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ARTICLE INFO ABSTRACT
Keywords: An accurate constitutive model for viscoelastic plates with variable thickness is crucial for
Variable thickness viscoelastic plate understanding their deformation behaviour and optimizing the design of material-based devices.

Variable order fractional model

Shifted Legendre polynomials

Variable order fractional partial differential
equation

Numerical analysis

In this study, a variable order fractional model with a precise order function is proposed
to effectively characterize the viscoelastic behaviour of variable thickness plates. The shifted
Legendre polynomials algorithm is employed to solve the variable order fractional partial
differential equation in the time domain, with a minimum absolute error of 1.521 x 10~%. The
computational time is reduced by 30 % and the convergence rate is increased by over 50
% compared to the shifted Bernstein polynomials algorithm. Numerical analysis shows that
viscoelastic plates with quadratic thickness variation exhibit the smallest displacement changes
and the polyethylene terephthalate plates outperform the polyurethane plates in bending
properties. These findings highlight the reliability and effectiveness of the numerical algorithm
based on the shifted Legendre polynomials as a powerful tool for solving fractional equations,
with significant potential in mechanical engineering.

1. Introduction

Variable thickness plates provide substantial advantages in optimizing material usage and reducing structural weight while
maintaining or enhancing its mechanical properties. Compared to uniform thickness plates, these structures are particularly valuable
in weight-sensitive and performance-critical applications, such as aerospace, automotive, and civil engineering [1]. In addition to
their geometrical advantages, the use of viscoelastic materials further expands their application potential. Gupta and Khanna [2]
highlighted that the incorporating both viscoelastic behaviour and thickness variation in structural components not only reduced
thier dimensions but also met the rigorous mechanical strength requirements in the aerospace, marine engineering, electronic
and optical fields. The vibration characteristics of variable thickness viscoelastic plates under various temperature conditions are
important for the applications in the aircraft components, gas turbines, and nuclear power plant structures [3]. It is strongly required
to study the bending deformation and damping properties of the viscoelastic plates under different loading conditions. Yu et al. [4]
utilized a decoupled wavelet numerical method to analyse the bending deflection of anisotropic viscoelastic plates with variable
thickness and discussed the influence of material parameters on the bending stiffness and deformation. Alipour and Shariyat [5]
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performed a buckling analysis of variable thickness viscoelastic circular plates using Mindlin plate theory. Their results demonstrated
that viscoelastic properties significantly delayed the onset of buckling, and the increase of the loss factor resulted in a higher critical
buckling load. These findings underscore the critical role of the viscoelasticity in enhancing the structural stability.

It is essential to employ appropriate models that effectively describe the mechanical behaviour of variable thickness viscoelastic
plates to better understand the material and structural properties. In Hooke’s law, represented by the spring element, the derivative
of strain is zero-order, while in Newton’s viscosity law, represented by the damping element, the derivative is first-order. A
fractional derivative operator with an order between 0 and 1, effectively characterizes the intermediate behaviour between elasticity
and viscosity, providing a more comprehensive representation of viscoelastic properties [6]. Fractional derivative operators are
increasingly applied in viscoelastic models to improve their accuracy and reduce the number of model parameters. Yu et al. [7]
utilized a fractional order (FO) model to describe the three-dimensional viscoelastic behaviour of arterial walls, demonstrating
that FO models can accurately represent material properties in a simplified form with fewer parameters. Qing et al. [8] applied the
fractional Kelvin-Voigt model to characterize the viscoelasticity of polyethylene terephthalate (PET) membranes. The effects of order
function, density coefficient, and various system parameters on the temporal response of PET membranes were elucidated. Variable
order fractional (VOF) models, where the fractional derivative varies with time and/or space, have been introduced to provide a
more precise representation of the evolution of viscoelastic properties. VOF model has been applied in both theoretical research
and practical applications across various fields of science and engineering [9]. Gao et al. [10] employed a VOF model to predict
the mechanical behaviour of soft materials, demonstrating improved accuracy and reliability in predicting the compressive stress—
strain responses compared to FO models. Meng et al. [11] investigated the performance of VOF viscoelastic models with various
order functions. They showed that a linear order function of time effectively described the viscoelastic properties and captured
the evolution of mechanical characteristics of the viscoelastic materials. Sun et al. [12] applied VOF model with different forms of
order functions to explore the mechanical behaviours of polycarbonate under various temperatures. The efficiency of the proposed
VOF model was confirmed based on the experimental data. The VOF model was employed to simulate the mechanical behaviour of
the viscoelastic columns. The variations of the displacement under constant, linearly increasing, and simple harmonic loads were
investigated [13].

Solving the variable order fractional partial differential equations (VOFPDEs) presents significant challenges due to the
complexity introduced by the VOF derivatives. The development of robust numerical methods for solving VOFPDE:s is of critical
importance. Hassani et al. [14-16] proposed optimization methods employing the generalized polynomials as basis functions to
solve VOFPDEs. The solutions were represented as a series expansion of generalized polynomials with unknown coefficients and
control parameters. By utilizing the operational matrix and Lagrange multipliers technique, the VOFPDEs were transformed into
nonlinear algebraic equations. The effectiveness of the method was rigorously validated through convergence analysis and numerical
examples. In contrast to generalized polynomials, orthogonal polynomials satisfy orthogonality conditions with respect to a given
weight function. This makes them particularly efficient for solving VOFPDEs. Orthogonal polynomials, such as Legendre [17],
Bernoulli [18], Jacobi [19], and Chebyshev [20], not only simplify the computations but also enhance the numerical stability.
Hassani et al. [21] introduced transcendental Bernstein series, a generalization of classical Bernstein polynomials, to address variable
order space-time fractional equations. These series achieved the same accuracy as Bernstein polynomials with fewer basis functions.
A hybrid method combining Bernoulli and Laguerre polynomials was developed to solve VOFPDE:s. It exhibits high accuracy with a
minimal number of basis functions [22]. Legendre polynomials are particularly useful to solve nonlinear fractional partial differential
equations (FPDEs) in physics [23]. Their simplicity and orthogonality with respect to the unit weight function limit the function
expansion and optimize the calculation process [24,25]. The numerical algorithm based on Legendre polynomials provide better
estimation than that based on Chebyshev polynomials for FPDEs [26]. Legendre polynomials can be extended to shifted Legendre
polynomials (SLPs) to better accommodate specific geometric or physical requirements. Cao et al. [27] applied the SLPs algorithm
to solve fractional governing equations for poly (methyl methacrylate) (PMMA) beams in the time domain. Sun et al. [28] employed
SLPs to solve FO governing equations for viscoelastic plates with uniform thickness. Numerical results highlighted the efficiency,
accuracy, and robustness of the algorithm.

