

Research article / Article de recherche

Single fibre damping, insight, advances and challenges

Fanny Pelisson ^{*,a}, Pauline Butaud^b, Morvan Ouisse^b and Vincent Placet^b

^a Université Marie et Louis Pasteur, SUPMICROTECH, CNRS, Institut FEMTO-ST, Besançon, F-25000, France

E-mails: fanny.pelisson@femto-st.fr (F. Pelisson), pauline.butaud@femto-st.fr (P. Butaud), morvan.ouisse@femto-st.fr (M. Ouisse), vincent.placet@femto-st.fr (V. Placet)

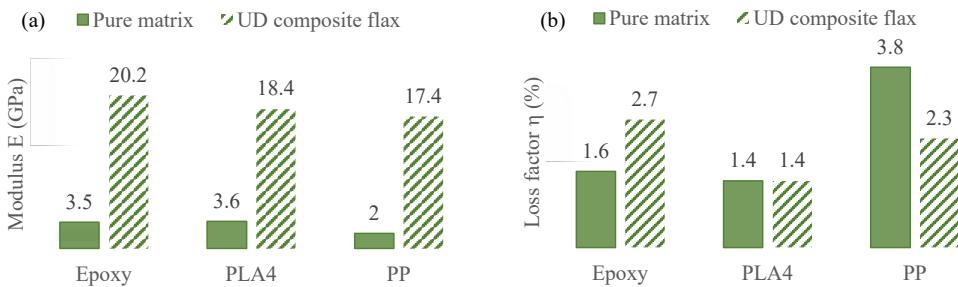
Abstract. This review paper provides insights into damping characterisation at the fibre scale. With the growing demand for composite materials, understanding damping behaviour within these materials is becoming increasingly crucial. However, research on damping characterisation at this scale remains limited, highlighting a notable gap in the field. This paper presents a detailed analysis of methodologies used to assess fibre-scale damping and examines the influence of environmental factors such as temperature, humidity, and pressure, as well as the impact of the identification method. While most studies have focused on ceramic and metallic fibres, some efforts have also been made to investigate natural fibres. However, these studies remain relatively scarce, and the characterisation of natural fibre damping is still in its early stages. Reported damping values vary significantly across studies, reflecting both the influence of fibre type and methodological differences. For instance, damping values for cotton fibres range from 13.7% to 21.7%, carbon fibres from 0.09% to 0.9%, and flax fibres from 3.9% to 11.5%. Moreover, a noticeable contrast can be observed between organic and inorganic fibres. One of the main findings of this review is the significant variation in damping values obtained for the same fibre type, depending on the characterisation method used. This highlights the need for standardisation and further refinement of experimental techniques to improve the reliability and comparability of damping measurements.

Keywords. Elementary fibre, Damping, Influencing parameters.

Funding. The first author is supported by JCJC Midific project through ANR-22CE51-0001.

This article is a draft (not yet accepted)

¹ 1. Introduction


² In numerous engineering applications, the focus is placed on vibration control. This control is
³ crucial for ensuring user safety and enhancing personal comfort, resulting in designs that are
⁴ structurally stable and inherently resilient. Specifically, when addressing vibration control, the
⁵ more precise term would be “damping” control, which characterizes a structure’s ability to dissipate
⁶ energy, directly influencing its safety. This concept is observed across various structures and

* Corresponding author

7 various scales, from the world's tallest tower integrating mass-tuned dampers to the microsens-
8 sors inside every smartphone, passing by the muted closing noise of car doors. Effective vibra-
9 tion control requires a deep understanding of the physical phenomena contributing to energy
10 dissipation. Among the available strategies, passive damping control can be identified. By tai-
11 loring the material properties or structural design to naturally absorb vibrational energy, passive
12 approaches offer a feasible solution. Within this context, optimizing the damping characteristics
13 becomes one of the strategies for managing vibrations efficiently. As a direct consequence, devel-
14 oping new materials, concepts, and technologies that ensure safer and more comfortable struc-
15 tures, while addressing environmental concerns, remains a complex yet essential challenge. In
16 the last 30 years, metallic structures in the fields of aeronautics, aerospace, land transportation,
17 and maritime transport have been increasingly replaced by composite materials made of carbon
18 or glass fibres [1]. However, problems remain with the production of those synthetic compos-
19 its. Indeed, materials typically reinforced with fibres such as glass or carbon require significant
20 energy for production and release large amounts of greenhouse gases. An alternative has recently
21 emerged that takes into consideration environmental problems [2]: composites with plant fibre
22 reinforcement are shown as a potential alternative to synthetic fibres. In addition, plant fibres
23 present good mechanical properties such as rigidity, tensile and shear properties [3–8]. The in-
24 creasing adoption of plant fibre-reinforced composites has brought new opportunities. Remark-
25 ably, these composites have shown, in certain instances, higher damping properties compared
26 to conventional synthetic fibre-reinforced composites [3,5,9–11]. However, Duc et al. [11] high-
27 lighted the insufficient understanding of damping within these composites. While a rule of mix-
28 ture fairly accurately describes the rigidity of a composite, establishing a similar law for damping
29 proves to be challenging. Notably, while the rigidity (storage modulus) increases in the fibre di-
30 rection with the addition of fibres as reinforcement inside the composite (see Fig.1.a), the damp-
31 ing behaviour follows a different pattern. As a matter of fact (Fig.1.b), the addition of fibres to the
32 matrix can either enhance, reduce, or leave the composite's damping unaffected. It underscores
33 the need to understand composite damping.

