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 A B S T R A C T

Biocomposites are increasingly used to reduce the use of harmful fossil plastics. Modeling and simulation tools 
(digital twins) have been developed to replace expensive and time-consuming physical testing during product 
development based on these materials. In addition to manufacturing aspects and experimentation, this study 
proposes a micromechanically-based constitutive mathematical model to investigate the viscoelastic–plastic 
deformability of biocomposites consisting of a polymer matrix and short plant fibers. Due to random fiber 
orientation and strong bonding between the fibers and the amorphous and crystalline phases of the polymer 
matrix, influence of the lattice crystalline structure was suppressed. This enables the development of a compact 
constitutive model. However, constitutive mathematical modeling is computationally time-consuming when 
applied to predict the long-term deformation behavior in large design spaces. Therefore, the proposed model 
is used solely to generate high-quality data for machine learning (ML) which is highly computationally efficient. 
The scaled-up design of new biodegradable polymeric materials, traditionally reliant on costly and time-
intensive experimental procedures, is then accelerated by an advanced modeling framework that integrates 
constitutive mathematical models with AI-based approaches.
1. Introduction

The increasing use of fossil raw materials such as plastics has been 
drastically reduced by their replacement with renewable raw materi-
als such as biocomposites including natural fiber-reinforced polymer 
composites [1–3]. This study introduces a set of important factors 
for the manufacturing, experimentation, and modeling of nonlinear 
(viscoplastic) deformability of natural short-fiber-reinforced (NSFR) 
semi-crystalline polymer composites. These composites have huge ap-
plication potential because the variation in the degree of crystallization 
(DC) of the plastic combined with the utilization of different plant 
fibers (cotton, hemp, jute, flax, ramie, bagasse, conifer) and softwood 
can be exploited in almost unlimited range of applications such as 
automotive and aeronautic equipment, packaging, electronic devices, 
health technology, and tissue engineering [3,4].

Unfortunately, experimental studies of NSFR polymer composites 
are costly and time-consuming, motivating the use of predictive model-
ing to rapidly and systematically scan a vast number of material grades, 
loading conditions, and manufacturing steps. Nevertheless, research on 
the modeling and simulation of the mechanical behavior of NSFR poly-
mers has been limited. Typically, the models used in previous studies 
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have been based on very small and virtually elastic deformations [5,6]. 
Many models that can predict nonlinear stress versus strain (𝜎 vs. 
𝜖) response are based on the assumption of nonlinear (visco)elastic-
ity [7–11] or the response is considered to be elastic-fully plastic [12]. 
Previous studies have also suggested the application of the celebrated 
inelastic Ramberg–Osgood or Drucker–Prager models for predicting 
nonlinear behaviors [13,14]. Recently, [15] proposed a Perzyna-type 
elastic–viscoplastic constitutive model capable of predicting the overall 
𝜎 vs. 𝜖 response of a hybrid composite (Flax/Hemp/Polypropylene, 
PP). However, these models do not have a clear connection to mi-
crostructural behavior, and their predictions do not represent viscous 
deformation behaviors such as creep, stress relaxation, and plastic 
residual strain (recovery at nearly zero stress).

The models particularly for fiber-reinforced polymers can be clas-
sified into mean-field and full-field models [13,16–18]. In mean-field 
models, the average strain and stress of a micro- or macrostructure rep-
resent the real nano- or microscopic strain and stress, respectively, and 
require the use of homogenization steps [19]. A notable contribution 
to the mean-field homogenization schemes for short fiber-reinforced 
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composites was provided by Hessman et al. [16]. Modniks and Ander-
sons [13] proposed a mean-field model for a short-flax-fiber-reinforced 
polymer where global (composite level) and local (fibers level) levels 
were distinguished. FEM analyses were performed on the unit cell 
(UC) level for parameter fitting, and finally on the composite level 
after homogenization. However, in addition to the complex parameter 
fitting, the dependence of the homogenization of the stress field on the 
fiber orientation affects the accuracy of the modeling. In contrast to 
mean-field models, full-field models account for the microscopic fields 
at microscopic points. These models require the use of realistic Repre-
sentative Volume Elements (RVEs) that represent the microstructure of 
the material [9,16,18–20]. However, for high aspect ratios of fibers and 
high fiber volume fractions, generation of realistic and accurate RVEs 
can be challenging and incurs high computational costs when applied 
to macroscopic deformation scales.

When restricted to a sufficient fiber content, random fiber orienta-
tion, and strong bonding between the fibers and the amorphous and 
crystalline phases of the polymer, the influence of the complex lattice 
crystalline structure (with a significant anisotropy effect [21]) was 
suppressed. These material characteristics enabled the development of 
a compact constitutive model to replace most of the expensive and 
time-consuming experimental tests. While the set of internal variables 
and model parameters was reduced, the model includes the effects 
of the DC, fiber content, and porosity (due to voids), and therefore 
can reproduce dilatation-caused microstructural changes (chain disen-
tanglement and fracture of fibril or extended chain bundles between 
voids [22]).

However, constitutive mathematical modeling itself is challenging 
and computationally time-consuming when applied to scaled-up de-
signs and for predicting long-term deformation behavior, particularly 
fatigue [23,24]. Therefore, sophisticated models are increasingly being 
replaced by simpler and more efficient metamodels based on artifi-
cial intelligence (AI) because these models only require high-quality 
data [25–28]. Examples of metamodels include stochastic models and 
those based on statistical continuum theories. Although stochastic mod-
els have low computational costs (especially for modeling of long-term 
fatigue) [29–31], they have not been widely used due to their limited 
convergence, particularly for high-contrast composites [29].

Recently, data-driven modeling approaches based on ML (a re-
markable subset of AI) have shown promise for simulating nonlinear 
deformation behavior of biocomposites [17,32]. Thomas and Barocio 
[33] predicted the mechanical properties of fiber-reinforced composites 
using ML algorithms (the so-called deep material networks, DMN), 
and found that the amount of the required experimental efforts can 
be reduced by using ML. Yang et al. [25] investigated deep-ML ap-
proaches for mining structure–property relationships in high-contrast 
elastic composites from artificial datasets predicted by the neural net-
works models. Laycock et al. [27] proposed the Materials 4.0 concept 
which refers to the present digital materials revolution by combining 
ML (4.0) with experimental (1.0), theoretical (2.0), and computational 
(3.0) materials science knowledge. Recently, Ling et al. [31] proposed 
a ML method to predict the macroscopic stress–strain relationships 
of thermoplastic polymers using the Kriging (stochastic) ML model, a 
genetic algorithm (GA) for training the ML model, and limited experi-
mental testing data. However, the shortcoming in those previous works 
is that they presume costly experimental data and ignore the optimal 
relationship between the experimental data (partially missing due to 
costs) and the predicted model data (unlimitedly available).

The present work combines the benefits of traditional mathematical 
modeling and AI-based modeling, with the experimental data typically 
used for ML training replaced by predicted high-quality model data. 
Model predictions or simulated data are of particular interest for replac-
ing expensive experimental data, with the value of these data predicted 
to grow exponentially in the future [34,35]. Moreover, the proposed 
modeling framework, which couples constitutive mathematical mod-
eling with AI-based techniques, enables a huge reduction of calcula-
tion times, particularly when applied to predict long-term deformation 
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behaviors. It is emphasized here that fundamentally different from 
the previous works, the predicted model data provide experimentally-
supported data for ML training while understanding the theoretical 
microstructural properties and performance of biocomposites. The con-
cept of using ML based on advanced physical (micromechanically 
based) modeling is illustrated in Fig.  1.

2. Methods

2.1. Manufacturing

A semi-crystalline polylactic acid (PLA) polymer and its composites 
reinforced with natural short hemp fibers were used as the case study, 
resulting in notably viscous (elastic–plastic) deformability. PLA (type 
PLI 005 supplied by Natureplast) was used because it is one of the 
most widely globally used polymer matrices (with production capacity 
of approximately 211,000 tons in 2020 [36]) in biocomposites (notably 
high Global Warming Potential, GWP) which are used to replace non-
renewable petroleum-based materials [37,38]. The PLA polymer is also 
widely used for filaments and biodegradable waste in 3D printing [27,
39]. PLA is a biodegradable polyester that is typically obtained from 
sustainable agricultural waste such as maize, potatoes, and cassava 
through bacterial fermentation of carbohydrates.

Hemp fiber was selected because it is obtained from an abundant 
European fiber plant and offers numerous ecological and economic 
advantages. The global market value of hemp-based products is USD 
∼2 billion and is growing rapidly [40]. Additionally, hemp shows good 
compatibility with PLA, enhancing the flexural, tensile, and impact 
properties of this polymer [37,41–43]. Hemp has a higher cellulose 
content (∼ 70 %wt) than softwood (∼ 40 %wt), which is an important 
property, because cellulose maximizes the stiffness and strength of a 
material, whereas lignin of the softwood decreases strength (although 
it may improve ductility) [44]. Short fibers (∼ 160 μm) were used 
because of their beneficial effects on the tensile strength. The fibers 
were obtained through hammer milling and a defibration process that 
extracts the fibers from the stalk via several mechanical operations, 
culminating in mechanical cleaning of the fibers. A well-homogenized 
mixing of the matrix and fibers was achieved using a twin-screw 
extruder dedicated to the production of biocomposite mixtures at 30 
rpm and 190 oC, as shown in Fig.  2(A–B).

