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Abstract: We report on the possibility to measure the temperature of micro-devices by means of a micro-thermocouple 

in active mode with a simplified procedure of null-point method. Contrary to other reported procedures, there is no need 

of multiple scans at different distances to the sample surface. A single out of contact power calibration is required prior 

to the contact-point measurements. For them, only two successive measurements at different Joule heating powers of 

the thermocouple are necessary to deduce the actual surface temperature. We only used a low frequency voltage 

generator and high precision voltmeters without specific electronics except a low-pass RC filter. The reliability of the 

method is demonstrated with a platinum wire as a calibration tool. 
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Nomenclature: 

General Index and suffix 

d: diameter I: RMS current i: material index, 1 for platinum and 

2 for platinum-10% rhodium alloy 

L: length of one wire P: input Joule power j: discretized element of i wire 

S: wire cross section h: radiative surface heat transfer 

coefficient 

tj: thermocouple junction 

p: wire perimeter g: thermal conductance nc: no-contact 

x: coordinate along a wire x: standard deviation on x data c: contact 

e: electrical resistivity T: temperature at x position in the wire cc: cold contact 

: temperature coefficient of 

resistance 

Ta ambient temperature hc: hot contact 

: emissivity  = T – Ta: temperature difference with 

ambient 

e: external 

k: thermal conductivity q: heat power s: surface 

 

 

 

1. Introduction 

Surface temperature measurement with high spatial resolution remains a major issue especially in vacuum conditions. 

In a previous article, we described the different available techniques that can be broadly classified in two groups: 

conventional or non-contact and near-field or contact techniques [1]. We recalled that non-contact techniques are 

limited in terms of spatial resolution, temperature range and their dependence on the surface optical nature whereas 

contact techniques overcome part of these drawbacks. Consequently, the only way to reach high spatial resolution 

requires the use of a local probe such as used in all the near-field techniques. Unfortunately, the latter are subjected to 

discrepancies related to the effect of thermal diffusion between the sample and the sensor which becomes the main error 

source. We presented the potential of thermocouple micro-probes as a relevant alternative to available thermal probes 

for Scanning Thermal Microscopes (SThM) which are derived from Atomic Force Microscope (AFM) probes where a 

thermal sensitive area is added to provide additional information related to heat transfer between this area and the 

sample. Two modes are available for temperature or thermal conductance measurements, namely TCM (temperature 

contrast mode) and CCM (conductivity contrast mode) respectively [2,3]. The specific case of passive mode for 

temperature measurement on a sample surface was described and a specific calibration procedure was developed [1]. It 

was demonstrated that it is impossible to measure surface temperature with a high level of accuracy since one cannot 

predict and estimate the different thermal resistances involved in the measurement on any object. Classically, these are 

the probe resistance (Rp), the contact resistance (Rc) between the probe tip and the surface and the spreading resistance 

in the object itself (Rs). 

Here, we present the use of the same kind of thermocouple probe for measuring contact temperature at sub-micron-scale 

in a vacuum chamber by means of the active method, also called the “null-point” method which is an extension of the 

double-scan technique developed to get rid of parasitic heat exchanges effects around the SThM probe [4,5]. However, 

as clearly explained by the authors, this does not prevent the effect of heat diffusion inside the sample itself and the 



resulting disturbances. The main difficulty in the double scan technique relies on the extraction of the jump temperature 

between contact and no-contact, the latter being extrapolated from two scans at different height from the surface. 

Double-scan then becomes triple-scan: a first to obtain contact temperature and surface profile and two scans at 

different heights. Null-point method has extended the double-scan technique by adding an active operation mode [6]. In 

this mode, the thermocouple is heated by alternative current (AC) with Joule effect at a sufficiently high frequency for 

insuring a complete vanishing of thermal AC components in the thermoelectric signal. The direct current (DC) 

component of the temperature is then measured for thermal conductivity extraction or/and actual surface temperature. 

The described method shows that for the use of a standard SThM thermocouple probe in scanning mode, 6 scans are 

necessary to calculate the actual surface temperature in atmospheric pressure [7,8]. In vacuum, this reduces to 2 scans 

due to absence of heat transfer in the surrounding gas and the direct access to non-contact temperature value [9]. 

However, in both cases, the different contact scans are supposed to be strictly identical in terms of strength and 

geometry so that the thermal contact resistance and the spreading one are the same for each measurement location. This 

point can be subjected to discussion since the probability to pass 2 times strictly on the same points with the same 

contact configuration cannot be 100%. A simple change in the tip shape due to wear or damage between both scans may 

affect these two resistances. Consequently, the possibility to obtain the required data at each point at one time, is the 

only way to resolve the issue of multiple scans, despite a significant increase in scanning time. This why we propose a 

new method to reduce the number of scans. It consists in the exploitation of the linear behaviour of the measured 

junction temperature of the thermocouple probe regarding supplied heat power in both contact and non-contact mode. 

From the measurements of both slopes, it is possible to extrapolate the actual surface temperature. Only a single out of 

contact power calibration before and only one scan with two successive measurements at different Joule heating powers 

of the thermocouple are necessary. We demonstrate the reliability of this technique using a calibration procedure on a 

platinum wire whose contact temperature is known within 3 K. 

The micro-thermocouple probe is first presented along with a modelling describing the temperature along its wires and 

this model limitations. Then our new simplified null-point procedure in vacuum is explained and described. We then 

present our experimental set-up before showing the results and discussing them. 

 

 

2. Micro-thermocouple probe 

2.1 Fabrication and dimension characterization 

A micron-size S type thermocouple is used, made with Wollaston 1.27 µm diameter wires of platinum and platinum-

10% rhodium. They are mainly used as Scanning Thermal Microscope (SThM) probes for both passive and active local 

sensors [10,11]. For that purpose, the thermocouple junctions are systematically reshaped by means of a focused ion 

beam (FIB) in order to refine the tip apex and optimize the probe spatial resolution. Fig. 1 presents the thermocouple 

junction used in the present article. Fig. 1a shows a large view of the thermocouple made of two Wollaston wires. Silver 

claddings are visible and the stripped lengths of platinum and platinum-10% rhodium are the same, approximately 300 

µm. They seem dissymmetric only due to the view angle and the large field depth of the electron beam. Fig. 1b depicts 

the junction after FIB reshaping. The measured diameters of the wires are 1.29 and 1.24 µm for the platinum and 

platinum-rhodium alloy respectively. The increase of the diameter of the upper wire (platinum-rhodium) is probably 

due to a local fusion during welding; this does not affect the junction behaviour and may only contribute to the slight 

difference between measurements and calculations as seen below. 