34 Existing literature suggests that damping sources within the composite may be influenced by
35 four primary factors: the matrix, porosity, interfaces (both between fibres and between fibre and

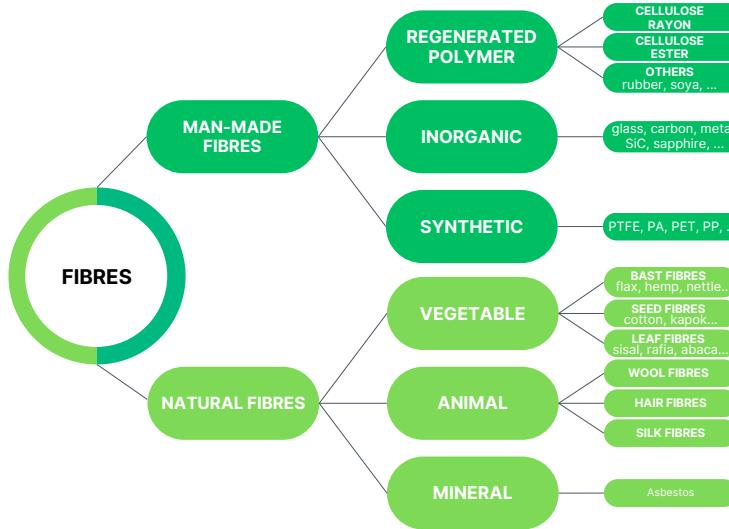
36 matrix), and the fibre itself. The matrix is an important contributor due to its viscoelastic nature.
 37 Under dynamic loading, internal friction within the polymer chains leads to energy dissipation,
 38 a phenomenon that is further amplified by environmental factors such as temperature and hu-
 39 midity. Porosity also plays a non-negligible role. Microvoids zones can facilitate localised defor-
 40 mation and micro-slipping, contributing to energy loss, particularly under repeated loading. In-
 41 terfaces, whether between fibre and matrix, or between fibres themselves in bundles, have been
 42 studied [11–13]. The interphase region, which possesses properties distinct from both the fibre
 43 and the bulk matrix, is critical in this regard. Depending on its strength and adhesion quality,
 44 it may enable frictional sliding or delamination under stress, significantly increasing damping.
 45 Damage-related mechanisms such as matrix cracking or fibre–matrix debonding can further en-
 46 hance this effect. Lastly, the fibre itself is considered a source of damping within the composite.
 47 By “fibre itself,” this refers not only to macroscopic factors such as volume fraction, dispersion,
 48 and orientation [3,9], but also to intrinsic properties at the level of the elementary fibre. These
 49 include the fibre’s viscoelastic nature, chemical composition, surface morphology, and internal
 50 porosity[12]. However, these aspects remain understudied in the literature and therefore consti-
 51 tute the focus of the present work.

Figure 1. (a) storage modulus and (b) loss factor of unidirectional (UD) flax composites in the longitudinal direction and of the pure matrix, measured in bending by Dynamical Mechanical Analysis (DMA) in flexion at 1 Hz. Inspired by the work of Liu et al. [14] (PP stands for polypropylene and PLA4 for polyamide 4).