The goal of this study is to develop biodegradable composites 
which are also highly malleable (plastically deformable) near room 
temperature (RT) under the abovementioned material constraints (PLA 
+ hemp). Such composites enable reduced energy consumption and less 
expensive machining [45] (particularly important for cold forming). 
The following important observations regarding the increased plastic 
deformability (ductility) were obtained during the experiment:

1. the increased deformability is strongly influenced by the content 
and type of plasticizer,

2. the deformability decreases with lower porosity,
3. the deformability decreases with higher hemp content.

Notably, PLA exhibits limitations in the deformability near RT [46]. 
The polyethylene glycol (PEG) additive (plasticizer) with a molecular 
weight of 1.5k and 20k (5%wt) was used to increase the deformability 
(plasticity) of the composite, see the details in Fig.  3. In addition, 
PEG 400, 600, 1k, and stearic acid (SA) were applied but achieved 
lower performance. Second, when the porosity of the composite was 
reduced from 8%–9% to 4%, the deformability as measured by the 
strain decreased from 3% to 1%, indicating an elastic response. The 
third observation is in line with previous observations [47]; that is, the 
gains obtained by replacing the polymers with the biomaterial (hemp) 
are counterbalanced by the decrease in the ductility of the composite. 
However, the tensile strength of the pure matrix can be improved by 
bio(hemp) fibers [37,41–43].
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Fig. 1. Flowchart for ML modeling based on experimental data and the high-quality data predicted by the advanced physical model (based on available 
experimental data).
Fig. 2. Manufacturing of the tensile test specimens: PLA–hemp pellets (A), details of the 3D printing with the P-MEX (B), printing of the plate (C), laser cutting 
of the test specimens (D), and final dogbone-shaped specimens (following the standard ISO 527–4 type 1B specimen) (E).
Fig. 3. Pure PLA-hemp and the influence of additives (5%wt) on its tensile properties (the Young’s modulus 𝐸, ultimate strength 𝜎 and strain 𝜖, and the Poisson 
ratio 𝜐) at the printing direction. The hemp fiber content was 20%wt.
Dogbone-shaped tensile specimens were manufactured via
3D-printing using pellet-based material extrusion (P-MEX) [38] in 
accordance with the ISO 527–4 standard (type 1B specimen), as shown 
in Fig.  2(C–E). 3D-printing with P-MEX is advantageous in that it 
uses pellets directly, without the need to manufacture a homoge-
neous calibrated (wound or unwound) filament to withstand the shear 
and buckling associated with controlling the filament feed into the 
molten polymer extrusion zone. The 3D-printer with the pellet extruder 
was compatible with the standard *.gcode files generated by the 
most popular slicing software (e.g. Slic3R, Repetier, Cura, Simplify3D, 
IdeaMaker).
3 
Overall, the structure and properties of a biocomposite are the 
result of a complex interplay between the fiber content, fiber–matrix 
adhesion, fiber dimensions, matrix porosity, DC of the matrix, print-
ing conditions (e.g. nozzle temperature, printing speed, layer thick-
ness), environmental conditions (temperature and humidity), and the 
manufacturing facilities [37,38,42].

It was observed that high fiber content, high layer thickness, high 
printing speed, and low nozzle temperature tended to increase the 
porosity and decrease the deformability of the composite. The optimal 
nozzle temperature, layer thickness, and printing speed were found to 
be 190 oC, 0.4 mm, and 40 mm/s, respectively. Moreover, the pellets 
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Fig. 4. DSC plots for the PLA matrix (A), the composite (PLA + hemp + PEG 20k) before printing (B), and the composite after printing (C). The hemp fiber and 
plasticizer contents were 20%wt and 5%wt.
were dried prior to printing at 60 oC for 3 h. A hemp fiber content of 
20%wt in the PLA (significantly higher fiber content compared to most 
plastic biocomposites [48]) was found to be optimal for obtaining high-
quality extrusion and surface finish by the printer. An overall review of 
3D-printing manufacturing is presented in Duigou et al. [49], Ilyas et al. 
[37], Proy et al. [50], Nazir et al. [38]. The most important conclusion 
regarding material development and production (printing) is that the 
transition from brittle elastic deformation of the material to ductile 
plastic is a sensitive process and can be achieved by using the optimal 
fiber content, porosity, and a plasticizer. The optimal composite was 
PLA + hemp (20%wt) + PEG 20k (5%wt) with a porosity of 8%–9%.

2.2. Experimentation

Crystallinity
The DC values of the matrix and composite were revealed by 

differential scanning calorimetry (DSC; Setaram Equipment DSC 131 
EVO in air atmosphere). For each measurement, a sample (30 mg) 
was placed in aluminium, and the crucible was crimped and sealed 
hermetically. The sample was then heated at a rate of 3 oC/min from 
25 oC to 195 oC and maintained in the molten state for 10 min in 
order to erase the previous thermal history. It was then cooled at the 
same rate to 25 oC, allowing the evaluation of its hot crystallization. 
Subsequently, the sample was reheated to 195 oC at a rate of 3 oC/min 
to evaluate the cold crystallization. During heating, the first significant 
exothermic peak (A) was observed due to crystallization, cf. Fig.  4. 
Then, another endothermic peak (B) appeared that is attributed to the 
melting of the crystalline polymer fraction. The DC was calculated 
as 𝐷𝐶 = 𝛥𝐻 f∕%𝑃𝐿𝐴 ⋅ 𝛥𝐻 f0, where 𝛥𝐻 f , %𝑃𝐿𝐴, and 𝛥𝐻 f0 are the 
measured enthalpy of fusion (∼ 42 J/g), matrix content (PLA), and 
hypothetical enthalpy of fusion of 100% crystallinity (93 J/g for PLA). 
The DC of the composite was observed to be 38% when the fiber 
content was 20%wt, and the DC of PLA was 52%; that is, the composite 
and PLA matrix were semi-crystalline, and the DC of the composite was 
controlled by the fiber content.

Porosity
A high-resolution Solution X-ray tomography system with a 150 kV 

X-ray generator (Solution Easytom) was used to determine the porosity, 
fiber orientation, and fiber content of the composite. The tomography 
system can acquire 1440 images per min through 360 ◦ (in the fly 
mode), resulting in a total tomography time of 30 min. Data processing 
for the detection of the porosity zones was performed using the VG 
STUDIOMAX 2023 software, and the segmentation of porosity was 
performed with a threshold based on the gray level. The grayscale in 
the acquired computed tomograph (CT) images corresponds to X-ray 
absorption, with darker levels indicating lower X-ray transmission (i.e. 
porosity, see, for example, Fig.  5(right)). The CT images revealed pore 
size, shape, and distribution, which are crucial for material quality and 
mechanical properties. However, this method has drawbacks including 
reliance on costly equipment and expertise, as well as adjustment of 
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resolution and contrast. Scanning electron microscopy (SEM) was also 
used to observe the porosity, as shown in Fig.  5(bottom left).

In contrast to the experimental methods, direct porosity calculation 
methods such as weight-based approaches are simple and cost-effective 
(although they are limited by material property assumptions that have 
limited accuracy). Therefore, in addition to the CT scan porosity, the 
average porosity (%) of the composite was directly calculated according 
to (1−𝑃𝑤𝑡∕𝑇𝑤𝑡)100%, where 𝑃𝑤𝑡 and 𝑇𝑤𝑡 are the weights of the printed 
sample, and the theoretical weight is calculated as the product of the 
measured volume and theoretical density (%wt-weighted combination 
of the matrix, fiber, and plasticizer). The porosity of the composite with 
the PEG plasticizers was found to be between 7%–9% , as shown in 
Fig.  5(top left). It was observed that the plasticizers had no marked 
influence on the rate of porosity development; however, due to use of 
plasticizers, porosity became much more localized and the plasticizers 
reduced the volume of intrabead voids.

Deformation
The uniaxial tensile tests at RT (isothermal conditions) were per-

formed using an MTS Criterion Model 45 machine equipped with a 5 
kN load cell. Prior to testing, the material was held at RT (50%RH) for 
14 days for stabilization. Tests were conducted at least twice to ensure 
reliability. The test set was designed to determine the Young’s modulus, 
tensile strength and the corresponding strain at failure, and to observe 
the nonlinear shape of the stress–strain curve, see Fig.  6(left). The 
monotonic loading was displacement-controlled, which means that it 
was regulated by the movement speed of the top plate, as illustrated in 
Fig.  6(right). A strain rate 𝜖̇ = 2 mm/min/𝐿 ∼ 0.001∕𝑠 was applied and 
an extensometer with a gauge length 𝐿 = 25 mm was used to measure 
the axial elongation 𝑢. The corresponding axial strain is 𝜖 = 𝑢∕𝐿, and 
the stress was calculated as 𝜎 = 𝐹∕𝐴, where 𝐹  is the applied force 
and 𝐴 is the initial cross-sectional area of the gauge section of the 
specimen. Such 1st Piola–Kirchhoff stress and engineering strain can 
be easily measured and were used in the modeling. The relationship 
between the 𝝈 (components (𝑖, 𝐼)) and the Kirchhoff stress 𝝉 is given 
by 𝛴3

𝑗=1𝝉(𝑖, 𝑗)𝑭
−1(𝐼, 𝑗). It can be concluded that the difference between 

the stress measures is small when the strain is restricted (less than 
10%) [51].

