitating the
distinction of the efficiency of various methods.

Subsequently, after identifying the most promising method, we apply it to another
stator component v2, consisting of an improved version of stator v1, completed with a
nacelle and a pylon. Stator v2 is integrated into a complete turbomachine model consisting
of three rotors and a fully detailed nonlinear gear train (Model B in Figure 2). The FE model
of stator v2 is of better quality than v1 and exhibits less local elastic modes. Concerning the
planetary gear train, each planet, the planet carrier, the sun gear, and the ring have flexible
bodies. Detailed gear force elements are employed, accounting for the three-dimensional
motion of components and meshing effects. Internal mode filtering is exclusively applied to
the statoric parts because the rotors are modeled as beams, where all nodes are considered
as master nodes, allowing no fixed-interface modes. Regarding the gear train, due to cyclic
symmetry, we assume that there are no local deformations except for the teeth deflection,
which we aim to preserve.
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Figure 2. Industrial cases for Craig–Bampton internal mode selection techniques comparison (A)
and final real-world application (B). The orange and green arrows indicate, respectively, the applied
speed and imposed torque on the shaft. The black comb symbol shows that the system is rigidly
linked to the ground.

To classify the methods, the test case involves transient analysis of an unbalance
response. A mass is attached to the low-pressure turbine, and the angular velocity of the
rotors is linearly imposed from 0 to the maximum speed, while a resistive torque is applied
in accordance with real-world operating conditions. The features under comparison include
the evolution of loads in the bearings and suspensions of the engine with angular velocity.

3.2. Practical Implementation and Results

The full physical operators of the components are initially extracted as op4 files from
the MSC Nastran (v2018) Finite Element model using a dedicated DMAP script. These
files are processed using MATLAB (v2019b) routines to obtain them as MATLAB files.
We then conduct a reordering of rows and columns to gather master nodes on the one
hand and the slave nodes on the other hand. We also remove non-independent nodes
from the model (attached with MPC—Multiple Point Constraint—or RBE—Rigid Body
Element—for example).

Both stator versions have 13 master nodes, which means 78 master DOFs, resulting
in the same amount of static modes, which are computed according to (3). Constrained
normal modes are computed, ranked, and sorted by decreasing participation factors for
each method. Considering that the stator (v1 or v2) features over 150,000 degrees of
freedom, and due to limited computational resources, the computation of all fixed-interface
modes is hardly feasible. Consequently, our approach involves calculating these modes up
to five times the maximum frequency of interest. Modes beyond this limit are unlikely to
exhibit significant participation factors.

Finally, the ranked and sorted modes are truncated based on criteria defined in the
literature or through trial and error to evaluate performance in the industrial application
case. Full mass, stiffness, and damping operators are projected onto a modified Craig–
Bampton basis, retaining the most significant modes according to each ranking method.
The reduced-order matrices are written in a binary file for compatibility with the multibody
software and imported into the whole-engine model.



Vibration 2025, 8, 81 10 of 16

As an illustrative example, let us focus on the application of Effective Interface Mass
(EIM). Figure 3 compares the cumulative sum of EIM values for modes sorted by increasing
frequency, as in the classic Craig–Bampton method, against modes sorted by decreasing
EIM. This comparison reveals that many low-frequency modes in the structure exert
minimal influence on the system’s response at interface and can be safely excluded from
the projection modal basis.

Figure 3. Cumulative sum of effective interface mass participation factor.

Kammer and Triller recommend truncation to ensure a minimum of 90% effective
interface mass. In a conservative approach, maintaining 95% of Effective Interface Mass
(EIM) would necessitate selecting approximately 1400 modes when sorted by increasing
frequency. However, when ordered by decreasing EIM participation factor, only 500 modes
would be enough. In the latter case, the resulting superelements would have fewer modal
DOFs, with the number of physical DOFs remaining the same.