This study focuses on employing SLPs to solve VOFPDEs of variable thickness viscoelastic plates. A robust VOF model is proposed
to precisely characterize the mechanical behaviour of viscoelastic plate, with the extensive analysis of the order functions to enhance
model accuracy. The VOF governing equation incorporates time-varying fractional derivatives and thickness variations that depend
on the ordinate variable. The effectiveness and stability of the SLPs algorithm are thoroughly evaluated. The efficiency of the
proposed algorithm is validated through the comparisons with the algorithm based on the shifted Bernstein polynomials (SBPs)
algorithm. The displacement, stress and bending moment of the plates are investigated in the time domain. These numerical results
confirm the high efficiency and accuracy of the proposed SLPs algorithm and demonstrate great application potential.

This paper is structured into six sections. Following the Introduction, Section 2 presents the VOF viscoelastic model, including
a detailed explanation of the order function and the formulation of the governing equation for variable thickness viscoelastic plate.
Section 3 describes the SLPs approximation method for solving the VOFPDEs. Section 4 provides the theoretical analysis of the
SLPs algorithm and evaluates two mathematical examples. In Section 5, numerical analysis of the plate under various conditions is
conducted. Finally, Section 6 summarizes the conclusions and outlines perspectives for future research.

2. Material and model
2.1. VOF viscoelastic model with Caputo fractional derivative

Viscoelastic materials exhibit creep, relaxation, and strain-hardening behaviours, which depend not only on the current state
of stress and strain but also on their loading history. Fractional derivatives provide the flexibility to describe such nonlocal and
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Fig. 1. Comparison of experimental data and predictions by constant FO and VOF models with different order functions.

history-dependent properties by a continuous spectrum of the differentiation orders. The FO viscoelastic model is expressed as [29]:
o) = E§"D(1),0<a<1, @

where E is Young’s modulus, 6 is relaxation time, D{(-) represents fractional derivative and « is FO.

The mechanical behaviours of materials are dependent on time, such as creep and stress relaxation under different temperature
conditions. Polymers exhibit time-dependent properties near their glass transition temperature [30]. VOF derivatives are introduced
to capture these dynamic changes, with the FO a, expressed as a function of time ¢. The Caputo VOF differential operator is defined
as follows [31]:

at) pop _ 1 L a0
D, f(t)_—l"(l—a(t))/m(t 5)""D f (s)ds, 2)

where I'(x) = [;* e”'t*~!ds is Gamma function.
Substituting the VOF differential operator into Eq. (1), the VOF viscoelastic model is obtained:

o ()= E0"OD" e (1),0 < a(r) < 1. 3)
The properties of Caputo VOF differential operator are as follows [13]:

@ DG =0,

(b) D*Oym = {O’ T(n+1) m=0
- _Lmtl) m—a(t) —
! F(m+l—a(t))tm W m=1,2,...
© DG 1)) = GD F (o), “@

where G is constant.

The mechanical properties of polymers change continuously respect to time. This evolution of mechanical behaviour should be
intuitively captured by the order function a(r). In prior research by Xiang et al. [32], four types of order functions were evaluated as
potential candidates for the VOF model: piecewise, linear, trigonometric, and exponential functions. A comparative analysis revealed
that the linear order function was the most efficient due to its simplicity and ability to effectively represent the time-dependent
evolution of material properties.

The stress—strain data obtained experimentally was presented in [12]. The VOF models with different order functions are used
to fit these experimental results and investigate the impact of the order function. As illustrated in Fig. 1, the constant FO model and
VOF model with linear order function are consistent with the stress—strain curve in small strain range. The difference between the
experimental data and the numerical model is more important in high strain level for the constant FO model. The VOF model with
a linear order function is confirmed to be effective and accurate to capture the stress—strain evolution in the entire strain range.

In this paper, the order function is assumed to be a linear function of time, expressed as:

a(t)=at+b, ()

where b represents the initial FO, and a is the rate of change of the FO with respect to time.
2.2. Establishment of VOF governing equation of variable thickness viscoelastic plate

A simply supported-clamped variable thickness viscoelastic plate with a length a and width b is considered, as illustrated in
Fig. 2.
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Fig. 2. The schematic of variable thickness viscoelastic plate.
The thickness of this plate is expressed as follows:
h(y) = ho [1+ 21,00] (6)

where hy, is the reference thickness of the plate, d is the degree of thickness variation function f,(y) of the plate. 4 is a positive
constant with a small value. f,(y) is less than or equal to 1 to make the plate respect the classical thin plate theory. The form of
f4(y) is as follows:

2y d
fa(y) = 7—1 , d=1,2.3,... o

u(x,y,t) is supposed to be the transverse vibration displacement of the plate, x and y are transverse and axial coordinate
respectively, 7 is time.
The bending strain of the thin plate, including the components in the x-direction, y-direction and shear direction, expressed as

follows:
du,,

&y = E’

y ay ’
Yry = % + %~ (8)