Anisotropy

Fig.  7(left) shows a bimodal distribution of the fiber orientation, 
with a large majority of the fibers oriented in the 0 − 40o range 
(with the distribution peak at approximately 20o) and a significant 
portion oriented transversely (approximately 80−90o). This distribution 
is notable even when compared to the orientation distribution for 
anisotropic composites [52]. It was also observed that the reductions 
in the tensile strength and the elastic stiffness (in terms of the Young’s 
modulus) were relatively small, ∼ 20 %, when the loading direction was 
changed from 0o to 90o relative to the printing direction. Moreover, 
Fig.  7(right) shows that the Poisson’s ratio of the composite varies be-
tween 0.34–0.44 and 0.32–0.40 during deformation when the loading 
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Fig. 5. Porosity of printed specimens (top left) and SEM images for porosity (black regions) without and with added 5%wt of PEG 1.5k plasticizer, respectively 
(bottom left). Corresponding CT scan (with the addition of 5%wt of PEG 1.5k) for the porosity (right).
Fig. 6. Definition of the deformation measures (incl. the Young’s modulus, 𝐸, and the tensile strength, 𝜎u) and dimensions of the test specimen (left). The tensile 
test setup (following the standard ISO 178) including the extensometer (right).
is carried out in the 0o and 90o directions, respectively. The observed 
differences of ∼ 10 % in the Poisson’s ratio are relatively small, and the 
average Poisson’s ratio 𝜈 = 0.37 typical for solid PLA reported in the 
literature is applicable. Based on the observed results, the composite 
can be considered to be macroscopically almost isotropic.

 Nomenclature
 𝑭 , 𝑭 vep, 𝑭 e deformation gradient and its viscoelastic–plastic and 

elastic components
 

 𝑭 f , 𝑭 a, 𝑭 c deformation gradient of the fiber, amorphous, and 
crystalline components

 

 𝜖 uniaxial strain (= ln(
√

𝑭𝑭 T))  
 𝝈, 𝝈f , 𝝈a, 𝝈c macroscopic stress and its fiber, amorphous, and 

crystalline components
 

 

5 
 𝜐, 𝜐f , 𝜐a, 𝜐c Poisson’s ratios of the composite, fiber, and 
amorphous and crystalline phases

 

 𝐸f , 𝐸a, 𝐸c Young’s moduli of the fiber, amorphous, and 
crystalline phases

 

 𝐸, 𝐸m Young’s moduli of the composite and its matrix 
 𝜁, 𝜒, 𝜉 porosity, DC, and fiber content  
 𝑳̄vep, 𝑫̄vep viscoelastic–plastic velocity gradient and its 

symmetric component
 

 𝜂 viscosity  
 𝛾̇vep viscoelastic–plastic shear strain rate  
 𝜏, 𝑠a effective stress and shear resistance to plastic 

flow
 

 𝛾̇a0 , 𝑚, 𝜍 model parameters  
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Fig. 7. Fiber orientation (relative to the printing direction 0 ◦) vs. fibers volume fraction based on CT (left). The fiber orientation of an anisotropic composite 
(dashed curve) is taken from Mortazavian and Fatemi [52]. Measured in-plane Poisson’s ratios of the composite (with the addition of 5%wt of PEG) in the two 
main directions (right). Each experiments was conducted twice. Another extensometer was used to measure the transverse deformation.
3. Modeling

3.1. Fibers vs. matrix

The following assumption were made: [1] short fibers (average 
fiber length ∼ 160 μm) are homogeneously and random distributed, 
[2] strong bonding between fibers and the matrix, [3] no significant 
content of (intra-bead) voids, that is, low porosity (<10%), and [4] 
a sufficiently high content of (elastic) fibers, 𝜉 ≥ 20 %wt. More-
over, the polymer matrix and its biocomposite including plant fibers 
are considered to be semi-crystalline; that is, the DC is greater than 
10% [21]. Influence of the fiber aspect ratio relative to the void volume 
and fiber content was considered to be weak because a short fiber 
length (although with a sufficiently high aspect ratio without a shape 
effect [5]) has been demonstrated to have only a limited effect on the 
predicted composite properties [5,13]. The first assumption ensures a 
uniform distribution of the fibers without marked anisotropy; the sec-
ond assumption prevents sliding between the fibers and the matrix; the 
third assumption ensures a sufficiently uniform microstructure without 
marked porosity; and the fourth assumption ensures that fiber defor-
mation governs the total deformation of the material, particularly the 
elastic deformation. As the fibers were short and randomly distributed, 
the initial elastic response was homogeneous and essentially isotropic, 
and no homogenization of the stress based on the fiber orientation 
was required. This can be verified using the Voigt average stress in a 
misaligned fiber composite under an applied strain given by 

𝜎ij(𝜖) =
1
4𝜋 ∫

2𝜋

0 ∫

𝜋

0
𝜎𝑈𝐷 ij(𝜖, 𝜑, 𝜃)𝑓 (𝜑, 𝜃) sin(𝜃)𝑑𝜑𝑑𝜃, (1)

where 𝜎𝑈𝐷 ij stands for the stress under a given applied strain in a unidi-
rectionally aligned (UD) fiber-reinforced computational element of the 
composite and 𝑓 (𝜑, 𝜃) denotes the fiber orientation distribution density 
as a function of the azimuthal, 𝜑, and elevation, 𝜃, angles [5,13]. When 
the fibers are randomly arranged, 𝑓 (𝜑, 𝜃) = 1 and 𝜎𝑈𝐷 ij(𝜖) = 𝜎ij(𝜖).

To enable investigations of composites showing notable plasticity, 
the model is based on the decomposition of the deformation gradient 
(at position 𝑿 and time 𝑡) into the elastic and viscoelastic–plastic 
contribution, that is, 
𝑭 = 𝑭 e𝑭 vep, 𝐽 = det(𝑭 ) > 0, 𝑭 (𝑿, 𝑡 = 0) = 𝟏, (2)

where 𝑭 e and 𝑭 vep determine the local deformations resulting from 
elastic and viscoelastic–plastic mechanisms, respectively [53].
Fig.  8(left) illustrates the microstructural deformation behavior of NSFR 
semi-crystalline polymers. The deformation of plant fibers (hemp) is 
limited, and they are often considered to be practically elastic [13], 
whereas the polymer matrix governs viscoelasticity (reversible defor-
mation in time) and viscoplasticity (irreversible deformation). When 
DC is sufficiently low (less than 50%), the deformation of the crystalline 
phase relative to the amorphous phase is small [54] (Fig.  2), and it 
can be assumed to be elastic without a significant error in the total 
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deformation. Furthermore, due to the very high strength and limited 
(elastic) deformability of the fibers relative to the matrix (both crys-
talline and amorphous phases) and strong bonding between the matrix 
and fibers (including sufficiently high fiber content), the crystalline 
phase and the elastic portion of the amorphous phase deform on 
average (microstructurally) in accordance with the fibers; the applied 
fiber length is on the order of 100 μm (here, 160 μm on average for 
hemp) which is several orders of magnitude longer than the amorphous 
chain lengths and dimension of the crystalline regions (on the order of 
100 nm) [55]. Subsequently, the elastic deformation of the matrix is 
controlled by the elastic deformation of the fibers and the compatibility 
condition 𝑭 e,a = 𝑭 c = 𝑭 f = 𝑭 e (a=amorphous, c=crystalline, f= fiber) 
for the elastic deformation is applicable.

The rheology of the model is illustrated in Fig.  8. The proposed 
model is the three-dimensional extension of the celebrated Maxwell 
(1867) model, which is known to be capable of capturing stress relax-
ation. In addition, the proposed model can predict nonlinear unloading 
and long-term creep under relatively low stress levels (slow creep 
accumulation), which is important for practical applications.

The average macroscopic stress in the fibers is given by 
𝝈f = 𝜉L𝑒,𝑓 ∶ ln 𝒗e = 𝜉𝐸f∕(1 + 𝜈f ) ln 𝒗e + 𝜉𝐸f∕[3(1 − 2𝜈f )]tr (ln 𝒗e)𝒊, (3)

where 𝜉 is the fiber content (%wt), 𝐸f  is the Young’s modulus, 𝜈f
is the Poisson’s ratio, the notation tr  denotes the tensor trace, and 
𝒗f = 𝒗e =

√

𝑭 e𝑭 e,T is the elastic stretch tensor described in Belytschko 
et al. [51], Holopainen and Barriere [56]. When the fiber content is 
infinitesimal, its stress effect in the composite vanishes. If the fibers 
after printing display a significant orientation (Young’s moduli and 
Poisson’s ratios show differences of more than 20% between the print-
ing direction and transverse direction [52]), it is necessary to replace 
the elastic stiffness tensor L𝑒,𝑓  in (3) by the orthotropic (transversally 
isotropic) tensor [51].