Figure 4 shows the Modal Assurance Criterion (MAC; see (23)) matrix between the
modes of the EIM superelement and the full physical model. To make the figure easier to
read, the matrix is reduced to the first 13 modes. They are representative of the entire matrix.
While the low-frequency modes of a classic Craig–Bampton superelement correspond
to those of the full-order model and would show a diagonal with ones, here, certain
modes (highlighted in red boxes) present in the FOM are absent in the EIM superelement.
These modes correspond to local elastic modes, while global modes are well-represented
(MAC > 0.95 attesting to the resemblance of modal shapes (green boxes)).

MAC({ϕs}, {ϕr}) =
∣∣{ϕr}T{ϕs}

∣∣2
({ϕr}T{ϕs})({ϕs}T{ϕr})

. (23)

We have successfully reduced the number of modes of the superelement in the relevant
frequency range from 494 to 340. This reduction significantly cuts down the computational
time required for the multibody simulation, all while maintaining a very good accuracy of
the results. The excluded modes, having negligible contributions to the system’s response,
do not compromise the overall outcomes.

Furthermore, it is worth discussing the selection criteria for EIM. In Figure 5, only
MAC values greater than 0.95 are plotted, comparing the mode shapes of resulting EIM
superelements with selection criteria 90%, 95% and 610 modes to those from the full Finite
Element (FE) model modal analysis. The short dashed horizontal lines indicate the number
of degrees of freedom of the substructure, while the long dashed horizontal lines represent
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the number of internal modes. The vertical line indicates the number of modes to be used
in the physical model, for modal superposition in the frequency range of interest.

Figure 4. Modal assurance criterion matrix of the stator superelement obtained with EIM ranking vs.
the full physical model.

Figure 5. Impact of the chosen criterion for EIM in terms of internal modes and degrees of freedom.

As expected, the less restrictive the selection criteria, the more internal modes are kept,
the better the correspondence between the FOM and the ROM within the studied frequency
band. However, this also leads to reduced potential for decreasing computation time.
Therefore, the ultimate decision entails finding a balance between the desired prediction
accuracy and the need for saving computation time.

3.3. Performance Benchmarking of Selection Techniques

For the purpose of comparison, a reference model was used to evaluate both compu-
tational time savings and the loss of precision in bearing load estimations. This reference
model employed the Craig–Bampton method with a truncation frequency set to five times
the maximum frequency of interest, resulting in 1650 dynamic modes within the superele-
ments, in addition to the 78 static modes. This approach yielded a total of 494 modes
considered after integration into the MBS model and truncation to the frequency of interest.
The time integration for this reference model required approximately 20 h.

The process described in the previous subsection is replicated for most a priori meth-
ods, employing various truncation criteria. The a posteriori method IRM was omitted from
testing, as it is deemed unsuitable for our case. To determine the appropriate modes from
the full physical model, one would need to conduct an expensive simulation and invest
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effort in analyzing modal participations. Given the presence of several hundred modes,
identifying the relevant ones becomes a challenging task. The other a posteriori method,
referred to as EBR, was tested by selecting arbitrary excitation forces. This approach was
necessitated by the lack of prior knowledge about the locations of loads without running
the simulation. Consequently, we are not confident in the method’s relevance in this case,
as the excitation forces are chosen without prior information.

For each mode selection method and chosen selection criterion, the number of retained
dynamic modes for condensation is specified in Table 1, along with the difference between
the resulting number of modes used for modal superposition in the multibody simulation
and in the reference case. The differences between the methods rely in the choice of internal
modes and its intricate link to the resulting number of modes in modal basis of the ROM.
For instance, all methods were tested while retaining the first 292 internal modes sorted by
decreasing participation factors. Notably, the number of resulting statoric modes used for
time integration varies. These discrepancies can be further investigated in Figure 6, where
MAC > 0.98 are plotted between FOM and ROM for the various methods, highlighting
their distinct selectivity tendencies. We can, for example, confirm the statement that VEIM
assigns more significance to low-frequency modes than EIM. Another observation is that
all methods filtering low-frequency modes seem to target approximately the same FOM
modes for elimination.