 

a.  b.  

Fig. 1. S type micro-thermocouple used in this article: a) overall view, b) junction after reshaping by FIB. 

 



One of the advantages of the use of a wire thermocouple relies on its geometry simplicity regarding usual SThM 

cantilever probes. It is then easy to model its behaviour in different modes.  

 

2.2 Modelling of temperature along the thermocouple wires 

In vacuum null-point (VNP) method [9], the thermocouple is heated by Joule effect in AC mode. It is similar to 2 

mode except the current frequency is increased above its thermal cut-off frequency to extract only the DC temperature, 

which can be provided by a simple low-pass filter. In 2 mode, we can assume that temperature dependence of 

electrical resistivity and material thermophysical parameters are constant values as long as the magnitude of the 2 

temperature component is on the order of a few degrees [12]. Furthermore, the assumption of a single material using 

mean values of thermal and electrical characteristics of both wires was also acceptable to match experiments. However, 

in active mode used for temperature measurement, such simplifications cannot be acceptable anymore since the 

temperature range goes from ambient to several hundreds of degrees. In addition, even if no convection occurs in 

vacuum, radiative heat transfer must be taken into account. Consequently, the mathematical problem becomes non-

linear and only a few methods can be applied to solve it. We have chosen to keep linear expression of differential 

equation of heat into portions of wire whose solutions are known for each discretized element. Furthermore, radiative 

heat transfer can be linearized and introduced as a surface heat transfer coefficient h. Both wires are discretized in n 

portions, each of them being defined with their own thermal and electrical parameters that depend on the temperature. 

The 2n integration constants of the obtained system of equations are resolved numerically using boundary conditions. 

For this, let us consider the thermocouple as a junction of two wires at the axis origin x = 0, a platinum wire on one side 

of index i = 1, and platinum-10%rhodium on the other side of index i = 2, as shown in Fig. 2. Each wire is discretized in 

n elements, from j=1 to j=n. Due to the very small diameter of wires, a section is thermally homogeneous so that the 

temperature distribution only depends on the longitudinal direction x. A simple Biot number estimation could 

demonstrate this assertion. 

 

 
Fig. 2. Modelling principle of each wire starting from the junction location x = 0, made of n elements. 

 

Each of these n elements is thermally governed by the same differential equation written in steady-state: 

𝑘𝑖,𝑗𝑆𝑖

𝑑2𝑇𝑖,𝑗

𝑑𝑥2 𝑑𝑥 + ℎ𝑖,𝑗𝑝𝑖(𝑇𝑎 − 𝑇𝑖,𝑗)𝑑𝑥 +
𝜌𝑒𝑖,𝑗𝑑𝑥

𝑆𝑖
𝐼2 = 0  (1) 

in which i = 1 for platinum, and i = 2 for platinum-10% rhodium wires. 

Section Si and perimeter pi are given for the same wire, not strictly equals as shown below. hi,j represents the external 

surface radiative heat transfer coefficient. ki,j and ei,j are the thermal conductivity and electrical resistivity of the 

considered element respectively. Their values are temperature dependent but are assumed as homogeneous in each 

element. 

Ti,j is the steady temperature at a location x into the element (i,j) that results from the thermal balance in which I 

corresponds to the RMS current value at the  radial frequency. The linearized radiative surface heat transfer 

coefficient hi is calculated from the element temperature Ti,j and the ambient value Ta, such: 

 ℎ𝑖,𝑗 = 𝜀𝜎(𝑇𝑖,𝑗
2 + 𝑇𝑎

2)(𝑇𝑖,𝑗 + 𝑇𝑎)    (2) 

Stefan-Boltzmann constant is  = 5.67 10-8 W.m-2.K-4 and  is the emissivity of the materials assumed as constant for 

both materials and chosen as 0.14. This value corresponds to the best fitting value for platinum wire in the same 

condition as described in the section 3. It will be shown below that this value has no major effect on the thermocouple 

temperature distribution. We also assume that the emissivity of platinum-10% rhodium is the same. 

By changing the temperature with 𝜃𝑖,𝑗 = 𝑇𝑖,𝑗 − 𝑇𝑎, and introducing 𝑚𝑖,𝑗 = √
ℎ𝑖,𝑗𝑝𝑖

𝑘𝑖,𝑗𝑆𝑖
, the equations become: 

    
𝑑2𝜃𝑖,𝑗

𝑑𝑥2 − 𝑚𝑖,𝑗
2  𝜃𝑖,𝑗 = −

𝜌𝑒𝑖,𝑗

𝑘𝑖,𝑗𝑆𝑖
2 𝐼2    (3) 



And their solutions in which section Si and perimeter pi are replaced with their formulae depending on the wire diameter 

di: 

    𝜃𝑖,𝑗 = (
2𝐼

𝜋
)

2 𝜌𝑒𝑖,𝑗

ℎ𝑖,𝑗 𝑑𝑖
3 + 𝐴𝑖,𝑗𝑒𝑚𝑖,𝑗 𝑥 + 𝐵𝑖,𝑗𝑒−𝑚𝑖,𝑗 𝑥   (4) 

Constants Ai,j and Bi,j are obtained numerically from boundary conditions expressing continuity of temperature and heat 

flux. 

At x = 0, junction temperature equality gives:  𝜃1,1(0) = 𝜃2,1(0)    (5) 

When the junction is in contact with the sample surface at the temperature Ts, 𝜃𝑠 = 𝑇𝑠 − 𝑇𝑎 and the thermal balance 

gives: 

   𝑘1,1𝑆1
𝑑𝜃1,1

𝑑𝑥
|

𝑥=0
+ 𝑘2,1𝑆2

𝑑𝜃2,1

𝑑𝑥
|

𝑥=0
+ 𝑔(𝜃2,1(0) − 𝜃𝑠) = 0   (6) 

In this expression, g is the contact thermal conductance between the tip and the sample surface. 

This condition assumes that the welded junction is perfect, without any additional resistance due to a possible contact 

defect. This is justified by the junction quality shown in Fig. 1a, and the matching between measured resistance and the 

calculated one using measured dimensions. 