3.2. Crystalline phase

Due to the sufficiently high fiber content and strong bonding be-
tween the fibers and the amorphous and crystalline phases of the 
semi-crystalline polymer, the influence of the classical slip systems of 
crystal plasticity, including the inherent lattice structure [21] is sup-
pressed. For NSFR semi-crystalline polymers with a random distribution 
of fibers, there are no preferred directions of crystallites other than 
the principal directions of stress because compared to the influence of 
amorphous chain and fiber orientation, the influence of crystallinity is 
small. Furthermore, when DC was sufficiently low (less than 50%), the 
deformation of the crystalline phase relative to that of the amorphous 
phase was small, cf. Bartczak [54] (Fig.  2), as demonstrated in Fig. 
8(left). Therefore, many models based on fiber orientation [17] and 
the so-called layered two-phase composite inclusion (TPI) [21] for 
semi-crystalline polymer matrix can be significantly simplified. That 
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Fig. 8. Demonstration of the deformed microstructure of the NSFR semi-crystalline polymer driven by the force 𝐹  (left). The solid thick bar demonstrates the 
total deformation (current length, 𝑙), dashed thick bar is the fiber deformation (current length, 𝑙f ), dotted thick bar is the (amorphous, a) viscoelastic–plastic 
deformation (𝑙vep,a), and the vertical stroke (dotted) means the deformation of the crystalline and amorphous elastic phases (𝑙c ∼ 𝑙e,a, not equal, but small in 
relation to fiber and amorphous viscoelastic–plastic deformation). Rheological representation of the microstructure-based model (right): the current length 𝑙vep,a
of an amorphous phase is described by 𝑭 vep and a single nonlinear viscoelastic–plastic dashpot (a), and the current length of the elastic amorphous phase 𝑙e,a, 
the fiber 𝑙f  (elastic), and the crystalline phase 𝑙c (∼ elastic) are described by the elastic springs (b), (c), and (d), respectively.
Fig. 9. Concept of the model: the total deformation is due to the joint effects of randomly distributed (amorphous) polymer chains (viscoelastic–plastic, 𝑭 vep) 
(left), crystalline regions of the matrix (middle), and short fibers (right). Fibers and crystalline regions deform essentially elastically (𝑭 e). Orientation of the fibers 
during printing may give rise to anisotropy.
is, without inducing a significant error in the total deformation, the 
deformation of the crystalline phase can be considered small and 
elastic, particularly when the deformation of the entire composite is 
sufficiently small, that is, less than 10% (see Fig.  9).

The crystalline phase also exhibits anisotropy due to the alignment 
of the crystalline regions [21]. However, inspection of NSFR polymers 
at the micro- to macro-level shows that crystalline regions are randomly 
arranged, and the effect of their anisotropy relative to that of the 
fibers is small (the dimensions of fibers of ∼ 160 μm are much greater 
than those of crystalline regions of ∼ 100 nm). Overall, the kinematic 
compatibility condition 𝑭 e = 𝑭 f = 𝑭 c prevails and the average 
macroscopic stress over the crystalline regions is given by: 

𝝈c = (1−𝜉)L𝑒,𝑐 ∶ ln 𝒗e = (1−𝜉)𝐸c∕(1+𝜈c) ln 𝒗e+(1−𝜉)𝐸c∕[3(1−2𝜈c)]tr (ln 𝒗e)𝒊,

(4)

where 𝜈c is the Poisson’s ratio of the crystalline regions and 𝐸c is the 
corresponding Young’s modulus with the relations [a] (1 − 𝜁 )𝐸m =
𝜒𝐸c + (1 − 𝜒)(1 − 𝜁 )𝐸a and [b] 𝐸 = 𝜉𝐸f + (1 − 𝜉)(1 − 𝜁 )𝐸m (along 
with the prerequisites [1-4]), where 𝜁 < 0.1, 0.1 < 𝜒 ≤ 0.5, 𝜉 > 0.2, 
7 
𝐸m, 𝐸a, and 𝐸f  are the porosity, DC, fiber content, and the Young’s 
moduli of the matrix, its amorphous phase, and the fibers, respectively. 
Therefore, it is necessary to measure solely the Young’s moduli of the 
composite, matrix, and its amorphous phase, whereas 𝐸c and 𝐸f  are 
calculated from relations [a] and [b]. 𝐸f  can be termed the functional 
fiber stiffness (average modulus for the three main directions [57]) 
of the composite. Most importantly, the elastic deformation strongly 
depends on the porosity, DC, and fiber content; in particular, the elastic 
deformability increases with porosity and decreases with fiber content 
(through the Young’s modulus). This statement is consistent with the 
observations that the plastic deformability (ductility) decreases with 
lower porosity and higher fiber content, cf. the list 1. - 3. in Section 2.1.

3.3. Amorphous phase

Amorphous polymers are known to exhibit viscoelastic–plastic de-
formation immediately upon loading [23,53,58]. Therefore, the amor-
phous phase in the composite is considered to be viscoelastic–plastic 
and undergoes the total viscoelastic–plastic deformation, that is 𝑭 vep =
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𝑭 vep,a. The viscoelastic–plastic component 𝑭 vep in (2) is manifested 
as macroscopic nonlinear monotonic loading, long-term creep strain, 
stress relaxation, and nonlinear unloading response due to the inertia 
of the nano-microstructure in attaining equilibrium, and is calculated 
as 
𝑭̇ vep = 𝑳̄vep𝑭 vep, (5)

where 𝑳̄vep is the velocity gradient defined below.
According to this model, the viscoelastic–plastic deformation behav-

ior is modeled by a nonlinear time-dependent dashpot in series with 
a linear elastic spring system, as shown in Fig.  8(right). Arranging a 
spring (e.g. linear) parallel to the dashpot results in a standard-like solid 
model (Kelvin–Voigt representation). Although an additional spring is 
known to improve creep predictions, it is useful only under perma-
nently high stress levels (in relation to the ultimate strength), which 
rarely occurs in practice. Therefore, an additional spring was omitted 
to keep the model simple and efficient in practical use. Alternatively, 
by using the Kelvin–Voigt (1890) model (probably modified with a 
nonlinear spring and dashpot) between the elastic spring and nonlinear 
dashpot, the model becomes similar to the Burger model (1935) which 
is known to be capable of capturing the large and long-term defor-
mation behavior of fiber-reinforced polymers. However, the nonlinear 
spring in the Kelvin–Voigt-like element preserves only notably large 
deformations which are omitted here. Moreover, the Burger model is 
more complex than the proposed Maxwell-like model.

To define the stress-free intermediate configuration uniquely, the 
viscoelastic–plastic spin is required to be zero, that is, 𝑳̄vep = sym(𝑳̄vep)
= 𝑫̄vep (in (5)) holds for the amorphous deformation (spin is small com-
pared to 𝑫̄vep, if it itself is small [59]). Moreover, the total deformation 
was regarded to be small (less than 10%). In a departure from previous 
theories for polymeric materials [24,53,59], the viscoelastic–plastic 
rate of deformation is given by the sum of several micromechanisms. 
However, considering the restricted deformability of NSRF polymers, 
a single microsystem (single nonlinear dashpot in Fig.  8(right)) is 
considered to be sufficient to reproduce the nonlinear 𝜎 vs. 𝜖 response. 
The viscoelastic–plastic rate of deformation is then defined by 
𝑫̄vep = (𝛾̇vep∕(2𝜏) − 1∕𝜂)(𝜏∕𝜏0)1∕𝑚𝝈dev, (6)

where 𝜏 =
√

1∕2tr (𝝈dev)2 is the effective stress, 𝑚 is the material 
parameter (the limit 𝑚 → 0 corresponds to the rate-independent limit), 
and the deviatoric part dev for each tensor [⋅] is defined by the identity 
𝒊 as [⋅]dev ∶= [⋅] − 1∕3trace([⋅])𝒊. The constant viscosity compliance 1∕𝜂
is used to capture stress relaxation and creep and is constrained by the 
relation 𝛾̇vep∕(2𝜏) − 1∕𝜂 ≥ 0 (𝜂 ∼ 1 ⋅ 104 MPa-s); otherwise, 𝑫̄vep = 𝟎. 
In the absence of this term, the proposed Maxwell-like model will 
result in excessive melt fluid at RT [60]. The latter term in parentheses 
corresponds to the strain rate dependence; the characteristic strength 
𝜏0 equals with the effective stress for 𝜖̇ → 0 (when 𝜎u → 40 MPa in 
tension).

The evolution of viscoelastic–plastic deformation was modeled us-
ing the following power-law-type strain rate [59]: 
𝛾̇vep = 𝛾̇a0

( 𝜏
𝑠a − 1∕3𝜍𝐼1

)1∕𝑚 ≥ 0, (7)

where 𝛾̇a0 and 𝜍 are the material parameters, 𝑠a is an internal state 
variable (representing the resistance to plastic shear flow [59]) and 
𝐼1 = tr (𝝈) is the first invariant of the stress indicating pressure; 
plastic deformation is suppressed under compression, that is, micro-
cracks are opened in tension and partially closed in compression. 
Therefore, the proposed flow evolution equation for plastic deformation 
depends on the pressure, resulting in an asymmetry between tension 
and compression [23,59].