Table 1. Summary table of computation time savings and precision on load estimation in bearings
among various internal mode selection methods for a benchmark on model A. NIDM: Number of
fixed-interface modes. Diff: Difference in nb of statoric modes compared to ref. Time: Normalized
computation time (ref. = 1).

Method N Diff Mass (%) Time
Max. Rel. Error on
Loads at Bearing (%)

Max. Rel. Error on Dis-
placement at Bearings (%) Score (/20)

Worst Best Mean Worst Best Mean

CB 610 0 1.01 4.2 0.2 1.1 2 1 1 8.9
292 −187 0.45 26.4 3.5 10.2 11 3 7 5.5

LPF
610 −112 98.3 0.66 4.4 0.2 1.5 3 1 2 11.9
327 −231 95.0 0.37 5.3 1.1 2.6 2 1 2 13.7
292 −257 94.2 0.30 5.8 1.3 3.3 4 1 3 13.7

EIM
610 −105 96.7 0.63 3.9 0.3 1.2 2 1 1 12.5
485 −154 95.0 0.51 4.4 0.5 1.7 3 1 2 13.2
292 −245 90.0 0.33 13.0 1.9 5.0 5 2 3 11.7

VEIM 292 −198 99.7 0.51 5.4 0.5 1.8 2 1 2 13.1
100 −375 95.0 0.12 45.9 9.4 24.9 11 5 8 8.8

EBR 338 −167 99.0 0.58 9.0 1.6 4.0 3 2 2 10.2
292 −209 98.4 0.45 22.0 2.1 9.3 9 2 6 6.2

The percentage of time saved compared to the reference model is also provided.
The relation between time savings and the amount of statoric modes in the frequency
range for analysis is highlighted in Figure 7. Indeed, the calculation time depends linearly
on the number of degrees of freedom N for solving second-order differential systems,
but the algebraic-differential equations associated with mechanical connections introduce
a “complexity” that leads to solution times proportional to the cube of the number of
degrees of freedom. Recent work [22] shows that it is possible to reduce the time required
to solve constraint equations without, however, achieving proportionality to N. In our case,
proportionality to N2 has been observed empirically.
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Furthermore, we compute the maximum relative error ϵ observed during the complete
ramp-up phase using Equation (24), where x represents the observed value and xre f denotes
the reference value:

ϵ = maxsimu

 abs
(

x − xre f

)
max

(
xre f

)
− min

(
xre f

)
. (24)

Out of the eight load features, ϵ is given in the table for the worst load feature, as well
as the best and mean out of the eight.

Finally, a score S = S1 + S2 out of 20 is calculated based on the accuracy and time
saving according to the following rules:

• if ϵmean < 10%, S1 = 10 − ϵmean else, S1 = 0
• 0/10 if t < tre f , S2 = 10 t

tre f
else S2 = 0

The best marks are obtained for the EIM and LPF methods. The latter is applied in the
next section on the statoric parts of the next generation of civil aircraft engines CFM RISE
for industrial validation. The EIM method is indeed equivalent to the LPF method, which
does not neglect the mass terms at the interface. The similar results obtained using these
two methods show that the mass at the interface has little effect in the case of the stators
studied. This conclusion can be generalized to any structure with distributed mass and
relatively small interfaces.

Figure 6. Modal Assurance Criterion (MAC) between the Full Order Model (FOM) and various
Reduced Order Models (ROMs) using different mode selection techniques. Only MAC values greater
than 0.98, which attest to a good correspondence between modal shapes, are displayed, allowing for
a comparison of the selectivity of the different methods.

Figure 7. Influence of the number of modes in the modal basis on the simulation duration.
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3.4. Validation

The most promising methods for fixed-interface mode selection had been identified thanks
to a benchmark based on the intentionally simplified yet relevant model A (cf. Figure 2).