The bending strain can be calculated by the transverse displacement u(x, y, 7).

u, = —zg—z,
u, = _zg—‘;, ©

where z is the distance from the mid-plane of the plate.
The relationship between the bending strain components and transverse displacement is:

_ Ouy a( au) u

T 0x Toax \Tax ox2

; _%_z<_z@>__zr>2_u
Y7oy oy \ Toy oy*’
ou ou 2
yxy=—x+—y=i(—zﬂ)+i —z% =—220—u. (10)
ady ox dy ox ox dy dxdy
Based on the theory of linear elasticity, the constitutive relation between the stress and strain of the plate is expressed as
follows [33]:

1 v 0
GX gx
o, = 1 E - v 1 0 €y ¢ a1
Ty ( -V ) 0 0 (I—TV) Yay

where o, and o, represent the normal stresses and ., represents the shear stress, v is Poisson’s ratio.
Viscoelastic materials exhibit time-dependent behaviour, meaning that their stress response depends not only on the current

strain but also on the strain history. The VOF derivative D;’(’ ) is incorporated in the stressstrain relation to capture the viscoelastic
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material’s memory effects and time-dependent behaviour. The term 6%®) is also added to describe the evolution of viscoelastic

behaviour.
Based on Eq. (11) and VOF model (Eq. (3)), the stresses can be expressed as follows [34]:

E‘ga(l)D(l(")
ax=—'(ex+\/£ ),
12 4
a(t)
_ E0“OD;
oy, = —1 Y (ey +vex) s
Eea(!)Da(T)
= L (1= V) 7y (12)

r= -t

P2(1-2)

At each unit width of the cross-section of the variable thickness plate, o,, o, and z,, are respectively combined into bending
moments M,, M, and twisting moment M, ., which are as follows:

xy?
h(y)
= Pu . u
M, = zo,dz=-D — +tv—,
; o x » <ax2 0y )
h)
N u  0u
M, = /_@ z0,dz = -D(y) <6_yz + V_axz) >
hy)
2 0%u
M,, = h(y) 2Tydz=-D(N {1 -V) 0xdy’ 4
T
3 ER392® Da(l)
where D (y) = Dy [1 + Af,(»]”, Dy = _lg(l_vzr) :

When a distributed load F(x, y,?) is imposed on the upper surface of variable thickness plate, its governing equation is written
as [34] :
M, + 202Mxy M %u(x, y,1)

y
+ +ph
ax2 axay T o TP

= F(x,y,1), (14)

where p is density of plate.
Based on Egs. (13) and (14), the VOF governing equation of variable thickness viscoelastic plate is:

Eh(y)* 0“0 D[ 1 g4 4 n o ’
_Eh®) ; (a uCey.0) | MuCx ) | dtux, y»t>> +oh) XD _ po . (15)
12 (1-12) ax* 0x29y? ay* or?
The initial conditions are given by:
u(xy,0) = 22D g (16)
ot =0

The boundary conditions are determined by:

Cauyn|  Pulx )

u(x, Dl x=0,0 = u(xX, 3.0l 0 3y =0. 17)

x=0,a

y=0,b 0x2
3. SLPs algorithm for solving VOFPDEs

3.1. Properties of SLPs

SLPs I, (x) are derived from the standard Legendre polynomials /7 (x) by shifting their domain from [-1,1] to [0,1]:
L) =15 (x)2x = 1), (18)

where m is the degree of the polynomials.
The definition of SLPs is [35],

() = Y (=1 I'(m+p+1) P 19)
I'(m—p+ DI (p+ 1)?

p=0
where p=0,1,...,m.
SLPs possess the following orthogonal property [36]:

! ., p=gq
/0 Ip(x)lq(X)dx = {é’p'*'] v, (20)

where p,g=0,1,...,m.
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®,,(x) is represented as a vector form consisting of a series of SLPs,
®,(x) = [1,,0<p<m|. (21)
It can be transformed as:
@, (x) = GA(x), (22)
where A(x) = [L,x,...,x"]",

I'(p+q+1)
m (e 2 p >y,
G = [gl’q]p,q=0’ [gpq] = T (p=g+1)(T (p+1)) b<q (23)

SLPs are extended to the interval [0, R] to be more suitable for practical application. SLPs of degree m; can be obtained.

I'(m +p+1) (x)l’

m
Ly )= (-1 z
e ;0 T(my —p+ DT (p+ D)

R

N I'(m +p+1) 1\?
= _1m+p 1 1 »
Z‘)( " F(ml_P+1)(F(p+l))2(R) ’

where x € [0,R], p=0,1,...,m;.
®,, (x) is expressed as:

@, (x) = SP(x), (24)

where P(x) = [1,x,...,x™]T,

p

_1pra —Lotat) (l) , >q,

S =5,0" oo [5,0] = D e \ R p=4 (25)
pa= 0, p<q.

By using the same approximation method, ®,, (y) is expressed in the following form:

®,,(») = KP(), (26)
where y € [0, N], P(G) = [1, y,...,y2]7.

P
(=1y+a —Lrath (%) . p>aq,

K =[k, 1™, kpe] = T(r—g+ DI (p+D) 27)
Pq44p.g=0 [ pq] 0, r<aq.
D, (1) is expressed in the following form:
@, (1) = HP(), (28)
where t € [0, M], P(t) = [1,1,...,t™]7.
_1yta T+l < 1 )”
H =", [hy = {( D o anaeme \ar ) - P24 (29)
p.q=0 rq
0, p<gq.