At each element boundary, temperature and heat flux continuities give: 

   𝜃𝑖,𝑗 (𝑗
𝐿𝑖

𝑛
) = 𝜃𝑖,𝑗+1 (𝑗

𝐿𝑖

𝑛
) and  𝑘𝑖,𝑗𝑆𝑖

𝑑𝜃𝑖,𝑗

𝑑𝑥
|

𝑥=𝑗
𝐿

𝑛

= 𝑘𝑖,𝑗𝑆𝑖

𝑑𝜃𝑖,𝑗+1

𝑑𝑥
|

𝑥=𝑗
𝐿

𝑛

  (7) 

for i =1 and 2; j = 1, 2, …, n – 1. 

At the end of the wires, where x = Li, the 75 µm diameter silver cladding is sufficiently massive and thermally 

conductive to remain at ambient temperature Ta, so that: 

    𝜃1,𝑛(𝐿1) = 𝜃2,𝑛(𝐿2) = 0    (8) 

In the following results, geometrical data have been measured by means of a scanning electron microscope. 

Measurements have been performed in vacuum. Table 1 presents the different data used for the calculations. Due to 

their negligible influence on the results, we have used constant thermal conductivities for both platinum and platinum-

10% rhodium alloy [13]. Consequently, ki,j becomes ki as given in Table 1. The electrical resistivity is corrected using 

their temperature coefficient of resistance i and the linear relation [14]: 

     𝜌𝑒𝑖,𝑗 = 𝜌𝑒𝑖(𝑇𝑎) (1 + 𝛼𝑖𝜃𝑖,𝑗)   (9) 

Results are obtained with an iterative procedure in which electrical resistivity and radiative surface heat transfer 

coefficient are corrected according to the reached element temperature until it remains unchanged. Depending on the 

temperature level, the number of iterations is typically between 4 and 10. We have fixed the number of discretized 

elements to 20 per wire, which represent a length of about 20 µm per element. We verified that 10 elements only were 

sufficient to provide the same results. 

 

Table 1. Thermocouple wires characteristics. 

 

Once the temperature distribution has been calculated, the junction value can be extracted and plotted versus the Joule 

power, which corresponds to the product of the squared RMS current I2 and the total thermocouple resistance, which is 

the sum for each element: 

    𝑅 =
𝐿1

𝑛 𝑆1
(∑ 𝜌𝑒1,𝑗

𝑛
𝑗=1 ) +

𝐿2

𝑛 𝑆2
(∑ 𝜌𝑒2,𝑗

𝑛
𝑗=1 )   (10) 

An example of temperature distributions along the thermocouple wires is presented in Fig. 3. Input current is set to 1.2 

mA and three curves are depicted: “no-contact”, “cold-contact” (s = 0), and “hot-contact” (s = 300 K). Platinum is on 

the left negative x locations whereas platinum-10% rhodium is on the right positive. The maximum temperature is 

reached in this wire due to its higher electrical resistivity and also on its lower thermal conductivity. In spite of this 

dissymmetry, the provided thermoelectric voltage corresponds to the junction temperature. Each discretized element is 

visible in red and blue colours successively in this figure. 

 

Platinum Platinum-10% rhodium 

d1 

(µm) 

L1 

(µm) 

k1 

(W.m-1.K-1) 

e1(Ta) 

(.m) 

1 

(K-1) 

d2 

(µm) 

L2 

(µm) 

k2 

(W.m-1.K-1) 

e2(Ta) 

(.m) 

2 

(K-1) 

1.29 300 72.5 10.5 10-8 3.85 10-3 1.24 300 38 18.8 10-8 1.7 10-3 



 

Fig. 3. Temperature distribution along the thermocouple, for an RMS current of 1.2 mA, for which Joule power equals 

126 µW. The computation was done using 20 elements per wire. 

 

In Fig.3, and all the following results, the number of elements per wire is 20. We have verified that this number is 

sufficient, as shown in Fig. 4 in which the temperature increase of the junction is plotted versus the input Joule power 

for different number values, from 1 to 50. We notice that 5 elements provide the same results than 50 elements. 

 

 
Fig. 4. Thermocouple junction temperature calculations versus power input for different element numbers. 

 

In this figure, the important point to be noticed relies on the linearity of the temperature response versus the supplied 

Joule power. Measurements confirm this shape for moderate level of temperature as shown below. 

 

 

2.3 Model limitations 

A first source of deviation of this model is related to the homogeneous Dirichlet condition at the extremity of the wires. 

Such a condition requires some clarifications since in vacuum, the cold sink is only due to conductive heat diffusion so 

that the ambient temperature could be found much farther than supposed. Fig. 5 depicts a large view of the 

thermocouple which includes the silver leads and the ceramic holder in which the wires are introduced and glued. The 

thermocouple cold junction is materialized at the interface between Pt and Pt-Rh wires and silver, as shown by left and 

right. 



 
Fig. 5. Overview of the thermocouple inside his ceramic holder. 

 

Free length of silver is about 500 µm before a drop of glue and the ceramic tube. Silver total lengths are 3 cm before 

their welding with tin on copper contacts. Ambient temperature is measured by a Pt100 probe on the basement of the 

ceramic tube. This means that ambient temperature occurs somewhere in this area. 

Let us consider two cases of location for ambient temperature: at the glue (500 µm) and at a distance of 1 mm into the 

ceramic tube which may be considered as the realistic one. The condition then becomes a heat flux condition 

(Neumann) for which a thermal conductance gL is involved so that: 

  −𝑘1𝑆1
𝑑𝜃1,𝑛

𝑑𝑥
= 𝑔𝐿𝜃1,𝑛(𝐿1) = 𝑔𝐿𝜃𝑙𝑒𝑓𝑡    

and  −𝑘2𝑆2
𝑑𝜃2,𝑛

𝑑𝑥
= 𝑔𝐿𝜃2,𝑛(𝐿2) = 𝑔𝐿𝜃𝑟𝑖𝑔ℎ𝑡 

The thermal conductance gL depends on the silver wire length such as:  𝑔𝐿 =
𝑘𝐴𝑔𝑆𝐴𝑔

𝐿𝐴𝑔
 

SAg and LAg are the cross section and the considered length of the silver cladding to reach ambient temperature 

respectively. Silver thermal conductivity is around 420 W.m-1.K-1 and the wire diameter is 75 µm. As a result, values of 

gL are 3.7 10-3 W.K-1 and 1.85 10-3 W.K-1 for 500 µm and 1 mm length respectively. Fig. 6 depicts the resulting cold 

temperature at the interface location left and right that remain typically below a tenth of degree. This is negligible since 

the junction temperature increase is 400 K at the maximum power of 350 µW. Besides, the important point is that the 

absolute temperature of the junction increases of a quantity that is of the same order of left and right. As a result, the 

Seebeck voltage which represents the temperature difference between the hot junction and the cold one does not 

change.  

