

Phase-locked parametric-down conversion inside soliton waveguides in LNOI films

Eugenio Fazio^{1*}, Alessandro Bile¹, Arif Nabizada¹, Alessandro Belardini¹, Mathieu Chauvet² and Michael Scalora³

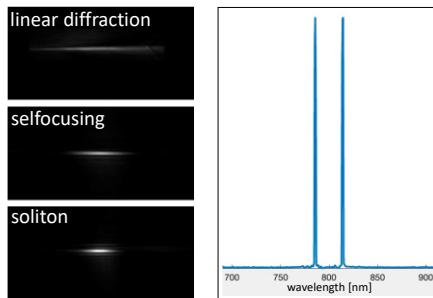
¹ Department of Fundamental and Applied Sciences for Engineering, Sapienza University of Rome, via A. Scarpa 16, Rome, Italy

² Université Marie et Louis Pasteur, CNRS, institut FEMTO-ST, F-25000 Besançon, France

³ FCDD-AMT-MGR, DEVCOM AvMC, Charles M. Bowden Research Center, Redstone Arsenal, 3443 Honest John Road, Huntsville, AL, USA

Abstract. We have observed for the first time a parametric down conversion process within a solitonic waveguide. This feature ensures an optimal mode-overlapping between the interacting waves. Moreover, the excited photorefractive nonlinearity enables a phase-locking regime that allows the temporal overlapping of the interacting pulses too. A broadband PDC is then possible within a waveguide without special needs for phase-matching and temporal synchronisation.

1 Introduction


Parametric down-conversion (PDC) is a fundamental nonlinear optical process widely used for generating entangled photon pairs, a crucial resource for quantum technologies. Typically, efficient PDC requires phase matching, a condition that ensures momentum conservation and maximises conversion efficiency. However, recent advancements have demonstrated the possibility of using the phase-locking phenomenon in parametric processes [1-4], i.e. without strict phase-matching conditions, significantly broadening the design flexibility of integrated photonic systems. However, as much as we know, phase-locking was never observed in PDC before. Waveguide-based PDC offers a highly advantageous platform for both classical and quantum applications. The tight optical confinement in a waveguide enhances nonlinear interactions, both in terms of high intensity and mode-overlapping, allowing for higher conversion efficiencies even in the absence of traditional phase-matching constraints. Moreover, integrated photonics enables scalable, stable, and low-loss architectures, which are essential for practical implementations in quantum communication, quantum computing, and metrology. Beyond the traditional waveguides, soliton ones ensure optimal mode overlap and nonlinear self-alignment, especially in the femto-second pulse-duration regimes where the electro-optic nonlinearity may play a fundamental role in the phase-locking process. The ability to achieve efficient photon generation in compact, chip-scale devices represents a significant step towards fully integrated optical circuits, bridging the gap between fundamental research and real-world applications. Here, we performed a PDC process within a solitonic waveguides in a Lithium Niobate On Insulator (LNOI) film [5].

* Corresponding author: eugenio.fazio@uniroma1.it

2 Experiment and Results

An $8\mu\text{m}$ -thick film of LNOI was placed on a Peltier heater to generate a static pyroelectric bias in order to excite the photorefractive nonlinearity necessary to get spatial solitons. A high rep-rate train of femtosecond pulses at 400nm were focused onto the input face of the LNOI film and coupled inside. The nonlinearity compensates the linear diffraction inducing a transversal self-confined beam, with an associated photorefractive waveguide. Within the waveguide was coupled also a CW laser seed at 785 nm. At the output an Optical Spectrum Analyzer revealed the presence of 3 main frequencies, at 400nm, at 785 nm (amplified) and at 815 nm (generated), as shown in fig.1. The process is very far from the perfect phase-matching.

Fig. 1. left: soliton formation; right: IR spectrum outside the soliton waveguides showing the amplified seed at 785nm and the generated idler at 815nm.

3 Conclusions

We experimentally and numerically investigate the parametric down-conversion within a solitonic waveguide in LNOI film. The PDC process exploits a phase-locking between the pump and the generated pulses, enhancing the conversion efficiency and ensuring a process that requires neither temporal overlapping of femtosecond pulses nor perfect-phase matching which means easy to be realized with a broad band efficiency.

References

1. V. Roppo, M. Centini, C. Sibilia, M. Bertolotti, D. de Ceglia, M. Scalora, N. Akozbek, M.J. Bloemer, J.W. Haus, O.G. Kosareva and V.P. Kandidov, *Role of phase matching in pulsed second-harmonic generation: Walk-off and phase-locked twin pulses in negative- index media*, Phys. Rev. A 76, 033829 (2007)
2. M. Centini, V. Roppo, E. Fazio, F. Pettazzi, C. Sibilia, J.W. Haus, J.V. Foreman, N. Akozbek, M.J. Bloemer and M. Scalora, *Inhibition of Linear Absorption in Opaque Materials Using Phase-Locked Harmonic Generation*, Phys. Rev. Lett. 101, 113905 (2008).
3. E. Fazio, F. Pettazzi, M. Centini, M. Chauvet, A. Belardini, M. Alonzo, C. Sibilia, M. Bertolotti and M. Scalora, *Complete spatial and temporal locking in phase- mismatched second-harmonic generation*, Opt. Expr. 17(5), 3141 (2009)
4. E. Fazio, A. Belardini, M. Alonzo, M. Centini, M. Chauvet, F. Devaux and M. Scalora, *Observation of photorefractive simultons in lithium niobate*, Optics Express 18 (8), 7972–7981 (2010).
5. A. Bile, M. Chauvet, H. Tari and E. Fazio, *Supervised learning of soliton X-junctions in lithium niobate films on insulator*, Opt. Lett. 47(22), 5893-5896 (2022)