3.2. Approximation of unknown function by SLPs

The analytical solution of u(x, y,t) is impossible to obtain directly by the symbolic manipulation. It is expressed as a product of
two independent functions to approximate its analytical solution: one is dependent on the spatial variables u(x, y), and the other is
on the temporal variable u(r) [34].

u(x, y, 1) = u(x, yu(r), (30)

where u(x,y) € L2 ([0, R] X [0, N1),u(?) € L? ([0, M]).
u(t) € L*([0, M) is approximated by SLPs as finite terms,

m3
ut) ~ Z oLy =C"d, (1), (31)

k=0
where mj is the number of terms of SLPs, ®,, (1) = [L(1),0 < k < m3]T. CT = [¢]}2, is an unknow coefficient matrix as following:
(@, @08 ©)=(uw. ol ). (32)

Then,
T _ T —1

c” = (uw. ol m)e, (33)
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where 0 = <<Dm3 (t),tliz3 (t)> = [19,{,]2‘3:0,
M 0, k#1,
%= Luyx®Ly @di={ w7 k=01
0 k+l+1° -
u(x,y) € L2([0, R] x [0, N]) is approximated,
mp my
e, ) Y D g Ly (L) = B (VD (),
p=0 g=0

where m;,m, is the number of terms of SLPs, @, (x)

o0 o1 Uo,m,
="Moo
U0 Uy, o Wy my
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(34)

(35)

= [Lwo<psm] @, = [L0<q<m]

is the (m; + 1) x (m, + 1) order coefficient matrix that needs to be identified.

Egs. (31) and (35) are substituted to Eq. (30) to obtain the following equation:

ux,y, ) = @Zl U, (nC" @, ().

3.3. Operator matrices

3.3.1. Integer order differential operator matrices

(36)

The first-order derivative of D, is written as D,®,, (x), according to Eq. (24), it can be transformed as:

0
D@, (x)=(SP(x)) =S = SV, P(x),
-
0, p#q+1,
— my —
where V; = [v,, pg=0> Upa = i peatl

(37)

According to Egs. (24) and (37), Dxdiml(x) can be rewritten as follows:

D@, (x)=SV,S7'®,, (x),

(38)

where D, = SV;S! is considered as a first-order differential operator matrix of the SLPs.

Similarly,

D2, (x) = (@], () = SV;S7'@], (x) = (SV; 57, (),

(39)

where D)zC = (SV;S71)? is considered as a second-order differential operator matrix of the SLPs.

In conclusion, the n-order differential operator matrices for SLPs are obtained.

D@, (x) = (SV;S™)'®,, (x),
Dy,,(») = (KV,K™)'d,,(7),

D@, ()= (HV;H™')'®,, (),

Vs = [0,

where V, = [v palpg=0"

"
P4-p,q=0"

The integer order derivative terms in Eq. (15) are rewritten as:

Htux,y,t) e -
o RO, M (SViST) U, ()T, ().
o* t
—uf;;y’ L x ol U (kK e, 0)CTe,, 0,
Aule,y,t)  p 2 e .
—van = Om ) (S ST U (KWK @, nCT o,
y
2
TSR0 0, U, ) CT (HVH) 'y, @),

(40)

(41)

(42)

(43)
(44)
o, (45)

(46)
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3.3.2. VOF differential operator matrices
The a(t) differential operator of #,,, is expressed by using the definition of VOF derivative,
DO I'(my + 1)
T(m; + 1 —a(t))
VOF derivative of @mg(t) is obtained according to Egs. (28) and (47),

m3—a(t)

0
r@ _ i-a()
DY, ()= D/(HP@®)=H| 0 = HJP(1),

I'(m3+1) tm3fa(t)
T(my+1—a(0)
b ; [ ]mw ) 0, otherwise,
Where J = 1Jpgl pg=0> Jpa = ) L@ ;a0 -
P4 Tonaw’ s P=ap #1

According to Eq. (28), Eq. (48) is rewritten as:
DIV, ()= HIH™'®, (1) = K,®,, (1),

where K,=HJH~! is the VOF differential operator matrix of D, (0).
VOF derivatives terms in Eq. (15) are rewritten as:

at) 0%u(x, y,1)
! ox4
4
o) 07 u(x, y,1)
Dt

—1\4 -
D @, () (SVST) U, nCTHIH '@, (),

14 _
~ @) (OU (KV,K™') @, o) CTHIH™ @, (1),

l)ao)04u(x,y,ﬂ

T —1)2 132 T -1
oy r@) () (SV ST U (KVKT') @, ) CTHIH™ '@, ().

Based on Egs. (46), (50), (51) and (52), the governing equation Eq. (15) is rewritten as follows:

Eh (y)3 9 D;l(ﬂ
Eh (y)z 9 D;l(t)
Con(-v)
Eh (y)a g D;z(t)

_1\4 _
fp;l ) (svis7) U, ) C"HIH™'®,, (1)
_1\2 _1\2 _
@Zl ) (SVis7) U (KV,K™') @, )W C"THIH™'®,, (1)

—_1\4 _
@) (U (KVK™') @, () CTHIH™'®,, (1)

1\2
+ph(N®,, () UD,, (1) CT (HVZH™') @, (1) = F (x,y.1),
The initial and boundary conditions are approximated as:
u(x,y,0) % @] ()UD,, »C'®,, 0)=0,
du(x, y,0)

ot
u(0,y,1) = @an OU®,, »C'®,, )=0,

wa,y.0) % @) (@U®D,, )C'®,, (1)=0,
ux, 0,0 % @) (U, 0)C'®, 1)=0,
u(x, b,t) = ¢£1 U, (b) chs,m (n=0,

~ @Zl DU, () CT (HV;H™) @, (0)=0,

%%%2z¢;u”m%Kﬁ%debmm=Q
%%%2“¢;@ﬂW%K4@Mmd@mm=Q
% ~ ¢£1 ) (¥, 5—1)2 ve,, ) CTd;”13 ) =0.
% ~ 4’51 (@) (SW; S‘l)2 Ua,, (v CT¢m3 ®) =0.
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47)