 

 
Fig. 6. Temperature elevation at the wire extremities (cold thermocouple reference) for two Neumann conditions. 

 

This means that even taking into account such deviation will hardly change the result. It leads to an uncertainty of the 

hot junction temperature below 0.1K. Unfortunately, knowing precisely the cold junction temperature remains presently 

not possible.  



Let us now focus on the junction temperature given by the Seebeck voltage versus the supplied Joule power which is 

the key point of our analysis. In the following results, the thermocouple junction temperature is noted Ttj at the location 

x = 0 (tj stands for thermocouple junction), and the difference with ambient temperature: 𝜃𝑡𝑗 = 𝑇𝑡𝑗 − 𝑇𝑎 = 𝜃(0). 

The calculated temperature given by the thermocouple varies quasi-linearly versus the Joule dissipated power, noted 

PTC. Fig. 7 compares measurements given by the thermocouple junction and calculations. As mentioned above, model 

calculations given with Dirichlet or Neumann conditions provide nearly identical results. The straight black line 

depicted in Fig. 7 points out the slight deviation from linearity of both modelling and measurements. 

 

 
Fig. 7. Modelling and measurement deviation from linear in non-contact mode. 

 

The curvature difference cannot be explained by a possible increase of the emissivity because of the limited length of 

the thermocouple wires. Indeed, if we consider the Joule power of Fig. 3 with a RMS current of 1.2 mA, the total 

supplied Joule power is 126.1 µW. We calculated that conduction of heat from the wire extremities to the silver is 125.8 

µW (65.5 µW from platinum wire and 60.3 µW from the platinum-10% rhodium wire). This means that radiation loss is 

only 0.3 µW so that the effect of emissivity remains almost negligible except at very high temperatures. As a result, the 

relationship between junction temperature and the supplied power is driven by conduction into silver cladding so that 

the difference could be explained by both the moderate increase of thermal conductivities in addition to the slight 

deviation of the TCR from linearity whose value decreases when the temperature increases. However, the linear 

approximation is good enough to obtain reliable results. 

Anyway, considering measurements values as the actual junction temperature, a few points are enough to extract a 

linear fit whose slope is the key point since it is dependent on the thermal balance of the junction. 

 

3. New null-point technique explications and procedure 

In non-contact mode as shown in Fig. 7, the slope is maximum compared to contact mode. The slope decreases when 

more heat dissipates from the junction, in particular when the contact conductance increases. This is shown in Fig. 8, 

where the model has been used to compare the effect of different thermal contact conductance. On a cold surface, the 

heat power required to reach the same temperature is higher as shown with the red line (cold contact). The applied 

contact thermal conductance g corresponds to the experimentally fitted values presented in the results section, with a 

value of 0.1 µW K-1. 

 



 
Fig. 8. Thermocouple junction temperature versus input power for different cases of contact and no-contact (black line): 

cold contact in red lines and hot contact in blue lines. 

 

When a contact occurs on a hot surface s >0, this changes the amount of power needed to reach the same level of 

temperature. However, if the contact conductance g remains identical, the temperature versus power slope is unchanged 

(blue line). Indeed, blue and red lines are strictly parallel, which will be demonstrated latter. The given example is a 

surface at 150 K above ambient. As long as the junction temperature is lower than the surface one, heat flows from the 

surface to the junction. Inversely, when the junction temperature is higher than the surface one, the heat flux is reversed 

and the surface is heated up by the thermocouple. When junction and surface are in thermal equilibrium, there is no heat 

transfer so that the junction temperature is the same that in the case of no contact which corresponds to the crossing 

point between contact and no contact responses. This crossing point is not modified when the contact conductance 

changes, as shown by the dashed lines for which g value has been increased by an order of magnitude. The dashed red 

line corresponds to a cold contact, whereas the dashed blue one corresponds to a hot contact on the 150 K hot surface. 

The limit case of a perfect contact (g→+) would lead to the horizontal black thin line for which junction temperature 

equals surface temperature independently to the supplied power to the thermocouple. 

Consequently, once the no contact response of the probe is extracted from a power ramp, there are two options:  

• by assuming an invariant contact conductance g, a cold contact ramp response provides the slope from which a 

single scan at a given power is enough to extrapolate the surface temperature, 

• if the contact conductance g is expected to change when scanning the surface of the sample, at least two (or 

more) power response per each contact point can provide the extrapolated actual surface temperature. 

The second option is preferred since, in the general case and as seen below, the contact conductance is hardly 

predictable when contacting any surface object. Then, it is only possible to take advantage of the linearity of the 

thermocouple response for an accurate extraction of the crossing point temperature. 

 

 

As shown in Fig. 8, when the thermocouple is in contact with a surface, the extraction of the slope of its temperature 

versus the supplied power allows to deduce the actual surface temperature given by the crossing point with the non-

contact temperature response. 

The observed linearity can be explained by a simple 0-D description of a thermocouple junction at a homogeneous 

temperature whose value results from the heat balance between external and contact conductances, ge and gc 

respectively. The Joule power supplied to the thermocouple, noted q, dissipates from the wires to ambient surrounding 

depending on the contact or not. Without contact (nc suffix), the thermal balance of the junction area is governed by the 

equality: 

 𝑞 = 𝑔𝑒  𝜃𝑡𝑗
𝑛𝑐     (11) 

ge is the thermal conductance to external ambient source, mainly by conduction to the thermocouple support, and 

eventually by radiation. When a contact occurs with a surface at temperature Ts (c suffix), q power is the sum of the 

external heat dissipation qe and the tip-to-sample heat diffusion qts so that the heat balance gives: 

  𝑞 = 𝑞𝑒 + 𝑞𝑡𝑠 = 𝑔𝑒𝜃𝑡𝑗
𝑐 + 𝑔𝑐(𝑇𝑡𝑗 − 𝑇𝑠) = (𝑔𝑒 + 𝑔𝑐)𝜃𝑡𝑗

𝑐 − 𝑔𝑐𝜃𝑠  (12) 

where 𝜃𝑠 = 𝑇𝑠 − 𝑇𝑎 and the tip-to-surface contact conductance is gc. 