The evolution of plastic deformation (7) can mimic the microscop-
ically motivated plastic evolution [61] for glassy polymers [62]. It 
is assumed that the influence of the ongoing relatively small viscous 
deformation (strain lower than 5%) on the molecular resistance is small 
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when 𝑠a is considered as a constant (represented by dashpot a) in Fig. 
8(right). When the viscous deformation is sufficiently large (> 10%), 
𝑠a should be considered to depend on the porosity (void volume) and 
its time-dependent evolution [24,53,59]. The stress of the amorphous 
phase is given by 

𝝈a = (1−𝜉)L𝑒,𝑎
∶ ln 𝒗e = (1−𝜉)𝐸a∕(1+𝜈a) ln 𝒗e+(1−𝜉)𝐸a∕[3(1−2𝜈a)]tr (ln 𝒗e)𝒊,

(8)

where 𝐸a is the Young’s modulus and 𝜈a is the Poisson ratio. In 
summary, the macroscopic viscoelastic–plastic deformation response is 
modeled by the minimum number of micro- to macroscopic internal 
variables and parameters. The isothermal aspects of the model, its 
numerical treatment, and its reduced presentations for creep and stress 
relaxation are all discussed in Appendix.

4. Results

Benchmark

The model parameters were extracted from the uniaxial monotonic 
tensile test results at RT. The average Young’s modulus 𝐸 of the 
composites (PLA + hemp 20%wt + PEG 1.5 - 20k plasticizers 0 - 5%wt 
in the printing direction) was extracted from the linear strain range 
(0–0.0025) of the 𝜎 − 𝜖 curve, as demonstrated in Fig.  6(left). The 
influence between the plasticizers PEG 1.5 - 20k was small, Fig.  10(left), 
and therefore not considered in the model. Similarly, Young’s moduli 
of the matrix 𝐸m (PLA, printed specimen) and its amorphous phase 
𝐸a (PLA specimen produced by extrusion [63]) were determined from 
their initial responses. The Young’s moduli of the fiber 𝐸f  and the 
crystalline phase 𝐸c were then calculated from relations [a] and [b] 
described above. Using the calibrated values, 𝐸f ≈ 8, 100 MPa (hemp) 
was obtained, which represents the average modulus in the three main 
directions [57]. The difference of the Poisson’s ratios between the 
different phases and the fibers were considered small, that is the unified 
values 𝜈f = 𝜈c = 𝜈a = 𝜈 were used.

The compact set of model parameters for viscoelastic–plastic defor-
mation is comprised by 𝛾̇a0, 𝛽, 𝑚, 𝑠a, and the viscosity of the composite 
𝜂. The 𝑠a parameter is an internal state variable representing the molec-
ular resistance to plastic shear flow, and its value for the macroscopic 
𝜎 vs. 𝜖 response corresponds to the stress value when nonlinear plastic 
deformation begins to develop (∼ 25 MPa in Fig.  10(left)) [53,64]. The 
initial values of the parameters 𝛾̇a0, 𝛽, and 𝑚 were obtained based on 
previous studies of polymers [59] and their values were refined over 
several iterations. The viscosity of the composite 𝜂 at RT was available 
neither from experiments performed in this work nor from the reports 
in the literature. Therefore, 𝜂 was first deduced from the viscosities of 
melted PLA (∼ 6 kPa s [65]), PEG at RT (∼ 0.1–1 kPa s [66]), hemp 
at RT (∼ 1 kPa s [67]), and their melt composites (∼ 6 kPa s [68]). 
However, the viscosity of PLA with high content of 75–80%wt in the 
composite shows an exponential increase with decreasing temperature, 
even in the melt phase (over 150 oC) [65,69]. Therefore, a higher 𝜂
magnitude was used to predict the macroscopic deformation at RT (𝑇
denotes the temperature): 𝜂 = 𝐴 exp(−𝐵𝑇 𝑛) = 7...infinity MPa s, where 
𝐴 = 2⋅107...infinityMPa s and 𝐵 = 50...6, 700 (oC)1∕𝑛 when 𝑛 = 1...2 (data 
values 𝜂(170 oC) = 2.9 kPa s and 𝜂(150 oC) = 8.2 kPa s were used [69]). 
The final set of the model parameters is listed in Table  1.

Model predictions vs. experimental data

The viscoplastic logarithmic strain governs the total deformation, as 
shown in Fig.  10(top left), and the elastic strain limit 𝜖e ∼ 0.004 is also 
observed. Although the fibers and the amorphous and crystalline phases 
jointly contribute to the material strength [70], the highly nonlinear 
macroscopic stress–strain behavior (plastic toughness) is mainly af-
fected by the entangled network of the amorphous phase and sufficient 
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Table 1
Model parameters for the NSFR polymer used (PLA + hemp 20%wt + PEG plasticizer 0 - 5%wt at RT). 
 Parameter 𝐸 𝜈 𝐸m 𝐸a 𝛾̇a0 𝜍 𝑚 𝑠a 𝜂  
 Unit .......... MPa MPa MPa s-1 MPa MPa s  
 Value ......... 3600 0.37 3200 3000 0.004 0.2 0.11 26 40,000 
porosity of the composite (8%–9%), and the viscoplastic deformability 
and ductility are significantly reduced with decreasing porosity (see the 
red curve in Fig.  10(top left)).

The results presented in Fig.  10(top left) indicate that the incorpo-
ration of the proposed nonlinear viscous dashpot for governing viscous 
micromechanisms enables the capture of the overall trends of the 
highly nonlinear loading responses of the composites. These predictions 
could be further improved by neglecting the brittle composite without 
plasticizers (used in the model fitting). Notably, high non-linearity of 
the responses at small applied strains of 0.5%–3% is observed, and the 
observed ultimate tensile strength 𝜎u ∼ 40 MPa is typical of the PLA-
hemp composites [37]. Fig.  10(top right) further shows the variation 
of the stress vs. strain when the relevant values of the essentially 
independent variables (porosity, DC, fiber content) are used. When 
particularly the fiber content decreased and the porosity increased, 
both the experimental and model results show an increased plastic 
deformability [71]. However, experimental results also shows a brittle-
ness, that is, a reduction in the strain due to damage of the material 
and rupture of the test specimens. It is concluded that in further 
research, the mathematical model should be augmented by a suitable 
damage model that can predict material failure for reduced porosity. 
Nevertheless, the predicted nonlinear unloading response is typical 
of amorphous and semi-crystalline polymers [62,72,73] and short (E-
glass) fiber-reinforced thermoplastics [17]. No recovery was measured 
nor predicted after load removal at zero stress for one day, which 
is characteristic of the viscoplastic response (showing a permanent 
residual strain) under small strains.

In addition, any capable model is required to provide strain rate 
dependence and reasonable predictions of creep and stress relaxation 
at different stress and strain levels, respectively. Fig.  10(bottom left) 
shows measured and predicted strain rate dependencies ranging be-
tween 0.001/s and ∼2100/s. At the ultimate of the (dynamic) strain 
rate, the model predictions are quite linear, capturing the data on 
average. The observed accumulated reduction of stress at the high 
strain rates has been reported to be due to the hemp fibers that are 
perpendicular to the direction of the stress and delay as empty space 
or failure locations without a marked aid in the response of the com-
posite [74]. The model shows significant nonlinear plastic deformation 
when the strain rate is ∼50/s, and the predictions are highly accurate 
when the strain rate is small, less than 0.01/s. The model predictions 
slightly violates from the data for the intermediate strain rate range 
(∼1/s - 100/s) essentially because the stiffer specimen (standard ISO 
527-4 type 1B ∼ ASTM D638 type I specimen: larger thickness and 
curvature between the hold and gauge sections) has been used under 
the strain rates less than 1/s [75].

Fig.  10(bottom right) further shows the creep responses at different 
fixed, relatively low stress levels, 𝜎0, that are relevant for practical 
applications. The creep strain depends strongly on 𝜎0, increasing essen-
tially linearly with 𝜎0 [76], and at the lowest stress level (approximately 
35% of the ultimate tensile strength), the creep strain is suppressed. 
This creep behavior is in agreement with the observed behavior of 
polymers [62,72,73]. Finally, Fig.  11 shows the stress relaxation at 
different fixed strain levels 𝜖0: stress relaxation is significant and is 
a nonlinear function of the applied 𝜖0. The stress asymptotically ap-
proaches the limit 𝜎̄ = 15.5 MPa. Comparison with pure PLA shows that 
the model predictions are accurate (the PLA in the composite governs 
the nonlinear plastic deformation, and thus, relaxation). A comparison 
with high-strength PLA-PCL (PolyCaproLactone) composite [77] shows 
that the predicted relaxation development at higher 𝜖  is still realistic.
0

9 
Predicted data vs. ML

Research studies typically encounter the problem of insufficient 
availability of costly experimental data for investigations of all of the 
conditions of interest. In our case, majority of the history-dependent 
data for unloading, creep, and stress relaxation were unavailable. Nev-
ertheless, the available minimal data set allowed for model validation 
as was discussed above, and the model is used to provide missing 
experimental data. However, constitutive mathematical modeling is 
computationally time-consuming when applied to predict long-term 
deformation behaviors, such as creep, relaxation, and fatigue, whereas 
ML methods are computationally very efficient. Therefore, an approach 
where the proposed mathematical model is solely used to produce 
training data for ML is proposed. By replacing the unavailable exper-
imental data with predicted high-quality model data (obtained from 
an advanced microstructural-based model calibrated to the available 
experimental data), one can generate unlimited amount of data for ML 
and then, construct as-build models of real-life objects [79] and digital 
(numerical) twins [80]. Fig.  12 illustrates the proposed concept based 
on ML which is trained using both the available experimental data and 
the predicted high-quality model data.