(48)

(49)

(50)
(51)

(52)

(53)

(54)

u(x, y,1) is discretized into u(x;, y;,t,) by applying the collocation method to solve these equations [37]. The three variables are

discretized as follows:
x=—2=1 Ri=012...m,
2(my +1)
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2j-1
Y= N =012, m,,
2(my+1)
o= =2l Mk=01.2....m. (55)
2(my+1)

These equations indicate that m; + 1, m, + 1,m3 + 1 nodes are selected in a given interval [0, R], [0, N1, [0, M]. The collection node
is selected at the centre of each interval to avoid the boundary point. Eq. (53) is converted into a series of algebraic equations. The
unknown coefficient matrices U and C in the equation are solved by the least squares method. U and C are substituted back into
the Eq. (36) to obtain the numerical solution u(x, y,t) in the time domain. The entire process is implemented in MATLAB R2017b
on a laptop with a 1.60 GHz processor and 4 GB random access memory. The numerical results demonstrated the SLPs algorithm
has high computational efficiency, the computation time is around 20 s.

The implementation of the SLPs algorithm is summarized as:

Algorithm 1 Numerical solution for the VOFPDEs based on SLPs algorithm

Input:  E.a(1),0,v, p, h(y), F(x,y,1)
Output: u(x, y,t)

. Function approximation based on SLPs algorithm: u (x,y,f) ~ @Zl U, (y)CTclim3 )

. Derivative calculations of integer order and VOF differential operator matrices
. Substitution of the operator matrices into the initial governing equation

H W N -

M, k=0,1,2,-,m;

. Discretization of the variables: x; = 2"—_1)R,i =0,1,2,my; y; = 2l N =0,1,2,,my; t) = 2(m +1)

2(m]+1 (m +1)
for transforming the governing equation into the algebraic equations

5. Solving the algebraic equations based on the least squares method by using MATLAB

4. Theoretical analysis and mathematical examples

In this section, the error estimation, convergence analysis and stability analysis for the proposed method are discussed.

4.1. Error estimation

Uy gy (X5 1) is assumed as the best approximation of a continuous function u(x, y,) € 2, where Q = [0, R] X [0, N] x [0, M],
in the space of m; X m, X mjy terms SLPs Z,, , . (x,y,1). Any polynomial v,, ,, ., (x,,?) in variables x, y and ¢ follows that:

”u(x, Vo0 = Uy my (X595 t)“2 < ”u(x, Vo) = Uy iy (55 9 I)HZ, (56)

Uy g,y (X5 V51) is the interpolating polynomial of u at nodes (x;,y;,#;), x; = im_R,’ yi=Jj— N = t = k—

U (X, 1) = Uy iy my (6 1)
am1+ om om 341
am+lu(§ y,t)A1+ay u(xat)A2+a u(x ¥, w) As
am1+m2+M3+3 )
_ Wu(g o', 0') A Ay A, (57)
Wbl"lere i:’ € [0.Rl,0.0" € [0,N] and 0.0’ € [0.M]. A = [I7) (x=x;). 4, = [T}2) (vy-¥;) and A3 = [I;Z, (= 1,). It can be
obtained:

U3 1) = Uy g (5 201)|

omtly (x, y,t

< max | uoRD A,
0| gxm+l (my + 1)1

0™ty (x, y,1)
+ max |—22
yneR | gyl (my +1)!
9" u (x, y, 1)

+ max |——————| A3
Gyne@ | opms+l (my 4+ 1)1

0m1+m2+m3+3 SVt
— max u(x. 7,1 A Ay A, (58)
(y.NEQ | gxmM+1gymatlgrmstl (my + 1)1 (my + 1)1 (m3 + 1)1

2
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my |(y - yj)‘ and [}, ‘(t - tk)| are changed to derive bounds,

The variables []"}) )(x -x)|,

x—Gi,
my
y=¢ﬁ,
my
—— (59)
m3
It can be obtained
my mp+1 m
R
(x—x-) = (—) 10 —il,
Ie=x)[=(5;) I
my my+1 my
N
-yi)l=—= ¢—Jjl
g|(y yj)‘ (m2> l:!l Jl
s m3+1 m3
H|<’—’k ‘—( > HI(P k|, (60)
k=0
where €, €, and €; are proposed as €; <0 <e; + 1,6, <P <er,+ 1,63 <p<ez+ 1.
Following that,
my e1—1
H|9—i|=)(a—gl) 0—e —1 (H|9—z| H 10— il,
i=0 i=g1 -2
my gy-1 my
[Tie-il=|(¢-e) (d-e-1)|[T16-il ] 16-il.
j=0 j=0 j=£2-2
ms e3—1
[Tie-kl=|(e-e3) (@—e5-1 |H|¢ d I 1o-s. (61)
k=0 k=g3-2
where [(0-¢,) (6 —¢, - 1) ‘ ‘ (¢— &) (¢—52—1)|and‘((p—g3)((p—e3—l)‘atpointse+%,¢+%and (p+%respectivelyaretheir
maximum values. Thus,
1
|(0-c1) (0-e1-1)] < 5.
1
\(¢ ) (¢-e2-1)[ < 7.
1
(o-es) (o-es )] < | ©2
Based on Eq. (59), they can be rewritten as follows:
e1—1 -1
Hl(é’—i)lsH‘(el+l—i)’$(£1+l)!,
i=0 i=0
er—1 er—1
[Tie-ni=<]]|(e2+1-4)|<(2+ 1)
=0 =0
e3—1 e3—1
[Tie-n1 <] |(es+1-k)| < (e5+1)
k=0 k=0
my
IT 1e-ni< H (=&)< (m =)
i=g; =2 i=g =2
my my
[T 1e-ir< [T |(-e)| < (m—-e)
Jj= a2—2 Jj=€7-2
H (0 — k)l < H | —£ )< s —e5)! (63)
k=e3-2 k=e3-2