The case of a cold contact (cc suffix) for which Ts equals Ta leads to the simplified expression: 

  𝑞 = (𝑔𝑒 + 𝑔𝑐)𝜃𝑡𝑗
𝑐𝑐    (13) 

As we measure the thermocouple value versus the Joule power q, let us reverse the heat balance to extract the slopes as 

depicted in Fig. 9. The non-contact ramp gives:  𝜃𝑡𝑗
𝑛𝑐 =

𝑞

𝑔𝑒
= 𝑎𝑞   (14) 

Then, the cold contact ramp provides the response:  𝜃𝑡𝑗
𝑐𝑐 =

𝑞

𝑔𝑒+𝑔𝑐
= 𝑏𝑞  (15) 

And the hot contact ramp gives: 𝜃𝑡𝑗
ℎ𝑐 =

𝑞

𝑔𝑒+𝑔𝑐
+

𝑔𝑐 𝜃𝑠

𝑔𝑒+𝑔𝑐
= 𝑏𝑞 + 𝜃0   (16) 

which shows why the red and blue curves in Fig. 8 are parallel, with the same slope b. 

However, when considering a different contact conductance 𝑔𝑐 
′ , a contact ramp on the hot surface (hc suffix) leads to: 

 𝜃𝑡𝑗
ℎ𝑐 =

𝑞

𝑔𝑒+𝑔𝑐 
′ +

𝑔𝑐 
′ 𝜃𝑠

𝑔𝑒+𝑔𝑐 
′ = 𝑏′𝑞 + 𝜃′0   (17) 

It follows that the actual surface temperature is deduced from the crossing-point at a power qs for which the heat flux 

between the thermocouple junction and the surface is null and 𝜃𝑡𝑗 = 𝜃𝑠 and then: 

 𝜃𝑠 = 𝑎𝑞𝑠 = 𝑏′𝑞𝑠 + 𝜃′0    (18) 

So that:   𝑞𝑠 =
𝜃′0

𝑎−𝑏′
  (19) 

and then:  𝜃𝑠 =
𝑎 𝜃′0

𝑎−𝑏′
 (20) 

As a result, a minimum of two values are required to extract the slope b’ at a given location. Finally, the procedure 

could be this: 

- firstly, the no contact measurement with different power values is required to provide the value a from the 

slope, 

- secondly, as depicted in Fig. 5, two different powers are used when in contact, giving 1 and 2 junction 

temperatures at the powers q1 and q2 respectively. Both constants b’ and ’0 are then obtained as:  𝑏′ =
𝜃1−𝜃2

𝑞1−𝑞2
 

and 𝜃′0 = 𝜃1 −
𝜃1−𝜃2

𝑞1−𝑞2
𝑞1 from which the surface temperature s can be deduced from equation (20). 

 

 
Fig. 9. Method for extrapolating the surface temperature using two contact points. 

 

This procedure is then quite simple: after having extracted the temperature response without contact, two values in 

contact mode should allow deducing the surface temperature. It is worth noting that increasing the number of data 

points reduces the uncertainty, as the slope is determined using a least square fitting method. Let us evaluate the 

uncertainties in the extraction of the surface temperature regarding the number of measured points. 

For these measurements, we used a Keithley 2000 as a multimeter with an accuracy better than 0.01%. The standard 

deviation of the temperature measurements is estimated to be better than 0.5 K. The uncertainty of the measured power 

is small compared to the uncertainty of the measured thermoelectric effect and will be neglected to obtain the 

uncertainty of θs. We could have used the York algorithm [15] if we wanted to take into account the uncertainty of the 

measured power to compute the standard deviation of the slope and the intercept of a linear regression. As the points 

near the intersection of the 2 curves are more important, we can use a weighted least squares (WLS) fitting. For the 

contact curves, we chose a Gaussian distribution for the weights wi depending on its Euclidean distance EDi from an 

intersection point (x0, y0) obtained with a regular unweighted linear regression: 

 𝐸𝐷𝑖 = √(𝑥𝑖 − 𝑥0)2 + (𝑦𝑖 − 𝑦)2     (21), 



  

 𝑤𝑖 = 𝑒𝑥𝑝 (− (
𝐸𝐷𝑖

2𝐸𝐷̅̅ ̅̅
)

2

)    (22), 

with (xi, yi) the points of the contact curves et 𝐸𝐷̅̅ ̅̅  the mean of EDi. The weights were then normalized so that their sum 

equals the number of points. 

 

For a normal distribution of n points, with n>2, the unbiased standard error estimator of the slope b obtained by a WLS 

linear regression is [16]: 

   𝜎𝑏 = √(
1

𝑛−2
∑ 𝑤𝑖𝜀𝑖

2𝑛
𝑖=1 ) (∑ 𝑤𝑖 ∑ 𝑥𝑖

2𝑛
𝑖=1 − ∑ 𝑤𝑖𝑥𝑖

2𝑛
𝑖=1

𝑛
𝑖=1 )⁄   (23), 

where εi is the error of yi compared to the obtained WLS linear regression. In the case the intercept is 0 (for the non-

contact measurement), with no weight, it becomes: 

  𝜎𝑎 = √(
1

𝑛−1
∑ 𝜀𝑖

2𝑛
𝑖=1 ) (∑ (𝑥𝑖)²𝑛

𝑖=1 )⁄   (24) 

For only two points with a standard deviation σ (σ = 0.5K for computations in Table 2) for yi, the standard deviation of 

the slope is 

  𝜎𝑏 = √2𝜎/|𝑥2 − 𝑥1|   (25). 

For the contact curves, the standard error estimator of the intercept θ0 is: 

  𝜎𝜃0 = 𝜎𝑏√(∑ 𝑤𝑖𝑥𝑖
2𝑛

𝑖=1 )/(∑ 𝑤𝑖
𝑛
𝑖=1 )  (26). 

The covariance between the slope b and the intercept θ0 is: 

  𝑐𝑜𝑣(𝑏, 𝜃0) = −𝜎𝑏²(∑ 𝑤𝑖𝑥𝑖
𝑛
𝑖=1 )/(∑ 𝑤𝑖

𝑛
𝑖=1 )    (27). 