Remark. Compared to conventional concepts where the ML is solely based 
on the available and costly experimental data, the ML in the proposed 
concept is based on a suitable combination of the predicted, high-quality 
model data and the available experimental data. Data generated implicitly 
by ML (e.g. by the neural networks or DMN) are out of the scope of this 
work.

We demonstrated a proof-of-concept example of this approach in 
which the macroscopic deformation behavior of NSFR polymers (𝜎 vs. 
𝜖 response) was investigated, and the experimental data for unloading 
and stress relaxation were unavailable. Therefore, the proposed com-
pact and advanced mathematical model was used to predict the missing 
data for the ML training. The tensile stress 𝜎 (vs. strain 𝜖) was the target 
property of the ML prediction and was shown to depend strongly and 
nonlinearly on the porosity, DC, and fiber content. For ML, it is neces-
sary to first investigate the correlations among these material variables. 
The Pearson correlation is the best-known correlation measure and is 
given by 

𝜌𝑥𝑦 =
𝑛(𝛴𝑥𝑖𝑦𝑖) − (

∑

𝑥𝑖)(
∑

𝑦𝑖)
√

𝑛
∑

𝑥2𝑖 − (
∑

𝑥𝑖)2
√

𝑛
∑

𝑦2𝑖 − (
∑

𝑦𝑖)2
, (9)

where 𝑥𝑖 and 𝑦𝑖 are the individual values of material variables and 𝑛 is 
the product of the range of these values. In other words, the Pearson 
correlation shows the mutual correlation between two variables 𝑥 and 
𝑦. In this case, the porosity, DC, and fiber content, representing the 
material variables, varied between 4 and 9%, 30 and 39%, and 20 and 
30%wt respectively, and the values of the variables were constrained 
by these limits. Then, for instance, 𝑛 = (0.04−0.09)⋅(0.30−0.39) = 0.004 is 
the product of the value ranges for the porosity and DC (𝑥 and 𝑦). Table 
2 lists the correlation values of the different pairs of material variables 
based on the Pearson correlation (9): The correlations between the 
variables are very low, indicating that these variables are essentially 
independent of each other. The largest correlation was found between 
DC and fiber content, and both of these material variables had a 
negligible correlation with the porosity.

To improve the ML process, it is important to investigate the vari-
ables’ importance. The random forest (RF) algorithm is a suitable 
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Fig. 10. Predicted (solid) and measured stress (up to rupture of the specimens) vs. strain responses in the printing direction (0◦) (top left). Thin dashed straight 
lines demonstrate the (visco)elastic strains after unloading. Predicted and measured responses (up to rupture due to damage highlighted by the marker x) 
depending on the porosity 𝜁 , DC, and fiber content (in the printing direction, 00) (top right). Measured (mean values up to rupture) [74,75] and modeled strain 
rate dependencies (bottom left). The strain rate 𝜖̇ = 2165/s is for compression, all others are for tension. Predicted (black) creep strains (at 𝜖̇ = 0.001/s) for 
different initial stresses 𝜎0 ∼ 𝜎u∕(2.5...3) during the time period of 1 h (bottom). Corresponding measured (green) response for similar composite (PLA + hemp 
20 %wt [76]; 𝜎0 ∼ 𝜎u∕3) is also shown.

Fig. 11. Predicted 𝜎 vs. 𝜖 responses of the composite for the stress relaxation (at 𝜖̇ = 0.001/s) during 1 h (left). Corresponding time vs. stress responses (right). 
For comparison, data points of the PLA-PCL composite (marked by ◦ for the initial strain 𝜖0 ∼ 0.1 [77]) and 3D-printed PLA (marked by □ [78]) are also shown.

Fig. 12. Proposed approach based on ML boosted by high-quality data obtained by advanced (explicit) design modeling and experimental data, collected 
separately.
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Table 2
Pearson correlation matrix for the NSFR polymer (PLA + hemp + PEG 1.5 - 
20k 5%wt). 
 Parameter Porosity DC Fiber content 
 porosity ................ 1 0.004 0.004  
 DC ....................... 0.004 1 0.012  
 fiber content ......... 0.004 0.012 1  

method for this purpose, which pursues the average decrease in the 
impurity across all trees in the so-called forest resulting from splits of 
the specific feature (mean decrease in impurity, MDI) [81]. However, 
in this case study, the application of such an autonomous method 
is probably unnecessary because the mutual importance between the 
variables is known, and the experiments show that the deformation 
behavior of NSFR polymers depends mostly on the fiber content and 
porosity, whereas DC has little influence on the fiber content and 
porosity.

Due to the strong dependence of the 𝜎 vs. 𝜖 relationship on (in-
dependent) material variables, a suitable ML method must be se-
lected [27,81]. For instance, traditional (unsupervised) methods based 
on linear regression (LR) and least absolute shrinkage operator (LASSO) 
methods [81] are not suitable, and more advanced (supervised) meth-
ods such as support vector regression (SVR) are preferred. SVR is widely 
used method because in contrast to LR, it can handle complex and 
weak relationships between the applied variables [82]. In contrast to 
LR, SVR seeks to construct a nonlinear function that can best fit the 
available data while minimizing the errors [83]. Because advanced ML 
methods such as SVR (based on neural networks) are based solely on 
the training data they show significant advantages including the lack 
of prior assumptions, comprehensive adaptability (for various materials 
and loading situations), and high computational efficiency. However, 
these methods also have some limitations [31]: [1] their accuracy 
depends strongly on the amount and quality of the training data (while 
the experimental data are expensive and limited), [2] the results of 
experiments and the numerical simulations usually exhibit a Gaussian 
distribution [30], while the ML methods do not satisfactorily reproduce 
such a distribution. Therefore, an improved ML approach was used in 
this work.

Improved ML approach

Recent advanced (ensemble) methods use a combination of multiple 
ML models to improve overall predictability. Examples of ensemble 
methods include gradient-boosting regression (GBR) and stacking [81]. 
Stacking is probably the most accurate approach, because it involves 
the training of base models and the use of their predictions as inputs 
for metamodel predictions. Based on previous findings for complex 
systems [81], the use of two or three base models may be sufficient, 
and the preferred methods can be a combination of unsupervised 
and supervised methods (LR, RF, SVR, GBR). Metamodels for final 
predictions should be based on supervised models (RF, SVR, GBR).

In the proposed approach for stacking, both the training data (for 
training the base models and the first-level meta-model) and the testing 
data (for validating the base models, first-level meta-model, and finally, 
the second-level meta-model) are based on a suitable combination 
of the unlimited amount of the predicted model data and the rel-
atively few available experimental data (see Fig.  13). Stacking was 
further reduced such that the first-level meta-model was solely based 
on a single-base model using the SVR (based on random splitting). 
Moreover, the first meta-model was the final model used in the final 
predictions. This reduced approach was robust for the investigation 
of highly nonlinear strain-versus-stress relationships, whereas use of 
several unsupervised base models resulted in inaccurate predictions.

Fig.  14 shows the ML predictions (based on the reduced stacking) 
for the nonlinear loadings of the NSFR polymer (PLA + hemp 20%wt 
11 
+ PEG 1.5 - 20k), for the porosity, DC, and fiber content of 8%, 38% 
(average value corresponding to the experimental data), and 20%wt, 
respectively. For training and testing the SVR for monotonic loading, all 
of the data were the experimental data listed in Table  3. For unloading, 
when no experimental data were available, SVR was trained using 
only the model data. For stress relaxation (including the two responses 
shown in Fig.  14(right)), for which the experimental data were scarce, 
75% of the training data were the predicted model data. Based on the 
previous experience of the effectiveness of the SVR [81,82] improved 
by stacking, it is not surprising that ML shows accurate predictions 
for both unloadings and stress relaxation because the learning during 
the unloadings and the stress relaxation was carried out with abundant 
predicted model data. The total CPU elapsed time for the mathematical 
constitutive model, employing a maximum constant time increment 
within the implicit backward Euler integration scheme with quadratic 
convergence, was reduced by more than 90% when the ML was used 
(with both training and testing phases).