Combining Egs. (62) and (63) in Eq. (61), the following bounds are obtained.
ml 1
H|9—i| <7 (my + 1)1,
H|¢ jl< —(m2+1)

j=0

10
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M3 1
Hl(p—klsz(m3+1)!. (64)
k=0

The bounds derived from Eq. (60) are as follows:

fy("—xf)‘ <£>MJ+1 i (my + 1)1,

m

my N my+1 1

lo-sl=(5;)  gimv

m3 m3+1

!lw_%”:<%> Lm e (65)

The error bound is found based on Egs. (58) and (65),

G321 = Oy g G300
1 R my+1 1 N my+1 1 M m3+1
<-|\— Di+-|— D)+ - — D
4 <m1> L m, 2Ty ms 3
my+1 my+1 m3+1
L (RN (T 66)
64 \ m, my ms

9"+ u(x )

grm3tl

gmi+l gm+l

u(x,y.t)
9y

— u(x,y.t) — — —
where Dy = maxg,eo S ,Dy = maxq,eo ,Dy = maxy ,eo and Dy = max,,,eco

oMl +m2+m3+3u(x,y,t)

dx”'1+10y'"2+16t"'3“ N

Based on Eq. (56), the following error estimation is obtained,

Hu(x, Vo) = U iy my (X5 s t)H2

my+1 my+1 m3+1
serva@(ﬁ) D (XY b, (M),

my my m3
my+1 my+1 m3+1
_1(Rr N LARY &
64 \ m; m, my

4.2. Convergence analysis

The convergence of the SLPs algorithm is ensured by the exponential decay of the error terms in the approximation
Uy gy (X, ¥, 1) AS my,my, my — oo, the terms (m—Rl )MIH, (mﬁz >m2+l and (%)IMH diminish exponentially, ensuring:
”u(x, y, 1) — uml,m23m3(x, Vs It)“2 -0, asmy,my,my — 0.
The approximation u,, ,, ., (x, y,t) converges uniformly to u(x, y,) with an exponential rate governed by the decay of (n% )mlH,
(%)Inﬁl and (mﬂ})mrrl. The convergence highlights the computational efficiency of the SLPs algorithm, and confirms its high

effectiveness for approximating ternary functions in VOFPDEs.

4.3. Mathematical example 1

A general mathematical example associated with its analytical solution is proposed. The mathematical example is solved by the
proposed SLPs numerical algorithm. The form of the equation is the same as the VOF governing equation of the variable thickness
viscoelastic plate with simply supported-clamped boundary conditions, the expression is:

0%u(x,y,1) tu(x,y,t)  0*ux,y,1) 0%u (x, ,1)
0.01D*® < AL} ALY 222 ) - 0.006 =2 = £(x,3,0), 68
i oxt ox20y? oy o2 feet) (68)
where a (1) = 0.4+ 0.1, 1 € [0, 1], x € [0, 1],y € [0, 1].
The initial conditions are:
7] t
u(x,y0) = M =0. 69)
ot =0
The boundary conditions are:
ou 0%u
ulcog = Ulmg1 = — = — =0. (70)
x=0,1 =017 55 mon 0% |

11
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<1073 05 %107 xos

Z‘ 0‘005506 Z:0.005506

(a) Analytical solution (b) Numerical solution (c) Absolute error

Fig. 3. Numerical analysis of the VOFPDE obtained by SLPs algorithm.

The analytical solution of Eq. (68) is:
u,y, 0 =x*(1-x2y* 1 -y 71

This equation is solved separately by the SLPs and SBPs algorithms. The numerical solution is represented by u,(x,y,?). The
absolute error is e(x, y,7) = |u, (x,y,1) — u(x, y,1)|, which is presented to show the computational efficiency of the algorithms.
The definition of SBPs on the interval [0,R] is given as [38]:

_(n x(R—x)"' n—i\ xitk
By, (x) = (1) 2( bt ( )ﬁ 72)
The matrix ¥ (x) consists of a series of SBPs defined over the interval [O,R]. Its formula is given as follows:
¥ (x) = [By, (x). By, ()..... B,, ()] = BT, () (73)

where

T, =" [.B=[5,]

" [T e iz
=077 ) if j<i.

x"

where B is coefficient matrix of SBPs. It is an upper triangular matrix with non-zero on the main diagonal, so it is invertible. T, (x)
is obtained as:

T,(x)= B™'¥ (x). (74)

The operator matrices of the SBPs are derived to approximate the unknown function by using the same method described in
Section 3. These matrices are employed to transform the governing equation into a series of algebraic equations, which are solved
subsequently.

The numerical solutions obtained using the algorithms based on SLPs and SBPs, along with their corresponding absolute errors,
are shown in Figs. 3 and 4, respectively. As illustrated in Figs. 3(b) and 4(b), both orthogonal polynomials algorithms successfully
solve the equation, with the numerical results satisfying the initial and boundary conditions. The accuracy of the two algorithms
is compared using absolute error, as shown in Figs. 3(c) and 4(c). The absolute error for the SLPs algorithm is smaller than that
of the SBPs algorithm. In terms of computational performance, the SLPs algorithm required 47 s of CPU time, whereas the SBPs
algorithm took 68 s. Furthermore, the SLPs algorithm converged after 14 iterations, while the SBPs algorithm required 29 iterations
to converge. These results demonstrate that the SLPs algorithm possesses superior computational efficiency and accuracy.