Neglecting the correlation between the errors of the slope a (of the non-contact measurements) with the errors of the 

slope b (of the contact measurements) and its intercept θ0, the standard deviation of the object temperature θs is: 

  𝜎𝜃𝑠 = √(
𝑎𝜎𝜃0

𝑎−𝑏
)

2

+ (
𝑎𝜃0𝜎𝑏

(𝑎−𝑏)²
)

2

+ 2 (
𝑎

𝑎−𝑏
) (

𝑎𝜃0

(𝑎−𝑏)2) 𝑐𝑜𝑣(𝑏, 𝜃0) + (
𝑏𝜃0𝜎𝑎

(𝑎−𝑏)2)
2

  (28) 

To validate this procedure, the next part presents a calibration approach. It uses one of the simplest and most reliable 

calibration devices, which is a platinum wire. 

 

 

4. Calibration wire in vacuum conditions 

Platinum wires are very good candidates for calibration process due to their linear behaviour and insensitivity to 

oxidation and impurities at high temperature. They also possess the advantage of being compatible with high 

temperatures in vacuum. A wire is also preferable to thin-film devices for which the electrical and thermal 

characteristics can significantly differ from bulk values and the thermal dependence to a substrate may disturb the 

thermal equilibrium so that the actual surface temperature could be suspected to large discrepancies. A simple 

cylindrical wire is also easy to model with the same method used for the thermocouple in the previous section. 

Let us consider a single platinum wire to be discretized identical to the platinum wire of the thermocouple. The solution 

is exactly the same than expression (4):  𝜃𝑗 = (
2𝐼

𝜋
)

2 𝜌𝑒𝑗

ℎ𝑗 𝑑3 + 𝐴𝑗𝑒𝑚𝑗𝑥 + 𝐵𝑗𝑒−𝑚𝑗𝑥  (29) 

For each element j, the temperature is given by 𝜃𝑗 = 𝑇𝑗 − 𝑇𝑎 and 𝑚𝑗 = √
ℎ𝑗 𝑝

𝑘 𝑆
. The diameter is a constant so that p and S 

are constant values for perimeter and section respectively. The thermal conductivity is also assumed constant (72.5 

W.m-1.K-1) since we have verified that taking into account its temperature dependence had no significant effect on the 

wire temperature distribution. 

The thermocouple junction is subjected to be put in contact with the wire at the hottest location which is the centre. 

Furthermore, at the extremity of the wire, the temperature is kept at ambient conditions due to a massive tin welding on 

the copper leads. The problem is then symmetrical so that the axis origin, x = 0, is located at the centre of the wire and 

only a half-length is relevant to study. 

Then, the condition at the contact point is expressed as: 2𝑘1𝑆
𝑑𝜃1

𝑑𝑥
|

𝑥=0
= 𝑔(𝜃1(0) − 𝜃𝑐)  (30) 

where g is the contact conductance and c is the temperature elevation of the contacted object, here the thermocouple 

junction. At each element boundary, temperature and heat flux continuities give: 

   𝜃𝑗 (𝑗
𝐿𝑖

𝑛
) = 𝜃𝑗+1 (𝑗

𝐿𝑖

𝑛
) and  𝑘𝑗𝑆

𝑑𝜃𝑗

𝑑𝑥
|

𝑥=𝑗
𝐿

𝑛

= 𝑘𝑗+1𝑆
𝑑𝜃𝑗+1

𝑑𝑥
|

𝑥=𝑗
𝐿

𝑛

  (31) 

for j = 1, 2…, n – 1. 



At the extremity of the wire, for x = L, there is no temperature elevation, therefore: 𝜃𝑛(𝐿) = 0 (32) 

In the following results, we have fixed values as 25.2 µm using measurement of the diameter (see Fig. 8), its resistance 

at ambient temperature (14.95 ) for which the half-length L gives 35.6 mm and the emissivity  value for the best fit 

on measured points as 0.14. 

An example of the temperature distribution along the wire is depicted in Fig. 10, for a DC current of 8.8 mA. The Joule 

power is 1.64 mW and the effect of the contact is made visible by setting the contact conductance g to a large value of 2 

µW K-1. Actual value of the thermocouple contact is on the order of 0.1 µW K-1 as shown in Fig. 3 and the following 

results. However, this value would not have produced significant change on the wire temperature distribution. 

 

 
Fig. 10. Temperature distribution along the platinum wire for a current of 8.8 mA, for different contact situations and a 

contact conductance 20 times higher than the thermocouple one. 

 

During the calibration procedure, only the resistance of the wire is measured from both supplied voltage and current. 

This provides the mean wire temperature knowing the TCR after a calibration in an oven, confirming standard value of 

3.85 10-3 K-1. The location of the contact point is the centre of the wire (x = 0) for which the temperature must be 

known. When the thermocouple temperature equals the contacted wire temperature, its temperature distribution is 

identical to the non-contact, with a shape close to a parabola (see Fig. 10). When solving a linear differential equation 

(materials thermal characteristics independent from temperature and no radiative heat transfer), the solution is a 

parabola for which the ratio between the maximum central temperature and the mean wire one is 3/2. In the present 

case, by taking account of the thermal dependence of resistivity and the radiative heat transfer, the parabola is slightly 

distorted so that the ratio changes too. As a result, after having verified the validity of the model by comparing 

measured and calculated mean wire temperatures, we assume that the central point temperature can be deduced from the 

model. In Fig. 11, measurements points are depicted and superimposed to the calculated ones (curved lines). In this 

figure, measurements points are mean values in blue for which the difference with the calculated curve never exceeds 3 

K (point size in this figure). This confirms the reliability of the calculations so that measurement points of the centre 

values have been extrapolated from the ratio between blue and orange line, given by the model. The ratio between 

centre and mean temperature is also plotted in the same graph (black dotted line). As a result, we assume that the central 

point temperature can be deduced from the model. 

 



 
Fig. 11. Comparison between measurement points and modelling (curve) of the mean wire temperature in blue colour. 

Centre temperature is provided by the model from which the points have been extrapolated (orange colour) using ratio 

values depicted by the black dotted line. 

 

In the following results, contact wire temperatures are extrapolated from the same ratio on measured mean values. 

 

5. Experimental setup 

The thermocouple junction must be put in contact with the platinum wire for the calibration procedure. This wire is 

supplied with a DC current for heating purpose and the thermocouple is supplied with an AC current for the same 

reason. Since an electrical contact between them may generate electrical interferences, a little pad of isolating material 

was deposited by means of the FIB technique. This pad is clearly visible in Fig. 8 that shows two different images at 

two different magnifications. In the image on the left (Fig. 12a), with a magnification of 526 and a scale of 20 µm, we 

can clearly see the platinum wire with a diameter of 20 µm in white, with the triangle formed by the thermocouple also 

in white but with a diameter of about 1.2µm. 