5. Conclusion

This article describes experiments used to investigate the highly 
nonlinear, plastic deformation behavior of NSFR polymers (test spec-
imens were manufactured by 3D-printing with P-MEX), their mathe-
matical modeling with a physically motivated model calibrated using 
the experimental data, and the application of the model predictions as 
training data for the ML model. Because of the compact formulation, 
the proposed mathematical, cutting-edge model is easy to implement 
and was used to predict an unlimited amount of data for training 
of advanced ML methods such as SVR and stacking. The proposed 
numerical databases, which consist of advanced model predictions, 
promote building of digital (numerical) twins and provide unlimited 
data for ML models that are highly efficient in predicting extremely 
long-term deformation and fatigue processes. With this approach, low 
cost product development of bio-based materials can be enhanced 
using the optimal combination of experiments, advanced mathematical 
modeling, and ML predictions.
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Table 3
The data (in ascii -format) used for the ML. The fiber (hemp) content is 20%wt.
 Data index Composite Content  
 expdata1 ................. PLA + hemp + SA 0...5%wt experimental, monotonic loading  
 expdata2 ................. PLA + hemp + PEG 1.5k 5%wt experimental, monotonic loading  
 expdata3 ................. PLA + hemp + PEG 1.5k 5%wt experimental, monotonic loading  
 expdata4 ................. PLA + hemp + PEG 20k 5%wt experimental, monotonic loading  
 expdata5 ................. PLA + hemp + PEG 20k 5%wt experimental, monotonic loading  
 expdata6 ................ PLA experimental, monotonic load followed by stress relaxation from 𝜖 = 0.003a 
 moddata1 ................ PLA + hemp + PEG 1.5...20k 5%wt predicted, monotonic load followed by unloading from 𝜖 = 0.0075  
 moddata2 ................ PLA + hemp + PEG 1.5...20k 5%wt predicted, monotonic load followed by unloading from 𝜖 = 0.028  
 moddata3 ................ PLA + hemp + PEG 1.5...20k 5%wt predicted, monotonic load followed by unloading from 𝜖 = 0.015  
 moddata4 ................ PLA + hemp + PEG 1.5...20k 5%wt predicted, monotonic load followed by stress relaxation from 𝜖 = 0.01  
 moddata5 ................ PLA + hemp + PEG 1.5...20k 5%wt predicted, monotonic load followed by stress relaxation from 𝜖 = 0.007  
 moddata6 ................ PLA + hemp + PEG 1.5...20k 5%wt predicted, monotonic load followed by stress relaxation from 𝜖 = 0.003  
a Relevant data since the PLA governs the viscosity of the composites.
Fig. 13. Flowchart of the general stacking method.
Fig. 14. Mathematical model predictions (black solid) and ML predictions [stacking based on the SVR] (green solid) (left). The mathematical model and ML 
predictions during the last unloading overlap. Predicted stress relaxation during 1 h (right). The observed data points (□) are also shown.
Appendix. Treatment of the mathematical model

Isothermal relevancy

The theory for irreversible, dissipative, and prolonged effects (non-
linear loading and unloading responses, creep, and stress relaxation) 
governing viscoelastic–plastic deformations is based on the virtual 
power balance obeying two assumptions: Power balance (the internal 
and external virtual powers are equal) and the internal power is frame-
indifferent, i.e., invariant under all changes in a frame of the space 
(Euclidean). To treat these assumptions as well as the force and moment 
balances (stress symmetry), which are the consequences of expenditure 
of the external virtual power, we refer to previous works [56,59].

Frame-indifference
We consider time-dependent transformations at position 𝑿 and time 

𝑡 as follows: 
𝒚(𝑿, 𝑡) → 𝒒(𝑡) +𝑸(𝑡)(𝒚(𝑿, 𝑡) −𝑶) (A.1)
12 
where 𝑶 is a fixed origin, 𝒒(𝑡) is a vector, and 𝑸(𝑡) is an orthogonal 
rotation tensor, for which 𝑸−1 = 𝑸T holds. The reference placement 
(including the position 𝑿) is considered to be invariant, whereas the 
current and intermediate placements depend on the choice of changes 
in frame, i.e., 

𝑭 → 𝑸𝑭 , 𝑭 vep → 𝑸̄𝑭 vep, 𝑭 e,x → 𝑸𝑭 e,x𝑸̄T (A.2)

for all x = a, f, c (a = amorphous phase, f = fiber, c = crystalline phase), 
where 𝑭 e,x = 𝑭 e (accordance with the idea of the model demonstrated 
in Fig.  8(right)), and 𝑸 and 𝑸̄ represent the rotations of the current 
and intermediate placements, respectively. Subsequently, the applied 
deformation measure 𝒃e = 𝒗e𝒗e = 𝑭 e𝑭 e,T is transformed as follows: 

𝒃e → 𝑸𝒃e𝑸T (A.3)

in the current placement and the transformations (A.2)1,2 in (5) result 
in 

𝑳̄vep → 𝑸̄𝑳̄vep𝑸̄T + ̇̄𝑸𝑸̄T, 𝑫̄vep → 𝑸̄𝑫̄vep𝑸̄T.
vep vep T e−T ̇ T e−1 T vep vep T

(A.4)

𝑳 → 𝑸𝑳 𝑸 −𝑸𝑭 𝑸̄ 𝑸̄𝑭 𝑸 , 𝑫 → 𝑸𝑫 𝑸
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for intermediate and current placements, respectively. To obtain the 
results, the property 𝑸̄T ̇̄𝑸 = − ̇̄𝑸T𝑸̄ was used [56].

In accordance with (5) for viscoelasto-plasticity, the elastic velocity 
gradient 𝑳e defines the evolution of the elastic deformation gradient as 

𝑭̇ e = 𝑳e𝑭 e. (A.5)

The last transformation in (A.2) applied in (A.5) results in (𝑭 e,x = 𝑭 e) 

𝑳e → 𝑸𝑳e𝑸T + 𝑸̇𝑸T +𝑸𝑭 e−T ̇̄𝑸T𝑸̄𝑭 e−1𝑸T (A.6)

for all x = a, f, c. Noting the multiplicative decomposition (2) in the 
evolution 𝑭̇ = 𝑳𝑭  yields 𝑳 = 𝑳e +𝑳vep [51,56,59].

Suppose that the virtual velocity fields V∗ of a part of the solid body 
A∗ transform in the similar manner to their non-virtual counterparts V
and A, then assumption [strong bonding between fibers and the ma-
trix] implies that in the current frame, Wint (A,V) = Wint∗(A∗,V∗). 
Similarly, the stress field 𝝉 (by Kirchhoff, 𝝉 = det(𝑭 )𝝈 ∼ 𝝈 with small 
strains <10% [51]) transforms into 𝝉∗ conjugate to the virtual velocities 
when, noting (A.4) and (A.6), 

Wint (A,V) ∶= ∫A
𝝉 ∶ 𝑳𝑑𝑣 =Wint∗(A∗,V∗) ∶= ∫A

𝝉∗ ∶ (𝑸𝑳̃𝑸T + 𝑸̇𝑸T)𝑑𝑣,

(A.7)

where 𝑨 ∶ 𝑩 ∶= trace(𝑨𝑩), and the results 
𝝉 ∶ 𝑳e → 𝝉 ∶ (𝑸𝑳e𝑸T + 𝑸̇𝑸T) + 𝑻̄ ∶ ̇̄𝑸T𝑸̄,

𝝉 ∶ 𝑳vep → 𝝉 ∶ 𝑸𝑳vep𝑸T − 𝑻̄ ∶ ̇̄𝑸T𝑸̄
(A.8)

were used. Because the body part A is arbitrary, (A.7) can be localized, 
i.e. 𝝉 ∶ 𝑳 = 𝝉∗ ∶ (𝑸𝑳̃𝑸T + 𝑸̇𝑸T) holds. Because the change in 
frame, 𝑳̃, as well as 𝑸̇𝑸T = −𝑸𝑸̇T (skew-symmetric) are arbitrary, 
the stress (symmetric) transforms by 𝝉 → 𝑸𝝉𝑸T, and the stress 𝑻̄ ∶=
𝑭 e−1𝝉𝑭 e−T in (A.8) is the counterpart of 𝝉 given in the intermediate 
placement [56]. That is, the push-forward operator for kinetic (stress-
like) quantities is 𝜙∗ = 𝑭 e(⋅)𝑭 e,T, which is in accordance with the 
previous works [51, Box. 5.16]. Furthermore, considering the symmetry 
of 𝝉 yields 𝝉 ∶ 𝑳 = 𝝉 ∶ (𝑳e +𝑳vep) = 𝝉 ∶ (𝑫e +𝑫vep) = 𝝉 ∶ 𝑫.