Table 1 presents the values of the absolute and relative errors of the displacements obtained by using the SLPs and SBPs
algorithms at various points. This comparison provides a quantitative difference in the numerical accuracy and performance of
the algorithms based on these two polynomials. It is evident that SLPs outperform SBPs in both absolute and relative errors at
all the selected points. The algorithm based on SLPs demonstrates significantly lower absolute errors, with values ranging from
1.521 x 1078 to 1.182 x 107*, compared to the algorithm based on SBPs, with the values ranging from 8.560 x 10~ to 1.007 x 1073,
The relative error for SLPs is consistently below 2.528 x 107> %, while SBPs exhibit a higher relative error of 1.830 x 107! %. These
findings confirm the accuracy and reliability of SLPs algorithm in the approximation of solution of the fractional governing equation.

4.4. Mathematical example 2

The following mathematical example is studied to further validate the applicability of the SLPs algorithm to VOFPDEs with
diverse boundary conditions and fractional derivatives.

12
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x1073 X:0.5 %1073
6 Y:05

2:0.005506
n:

(a) Analytical solution (b) Numerical solution (¢) Absolute error

Fig. 4. Numerical analysis of the VOFPDE obtained by SBPs algorithm.

Table 1

Error comparison between the algorithms based on SLPs and SBPs at various points.
(x,y) Absolute error Relative error (%)

SLPs SBPs SLPs SBPs

(0.4,0.4) 1.182 x 107* 8.560 x 107* 2.528 x 1072 1.830 x 107!
(0.5,0.4) 5713 x 107 9.282 x 10~ 1.113 x 1072 1.829 x 107!
(0.6,0.4) 2.126 x 107 8.560 x 10~ 4.547 x 1073 1.830 x 107!
0.4,0.5) 5.713 x 1073 9.282 x 107* 1.113 x 1072 1.829 x 107!
0.5,0.5) 1.521 x 1078 1.007 x 1073 2.762 x 107° 1.828 x 107!
(0.6,0.5) 2.908 x 1073 9.282 x 1074 5.731 x 1073 1.829 x 107!
(0.4,0.6) 2.126 x 107 8.560 x 107* 4.547 x 1073 1.830 x 107!
0.5,0.6) 2.908 x 1073 9.282 x 107* 5731 x 1073 1.829 x 107!
(0.6,0.6) 5.360 x 10~° 8.560 x 10™* 1.146 x 1072 1.830 x 107!

(a) SLPs algorithm (b) SBPs algorithm

Fig. 5. Absolute error obtained by using the SLPs and SBPs algorithms.

0%u(x,y,1) u(x,y,t)  0*ux,y,1) 0%u (x, y,1)
0.03D;® < R 222 ) 10022 = f(x, p,1), 75
! ox4 0x20y? oyt or? feer) (75)

where a () =0.11+ 0.5, € [0, 1], x € [0, 1],y € [0, 1].

The initial conditions are:

u(x,y,0) = dux, D) 0. (76)
ot =0
The boundary conditions are:
0%u u
ul._ = ul._ = — = — =0. 77
k=01 = uly=01 02 |01 0% |icon 77)

The analytical solution of Eq. (75) is in the form of a harmonic function:

u(x, y, 1) = 5sin(zx) sin(zy). (78)
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Table 2

Material parameters of the model [38].
Material p (kg/m%) 9 (s) E (Pa) v a(t)
PET 1380 0.35 3 x 107 0.3 —0.11+1
Polyurea 1060 0.0012 1.2 x 107 0.3 —0.17+1

This equation is solved by using the SLPs and SBPs algorithms. A comparison of the absolute errors, presented in Fig. 5, indicates
that the SLPs algorithm is more accurate than the SBPs algorithm. The computation time for the SLPs algorithm is 6.5 s of CPU
time, compared to 9.5 s for the SBPs algorithm. Additionally, the SLPs algorithm converged after 23 iterations, whereas the SBPs
algorithm required 95 iterations to achieve convergence. These results demonstrate that the SLPs algorithm can approximate more
complex analytical solutions with significantly reduced convergence rate.

The stability of the algorithm based on SLPs is validated by the obtained absolute and relative errors for solving the VOFPDEs
with the various fractional derivatives under different boundary conditions.

5. Numerical investigation of variable thickness viscoelastic plates

SLPs algorithm is used to solve the governing equations of viscoelastic plates with variable thickness. The evolution of
displacement of plates with varying thicknesses and materials under the harmonic load is analysed. The displacement, stress and
bending moment of quadratic variable thickness PET plate are studied.

The boundary conditions of the plate with a =3 m and b =2 m are:

du

0*u
u|x=0,3 = u|y=04’2 = 6_y o = ﬁ = 0 (79)
y=U..

x=0,3

Thickness variations of the plate are represented by three different distribution functions as:

2
Linear thickness variation : h(y) = hy [1+A (?y - 1)] s
2 2
Quadratic thickness variation : h(y) = hy [1+A <7y - 1> ] s

3
2
Cubic thickness variation . h(y) = h [1+A (Ty - 1> ] s (80)

where hy =0.01 m, 1 =0.1.

5.1. Numerical analysis of plates with different materials and thicknesses

The materials used for the variable thickness viscoelastic plates are PET and polyurea. Table 2 summarizes the material
parameters utilized in the VOF model.

The displacement variations of PET and polyurea plates with linear, quadratic and cubic thickness changes under harmonic
load F = Fysin(zx /a)sin(zxy /b)cos(wt) [39] are analysed, where F, is amplitude and w is excitation frequency. Substituting
Fy,=0.015N/m, w =0.7 rad/s, t =2 s and a (1) = —0.1¢ + 1 into Eq. (15), the displacement solution is obtained in the time domain.
As shown in Figs. 6 and 7, the maximum displacement occurs at the centre position of the plate (x, y) = (1.5, 1). The displacements
at the four edges of the plate are equal to 0, satisfying the boundary conditions. Among plates made from the same material, the
plate with a linear thickness variation exhibits the largest displacement, while the plate with a quadratic thickness variation shows
the smallest displacement. The results were coherent with those presented in Zenkour’s study [40], where the numerical results for
variable thickness rectangular plates under different boundary conditions were provided. In this study, the numerical results are
represented by using the two-dimensional graphics, offering a clear and direct representation of the numerical data. The effectiveness
of the algorithm based on SLPs in solving the governing equations for variable thickness plates is demonstrated.