 

a  b  

Fig. 12. Calibration Platinum wire and micro-thermocouple views. Isolating pad deposited using FIB is visible (a), on 

which the thermocouple can be put in contact (b) by means of a micro-robot [1]. 

 

On the thick platinum wire, just opposite the tip of the thermocouple, which is not yet in contact, we used the Ion Beam 

Assisted Deposition (IBAD) method to create a thin layer of naphthalene on an elliptical surface measuring 5 x 15 µm². 

Naphthalene is introduced into the microscope chamber via a Gas Injection System (GIS) equipped with three gas 

cartridges: xenon fluoride (XeF2), cyclopentadienyl platinum (Pt-based) and naphthalene (C-based) from Oxford 

Instruments, type OmniGIS. The gas injector is retractable and removable so that the nozzle can be positioned as close 

as possible to the area to be covered. We injected a small amount of gaseous naphthalene into the chamber using a 

syringe placed less than 100 µm from the area to be covered, the pressure in the line of gas and the nozzle is around 

410-2 mbar, so that the total pressure in the chamber did not rise above 510-6 mbar. With the Focused Ion Beam 

(FIB), we sputter the surface to be coated with a low FIB beam of 5µA/µm² of gallium, in order to stimulate the surface 



and make it reactive, while at the same time breaking down the gas molecules to help them condense on the activated 

surface. Because the surface of the reference wire is not flat, the thickness of the layer is not homogeneous. 

In Fig. 12b, the picture magnified 1480x with a scale of 10 µm, shows the thermocouple in contact with the naphthalene 

deposit, which forms a small bump on the platinum reference wire. This carbon and hydrogen-based deposit is an 

electrical insulator that allows us to clearly separate the two electrical signals from the platinum reference wire and the 

thermocouple in active AC mode, without providing too much thermal insulation, since the thickness of the naphthalene 

deposit is around 3 µm. The contact point between the thermocouple in active AC mode and the naphthalene represents 

an area of less than 1 µm², which allows for very high measurement accuracy and reproducibility. The heat exchange 

zone is located at the centre of the naphthalene deposit, where its thickness is the greatest. 

Through the numerous series of measurements, we were able to perform, with and without naphthalene deposition, we 

observed that adding naphthalene to the platinum wire in DC mode improves and effectively isolates the two electrical 

signals across the entire temperature range without disrupting heat exchange. Naphthalene enabled us to eliminate 

interference between the AC and DC electrical signals between the wire and the thermocouple in active mode. 

 

For heating the thermocouple (active thermometry), we applied a sinusoidal current at radial frequency ω. The resulting 

Joule heating produces a power modulation at 2ω, leading to a temperature variation at 2ω and a DC offset. The thermal 

cutoff frequency of such a thermocouple lies in the range 450–900 Hz, depending on the surrounding medium and the 

heating source. At higher frequencies, the 2ω component magnitude vanishes, whereas the DC component remains. 

In the null-point method, only the DC component of the temperature, which is influenced by the tip–sample contact, is 

measured. Some authors drive the input current at frequencies well above the thermocouple cut-off, typically around 

100 kHz. However, such high frequencies can introduce detrimental capacitive and inductive effects across the devices, 

cables, and components, which must be mitigated with appropriate filters and amplifiers. For this reason, we used a 

frequency of only 5 kHz, which is sufficient to provide relevant measurements. 

Several strategies exist to suppress the parasitic DC component from the power supply and the 1ω voltage at the 

thermocouple output, much larger than the thermal DC signal of interest. A Wheatstone bridge can address both issues 

but requires frequent equilibration. Higher harmonics (2ω and above) may remain and have magnitudes similar to the 

Seebeck DC component, potentially altering the voltmeter reading depending on its sensitivity. Another approach to 

remove the parasitic DC component is to place a capacitor between the voltage generator and the thermocouple. The 

unwanted 1ω component (and higher frequencies) can be substantially reduced with a low-pass filter. 

For simplicity, we selected the second method. Fig. 13 illustrates the electrical setup: a capacitor C0 removes any DC 

component from the function generator Vin, a resistor R0 for current measurement, and two RC low-pass filter stages. 

 

 

Fig. 13. Electrical setup; R0 = 336  ; C0 = 220 µF ; R1 = 100 k ; C1 = 2.2 µF. 

 

In this figure, TC represents the thermocouple, whose resistance is near 100 Ω. Three precision voltmeters measure the 

relevant signals: V0 (AC), VTC (AC), and Vout (DC). The input AC voltage Vin ranges from 0 to 600 mV, yielding a 

thermocouple maximum current typically of 1.3 mA and a junction temperature rise of about 250 K. The dissipated 

power through the thermocouple can be determined using VTC, in the range 0-200 mV, at the input frequency (5 kHz) 

without filtering. At this frequency, the second and third harmonics (2ω and 3ω) related to Seebeck and resistivity 

effects are reduced to a level that is negligible compared with the fundamental 1ω component. The two-stage first order 

filter provides the remaining DC output Vout of the thermocouple that represents the steady temperature of the junction 

due to Seebeck effect. 

 

 

6. Results and discussion 

Three different levels of wire temperatures have been used in the following results. For each of these three levels, both 

wire and thermocouple data have been recorded as the Joule power in the thermocouple varies. Fig. 14 depicts the 



results, showing measurement points and their fitting linear equations. For each series, the thermocouple was in contact 

with the wire and the linear increase of its temperature is clearly visible. Here, the wire temperatures are the 

extrapolated central values from the measured mean ones without taking into account of the possible thermocouple 

contact disturbance. However, this is not a problem since the crossing point of interest is not affected by the contact due 

to thermal equilibrium between thermocouple junction and the wire surface. As a result, if the central temperature 

would be significantly affected, only the slope would change but not the crossing point location. Without any effect, the 

slope would be in theory null. The remaining tiny slope shown in Fig. 14 demonstrates that the contact effect is weak 

but measurable. The wire temperature slightly increases when the thermocouple junction temperature increases due to 

heat exchange through the contact. When the temperatures are the same, the heat transfer vanishes: the wire is no more 

perturbed and the crossing points provide the actual contact temperatures, using extracted equations. It is interesting to 

note that the slopes of thermocouple junction temperatures are different. This means that the thermal contacts are 

different due to different contact strength and/or geometrical contact. Indeed, between each measurement series, the 

thermocouple was pulled off from the wire pad surface. 