Constitutive theory
Based on the above results, and noting the approach of the model 

shown in Fig.  8(right), the power of the local dissipation  in its spatial 
form becomes 
 = 𝝉 ∶ 𝑫e + 𝝉 ∶ 𝑫vep − 𝜓̇ = (𝝉a + 𝝉 f + 𝝉c) ∶ 𝑫e + 𝝉 ∶ 𝑫vep − 𝜓̇ ≥ 0, (A.9)

or 
 =

∑

x=a,f ,c𝝉x ∶ 𝑫e + 𝝉 ∶ 𝑫vep − 𝜓̇ ≥ 0, (A.10)

where 𝜓̇ stands for the rate of the Helmholtz free energy per unit 
volume. The Helmholtz free energy 𝜓 is considered as the sum of 
several independent potentials [59,84], 

𝜓 = 𝜓̂(𝒃e) =
∑

x=a,f ,c𝜓̂
e,x(𝒃e), (A.11)

where 𝜓e,x are the contributions associated with the elastic springs b), 
c), and d) in Fig.  8(right). The rate 𝜑̇ is given by 

𝜓̇ =
∑

x=a,f ,c
𝜕𝜓e,x

𝜕𝒃e
∶ 𝒃̇e. (A.12)

Taking advantage of 

𝒃̇e = 𝑳e𝒃e + 𝒃e𝑳e,T (A.13)

(based on 𝒃e = 𝑭 e𝑭 e,T in (A.5)), noting the symmetry of 𝒃e, and 
considering 𝜓e,x as an isotropic function of 𝒃e result in 
𝜕𝜓e,x

𝜕𝒃e
∶ 𝒃̇e = 2

𝜕𝜓e,x

𝜕𝒃e
𝒃e ∶ 𝑫e. (A.14)
13 
The complementary dissipation power is associated with the
viscoelastic–plastic dashpot (a) in Fig.  8(right), 𝜙vep(𝝉) where 𝝉 de-
notes the driving stress in the dashpot. Benefiting the potential 𝜙, the 
viscoelastic–plastic portion of the dissipation power becomes: 
𝜕𝜙vep

𝜕𝝉
∶ 𝝉 . (A.15)

Considering (A.12), substituting (A.14) and (A.15) into (A.10) results 
in 
∑

x=a,f ,c

(

𝝉x − 2
𝜕𝜓e,x

𝜕𝒃e
𝒃e
)

∶ 𝑫e = 0,

𝝉 ∶ 𝑫vep −
𝜕𝜙vep

𝜕𝝉
∶ 𝝉 = 0.

(A.16)

Eq.  (A.16) must be valid under any possible thermodynamically admis-
sible mechanism when the constitutive equations 

𝝉x = 2
𝜕𝜓e,x

𝜕𝒃e
𝒃e (A.17)

for all x = a,f,c, and 

𝑫vep =
𝜕𝜙vep

𝜕𝝉
(A.18)

are obtained. In accordance with (6),

𝝉 ∶ 𝑫vep =
𝜕𝜙vep

𝜕𝝉
∶ 𝝉 = (𝛾̇vep∕𝜏 − 1∕𝜂)(𝜏∕𝜏0)1∕𝑚𝝉dev ∶

𝝉 = (
𝛾̇vep
√

2
𝜏 − 𝜏2

2𝜂
)(𝜏∕𝜏0)1∕𝑚 ≥ 0. (A.19)

Because 𝛾̇vep∕𝜏 − 1∕𝜂 ≥ 0 is required, part of the dissipation power 
(A.19) is equal to or greater than zero; consequently (noting (A.16)), 
the dissipation power  (A.9) is always equal to or greater than zero.

Distinct constitutive equations for elasticity
The elastic isotropic strain energy function is 

𝜓e,x = 1
2
𝜅e,x(𝐼e1)

2 + 2𝜇e,x𝐽 e
2, (A.20)

where 𝜅e,x and 𝜇e,x denote the bulk and shear moduli for all x = a,f, and 
c, respectively (St. Venant–Kirchhoff materials, [51]). The invariants in 
(A.20) are given by

𝐼e1 ∶= trace(ln 𝒗e) = ln 𝐽 e, 𝐽 e
2 ∶= 1

2
(ln 𝒗e)dev ∶ (ln 𝒗e)dev,

wherein 𝐽 e ∶= det(𝒗e). The stress equation is derived from (A.17) and 
(A.20): 
𝝉x = Le,x ∶ ln 𝒗e, (A.21)

where Le,x are the standard fourth order elasticity tensors given by (3), 
(4), and (8) [73, eqs. (11,12)], [85, Eq. (47)] for all x = a,f,c.

Numerical calculation

In the gauge section of the tensile test specimens, homogeneous 
deformation and uniaxial stress state prevailed allowing the model 
calibration and calculations at a single material point. The model was 
programmed by using the Intel® Fortran application. Under uniax-
ial loading, only one variable must be solved from the equilibrium 
equation 
𝑅1 ∶ = 𝐹 vep

11 − 𝐹 vep
n,11 − 𝛥𝑡(𝐷̄

vep
11 )𝐹 vep

11 , (A.22)

where the updated state is defined at time 𝑡 = 𝑡𝑛 + 𝛥𝑡 (𝛥𝑡 is a time 
increment) and 𝑛 refers to the known state at 𝑡𝑛. Once the component 
𝐹 vep

11  is solved (𝑅1 → 0), 𝐹 vep
33 = 𝐹 vep

22 = 1∕
√

𝐹 vep
11  (𝐹 vep

11 𝐹
vep
22 𝐹

vep
33 = 1) due 

to virtually incompressible viscoelastic–plastic deformation. The elastic 
counterpart 𝑭 e is available from the decomposition (2) because the 
total deformation gradient 𝑭  is available under displacement control 
(loading, unloading, and stress relaxation). Under creep, however, 
stress is fixed, and 𝑭 e is solved based on the constitutive description 
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(𝑭 e = 𝒗e under uniaxial deformation), ln 𝒗e = (L𝑒,𝑓 + L𝑒,𝑐 + L𝑒,𝑎)−1𝝈. 
The exponential relationship between ln 𝒗e and 𝒗e can be solved for 
component-wise (uniaxial deformation). Finally, the total deformation 
under creep is solved from the decomposition (2).

Prediction of creep

The compact model formulation and uniaxial loading conditions 
allow for the development of an explicit expression for creep strain. 
The creep (and stress relaxation) are long-term processes, preferably 
with low strain rates (then the rate-dependency term (𝜏∕𝜏0)1∕𝑚 in (6) is 
unity). Denoting ℸ = (𝛾̇vep∕(2𝜏)−1∕𝜂)−1 (total viscosity) in (6), 𝜎 = 𝝈11, 
𝜎̇ = d𝜎∕d𝑡, and 𝜖̇ = d∕d𝑡(ln 𝑣11) = d∕d𝑡(ln𝐹11) = d∕d𝑡(ln 𝑣e11𝑣

vep
11 ) for 

uniaxial loads, the constitutive relation 
𝜖̇ = 𝜎̇

𝐸
+ 𝜎
ℸ

(A.23)

holds. Under creep, stress is constant and the time integration results 
in (𝜖 = 𝜎0∕𝐸 as 𝑡 = 0) 

𝜖 = 𝜎0(
1
𝐸

+ 𝑡
ℸ
). (A.24)

It was found that 𝑠a ≫ 𝜍𝐼1∕3 in (7) for 𝛾̇vep when (A.24) can be 
approximated as 

𝜖 = 𝜎0

(

1
𝐸

+ 𝑡(
𝛾̇a0𝜏

1∕𝑚−1
0

(𝑠a)1∕𝑚
− 1
𝜂
)
)

, (A.25)

where 𝜏0 = 𝜏(𝑡 = 0). According to (A.25), creep strain increases rapidly 
with stress (𝑚 ∼ 0.1) and is suppressed when 1∕ℸ ∼ 𝛾̇a0𝜏

1∕𝑚−1
0 ∕(𝑠a)1∕𝑚 −

1∕𝜂 → 0 (it is required that the term 1∕ℸ is positive or zero; other-
wise, viscoplastic deformation does not develop). Although the model 
provides a linear relationship between creep strain and time, creep 
violation remains small at the relatively small stress levels present in 
practice.

Prediction of stress relaxation

When the strain is regarded as fixed, Eq. (A.23) is equal to zero and 

d𝜎
𝜎

= −𝐸
ℸ
d𝑡 = −𝐸(𝛾̇a0

(2∕
√

3𝜎)1∕𝑚−1

(𝑠a − 1∕3𝜍𝜎)1∕𝑚
− 1
𝜂
)d𝑡. (A.26)

Noting 𝑠a ≫ 𝜍𝐼1∕3, the integration of (A.26) yields (𝜎 = 𝜎0 as 𝑡 = 0) 

𝜎 = 𝜎0 exp
(

−𝐸(𝛾̇a0
(2∕

√

3)1∕𝑚−1

(𝑠a)1∕𝑚
𝑚(𝜎1∕𝑚 − 𝜎1∕𝑚0 ) − 𝑡

𝜂
)
)

. (A.27)

In other words, the reduction in the stress is exponential which is in 
agreement with the experimental observations. Moreover, Eq. (A.26) 
reveals that d𝜎 → 0 as ℸ → ∞ (𝑡 → ∞) and, consequently, 𝜎 → 𝜎̄, that 
is, the stress is not relaxed to zero, but asymptotically approaches the 
limit 𝜎̄ > 0. This is a characteristic of viscous (composite) materials [77,
78,86].

Data availability

Source data supporting the findings of this study are available upon 
request. We provide the source data underlying Table  3.
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