As shown in Fig. 8, the displacement solutions of the PET and polyurea plates at y = 1 m are obtained in the time domain for
various values of x. The results indicate that the displacement is smaller in PET than in polyurea plates, demonstrating that PET
plates are more resistant to bending. The findings of this study align with the investigations of PET and polyurea rotating beam,
reported in [38]. These results confirmed that the VOF model could effectively describe the viscoelastic characteristics, providing a
robust theoretical foundation for the performance prediction of damping materials. PET plates with quadratic thickness variations
exhibit small displacement, which is ideal for the applications requiring high stiffness, such as structural components in aerospace
and automotive industries. Polyurea is well-suited for the applications involving vibration and shock absorption.

14



L. Sun et al. Communications in Nonlinear Science and Numerical Simulation 146 (2025) 108764

4
_ x 10 — x 10
« 10.3 §;:5 6 « 10—3 ;;{5 5
1 7=6.176x10™* 1 2=5.195x10°
5] _ 4
Q0 SR B 3
=
s
a3 2
= _é 2
3| 1
1 0
00 0 00 00
y(m) x(m) y(m) x(m) y(m) x(m)

(a) Linear thickness variation (b) Quadratic thickness variation (c) Cubic thickness variation

Fig. 6. Displacement solutions of three thickness variations of PET plates.

% 10-3 x=1.5
2 y=l
_ -3
7z=1.257x10

0 0
y(m) x(m) s 0 ) v 70 )
(a) Linear thickness variation (b) Quadratic thickness variation (c) Cubic thickness variation

Fig. 7. Displacement solutions of three thickness variations of polyurea plates.

x107 15X 107

1.5

u(x,1,2)(m)
u(x,1,2)(m)
u(x,1,2)(m)

x (m) x (m) x (m)
(a) Linear thickness variation (b) Quadratic thickness variation (c) Cubic thickness variation

Fig. 8. Comparison of displacement solutions of the PET plate and polyurea plate under three thickness variations.
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1 2 1 3
1 0 1 0
00 00
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(a) F =0.01sin (Z£) sin (%) cos (0.7t) (b) F =0.02sin (Z2) sin (%) cos (0.71)

Fig. 9. Displacement solutions of PET plate under different amplitudes.
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x10™ %107

~ 1

y(m) 0 x(m)

(a) Stress (b) Bending moment

Fig. 10. 2D distribution of stress and bending moment of quadratic variable thickness rectangular plate in x—y plane.

5.2. Effect of the amplitude of harmonic load

When F, = 0.01 N/m and F; = 0.02 N/m in harmonic load, the displacement of the quadratic variable thickness PET plate is
calculated, as shown in Fig. 9. The results indicate that the displacement increases progressively with F,.

When F, = 0.015 N/m, the numerical solutions of the stress and bending moment of the plate are illustrated in Fig. 10. In Fig.
10(a), the stress is shown to disappear at y =0 m and y = 2 m, while its maximum value occurs at x =0 m and x =3 m when y =1
m. The minimum value of stress occurs at the centre of the plane. As depicted in Fig. 10(b), the maximum bending moment appears
at the centre of the plate, while the minimum bending moment is observed at x = 0 m and x = 3 m when y = 1 m. The bending
moment almost disappears at y = 0 m and y = 2 m. The results obtained in this study are consistent with those presented in [41].
Zenkour employed the small parameter and Lévy-type methods to obtain the dimensionless displacement. This study provides the
numerical results directly in the time domain, offering a practical perspective for designers of variable thickness structures.

6. Conclusions

In this paper, an innovative algorithm based on SLPs is proposed for solving the governing equation of variable thickness
viscoelastic plates. The VOF model effectively describes the relationship between stress and strain in the plate. Displacement, stress
and bending moment are analysed in the time domain. The key conclusions are summarized as follows:

1. VOF model with linear order function is successfully implemented in the governing equation of viscoelastic plate with the
advantages of high efficiency and accuracy.

2. The VOFPDE:s of variable thickness viscoelastic plates are directly solved in the time domain by using SLPs algorithm.

3. Comparing to SBPs, the SLPs algorithm exhibits superior accuracy, faster convergence rate and reduced computational time.

4. Viscoelastic plate with quadratic thickness variation exhibits the smallest displacement change under the same loading
conditions.

5. PET demonstrates better bending performance than polyurea, making it more suitable for applications requiring high stiffness.

6. The displacement of the plate gradually increases with the amplitude of the uniformly distributed harmonic load.

The material studied in this research is incompressible and isotropic, which simplifies the modelling process, but limits its
applicability to compressible or anisotropic materials. The instability and convergence issues of the numerical method appear under
extreme conditions, such as when the diffusion rate approaches zero. It can reduce accuracy and increase computational cost. These
limitations highlight the need for further advancements in modelling and computational techniques. Future research will focus on
the extension of the fractional viscoelastic models to multi-scale and multi-physics problems to enhance the accuracy of behaviour
predictions for complex materials, with specific applications to additive manufacturing (3D printing) process. The effects of thermal,
mechanical, and viscoelastic interactions will be thoroughly explored by employing FO models in a multi-physics framework.
The physical significance of VOF derivatives will be investigated to provide a deeper understanding of their role in describing
complex material behaviour. A fractional derivative UMAT (User Material) subroutine is being developed for the integration with
finite element method. This tool will enable more precise investigations of viscoelastic behaviour under diverse conditions and
configurations, facilitate the significant advancements in the application of VOF models in engineering and material science.
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