 

 
Fig. 14. Experimental points obtained at three different heating power of the calibration wire versus Joule power 

thermocouple heating (PTC). Wire temperatures are the extrapolated central point where the thermocouple junction is in 

contact on the isolating pad. 

 

As it was shown in the theoretical analysis, if the contact conductance is constant the junction temperature must 

increase linearly. As shown in Fig. 7, this linearity is not perfect when the temperature range is important. This is 

confirmed in Fig. 14 for the largest range of measurement points (red triangle). Since the slight curvature appears both 

with and without contact, the origin cannot be attributed to a variation in contact conductance. Indeed, the thermal 

expansion of the thermocouple could cause this variation in contact by increasing the contact force. However, taking 

account of linear thermal expansion coefficient of the order of 9 µK-1 for platinum (8 µK-1 for rhodium), the increase of 

a 300 µm length wire gives 2.7 nm.K-1. We have measured a mean displacement of the junction of 2.25 nm.K-1 which 

is coherent. This effect is therefore not susceptible to change the contact conductance significantly, especially on a long 

and free of constraint calibration wire. 

The deduced temperature elevations of the wire (crossing points) are 102.8, 205.4 and 295.1 K for a wire heating power 

of 0.88, 2.37 and 4.63 mW respectively. These temperatures are located at the centre point of contact, deduced from the 

mean measured values. Based on these values, we have extracted the thermocouple data to deduce contact temperatures 

at these three levels. Fig. 15 shows the measured points in five different situations: no contact (black), cold contact (red) 

and hot contacts on wire at 102.8 K (blue), 205.4 K (yellow) and 295.1 K (green). Each series of points have been fitted 

by the least squares method for extracting its linear equation. 

 



 
Fig. 15. Measured temperature at the contact point from the thermocouple versus power supplied in different 

configuration of no-contact (black), cold contact (red) and hot contact at three levels of wire temperatures (blue, yellow 

and green). 

 

From these results, we have calculated the crossing points temperatures using two methods: the extracted slopes from 

all points (see equations in Fig. 15) and the use of only two measurements points (in circles in Fig. 15) as shown in 

Table 2. 

 

Table 2. Deduced surface temperature elevations. 

Wire centre temperature 102.8 ± 3 K 205.4 ± 3 K 295.1 ± 3 K 

Method 

Slope on all points 

(WLS fitting) 

100.3 ± 0.9 K 211.2 ± 4.4 K 293.7 ± 3.5 K 

Slope on 2 points 100.1 ± 2 K 210.5 ± 6.6 K 296.2 ± 5 K 

 

Deduced temperatures are in good agreement with the calculated wire temperatures, showing that the simplest two 

points method is sufficient to obtain a relevant value.  

Thermocouple measurement uncertainties depend on the thermocouple itself and the electronic used in active mode. 

Temperature uncertainty of a S-type thermocouple is known to be in the range of a half degree. Low-pass filter allows 

reducing significantly noise and disturbances so that the DC output voltage should not be affected. The thermoelectric 

voltage is stable in the range of ± 1 µV. However, voltmeters used to provide the supplied power can slightly be 

disturbed or deviates from actual values. As a result, measurements global uncertainties are quite low so that the final 

uncertainty on the crossing point location stays mainly depending on the slope difference between the non-contact and 

hot-contact temperature response. However, in our measurements, the calculated uncertainties remain below 7 K, even 

with 2 computation points. 

One can notice that the largest difference between wire and measured values corresponds to the second values (wire at 

205.4 K) for which the two slopes are the nearest (1.008 for hot contact compared to 1.146 for non-contact). It is worth 

mentioning that any slope deviation due to uncertainties has a minimum influence for the angle between the two curves 

approaching /2. On the contrary, the effect increases when the angle between the fitted hot contact and non-contact 

lines decreases. As a consequence, the reliability of the results is better for larger thermal contact conductance g. 

Actual values of contact conductance g are noted as gc is the simple 0-D model. Even if experimental results are 

remarkably linear, this model cannot be used to calculate external conductance ge and contact conductance gc. This is 

due to the complex combination of temperature dependence of the different material properties all along the wires in 

addition to the consideration of radiative heat transfer and the resulting asymmetrical distribution temperature along the 

thermocouple wires.  In Fig. 16, the measurement points have been fitted using the model of section 2.2, providing the 

best fitting results with g contact conductances as indicated. One can notice that contact conductance can vary by a 

factor of 2, between 0.06 to 0.12 µW K-1. 

 

 



 
Fig. 16. Comparison between measurement and modelling giving the best fitting values of contact conductance g. 

 

 

7. Conclusion 

We have shown a new simplified vacuum null-point method, which needs only one scan with two successive 

measurements at different Joule heating powers. We employed as a sensor a thermocouple wire whose hot junction was 

rectified with a FIB. However, this procedure could be applied with a standard SThM probes. We modelled both the 

thermocouple and a calibration device consisting of a platinum wire. Using the fact that we know the temperature of the 

platinum wire, we used it to validate the new VNP procedure. The uncertainties are better than 10 K even at high 

temperatures. 

The key point of the proposed method relies on the linearity of the junction temperature versus the supplied Joule power 

to the thermocouple. This linearity persists when a contact occurs, only the slope changes regarding the contact 

conductance. Consequently, the slope extraction using at least two points allows to obtain a crossing point with non-

contact linear fit that provides the contact temperature. Compared to previous published VNP, there is only one scan 

therefore there is no change of conductance between two scans. To increase the reliability of the contact temperature, 

the slight deviation from the linearity could be investigated and taking into account in a future work.  

Furthermore, an increase of the contact conductance would benefit to the reliability of the crossing point extraction due 

to a lower slope. For this purpose, a larger contact surface using for instance a larger thermocouple size can be 

considered. 

In wire thermocouple, Joule heating occurs on the whole wire length. Consequently, their use in ambient pressure 

environment is not easy due to the large amount of heat exchange all around the probe and with the surface. As a result, 

the thermal balance between the junction and the surface at equilibrium is not only due to the contact heat exchange and 

the resulting obtained surface temperature is wrong. This is a problem that we have to address in our upcoming works. 
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