Lenoir’s method with selection criterion set to 95% of the mass is applied to model B,
which represents the most detailed FMBS model of RISE to date, including notably the
nonlinear effects of the planetary gear box. The gain in computational time was 17.6%
(22.25 h instead of 27 h), which is particularly noteworthy considering the minimal addi-
tional effort required. Indeed, it only requires adding a single line of code to call a DMAP
script implementing the LPF method to the Nastran file used for superelement construction.
Moreover, it is worth noting that the performed improvement pertains to only a small
portion of the DOFs of the entire system, exhibiting linear behavior. As for the accuracy of
prediction, it was excellent for the application discrepancies inferior to 1%, observed on all
the load features while performing unbalance response on the low-pressure turbine. The
explanation lies in the fact that much of the high-frequency behavior is captured by static
modes (Guyan). Since the nonlinearities are not internal to the superelement, the latter
filters the excitations that reach it. Guyan modes ensure the transmission of forces from one
bearing to another, regardless of the choice of frequency truncation. The results obtained
on model B show, through their fidelity to the reference simulation, that there is no need
to question the selection method when nonlinearity occurs outside the reduced model.
Indeed, the dominant frequency content in the response (in terms of amplitude) is clearly
present in the range.

4. Conclusions and Future Work
Flexible Multibody Simulations are efficient for predicting loads in complex nonlinear

structures in operation. However, despite the ongoing advancements in computational re-
sources, FMBS can impose a substantial computational burden. Through our investigation,
we have observed that the computational time required for temporal simulation of a sim-
plified aircraft engine model exhibits a quadratic relationship with the number of retained
modes of the stator’s flexible body for modal superposition. Consequently, reducing the
number of superelement modes within the frequency range of interest is essential to reduce
computational time, particularly when the structure contains local elastic modes that have
minimal significance in the overall system response.

In this study, we have adapted the classical Craig–Bampton reduction methods by
incorporating various existing techniques from the literature, which offer a refined selection
of dynamic modes. To assess the efficiency of these methods, we conducted a comparative
analysis based on results obtained from a speed ramp-up with unbalanced response in a
realistic aircraft engine model. This evaluation primarily considered time-saving benefits
and the accuracy of load predictions.

Our findings highlight two standout methods: the Effective Interface Mass method,
as proposed by Kammer [14], and a method proposed by Lenoir and Cogan in [15]. These
methods have demonstrated the ability to achieve significant computational time reductions,
up to 65 percent, while introducing a maximal relative error of 4 percent in load predictions
for all bearings during the ramp-up phase, which is satisfactory for the application.

In the scope of this work and with regard to the time available, the methods OMR
and CMSχ have not been employed due to their recognized lower efficiency on academic
test scenarios or similarities with other tested methods. Likewise, the exploration of the
IMR method has been omitted due to its restricted relevance to the specific application as it
necessitates prior knowledge of the modes to retain from the full-order system in order to
select the most suitable fixed-interface modes for Craig–Bampton’s condensation.
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The list of tested methods is not exhaustive and only concerns improvements of the
Craig–Bampton reduction method, which is most widely used in commercial multibody
software. Nevertheless, there are alternative approaches, such as moment-matching by
projection on Krylov subspaces or SVD-based reduction techniques to take into account the
time-varying boundary conditions in the reduction step [23–25]. Those are worth including
in this benchmark. However, due to considerations regarding integration feasibility with
existing industrial methods, time constraints, and the already satisfactory results obtained,
these methods were not explored as part of this study.

In the future, it is certainly the use of superelements constructed from data, so-called
“surrogate models” [26], that could make it possible to select fewer variables to simulate,
further reduce calculation times, and improve accuracy.
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FEM Finite Element Method
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CMS Component Mode Synthesis
CB Craig–Bampton
EIM Effective Interface Mass
LPF Lenoir Participation Factor
OMR Optimal Mode Ranking
IMR Interior Mode Ranking
EBR Energy-Based Ranking
FOM Full-Order Model
ROM Reduced-Order Model
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