52 Despite this, it is important to highlight that damping properties at the scale of elementary
 53 fibres have been very rarely investigated, mainly due to the experimental challenges associated
 54 with handling and characterizing such small and fragile structures. As a result, typical orders

55 of magnitude for fibre-scale damping remain poorly defined. Furthermore, input data required
56 for multiscale modelling of composite materials are often unavailable or difficult to access,
57 particularly at the fibre level. To date, no comprehensive review has focused specifically on this
58 topic, and researchers frequently encounter difficulties when seeking consistent mechanical and
59 viscoelastic parameters for their models. The present study seeks to address this gap by gathering
60 the existing data and practical insights tailored to the needs of modellers, thereby facilitating the
61 integration of fibre-scale properties into multiscale simulation approaches.

62 **2. Definitions and terminologies**


63 To establish a common understanding, the fibre classification system described by R. Mather
64 et al. [15] is adopted in this work. According to this system, fibres are divided into two main
65 categories (Fig.2). The first category includes:

- 66 • man-made fibres composed of regenerated fibres (derived from natural sources and
67 undergo chemical processing to extract the fibre-forming polymers) such as viscose,
68 rubber...;
- 69 • inorganic fibres (glass, carbon, metal...) presented as synthesized from non-biological or
70 mineral compounds;
- 71 • synthetic fibres (polyamide, polyester, polypropylene...).

72 The second category gathers the natural fibres that contain cellulosic fibres (bast fibres, leaf
73 fibres, seed fibres), proteinic fibres (wool, hair, silk...), and mineral fibres.

74 In addition, as the damping is the central point of interest, it is important to remember all
75 the nomenclature used to design this quantity. Indeed, some of the commonly used terms in
76 different fields of physics are related to each other. First, from the perspective of a mechanical
77 resonator (mass, spring, damper...):

- 78 • the quality factor Q which represents the ratio between the maximum amplitude at
79 resonance in the harmonic regime and the amplitude for a static response;
- 80 • the specific damping capacity ψ which is a measure of the ability of a material or structure
81 to dissipate energy per unit mass during vibration;

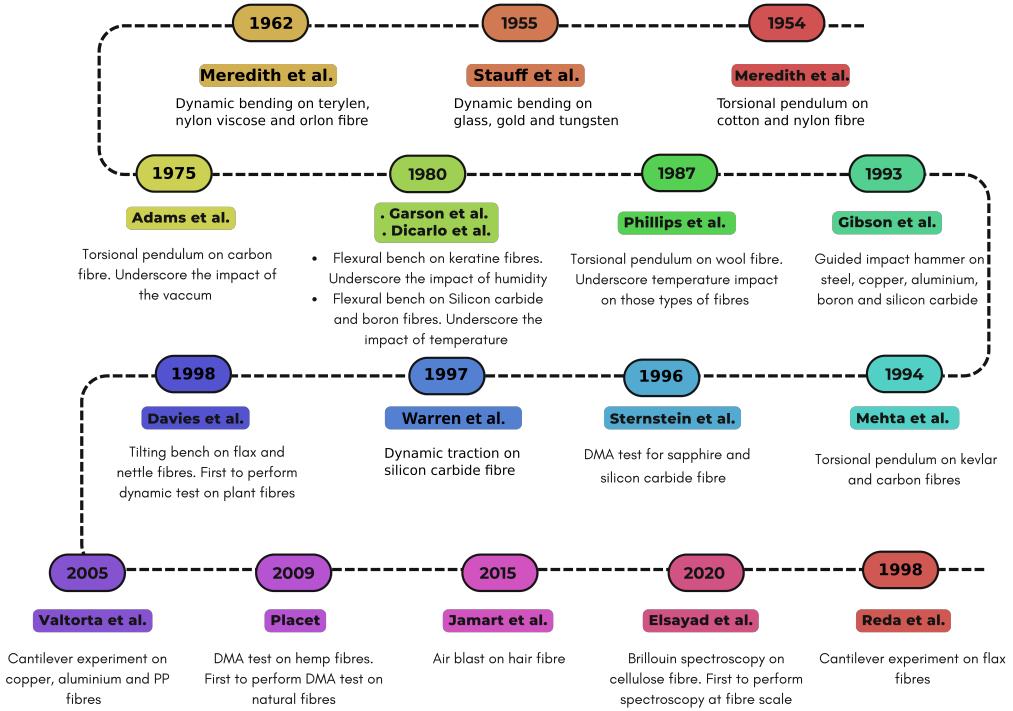
Figure 2. fibre's classification based on the work of Mather et al. [15]

- the damping ratio ζ which is a fundamental parameter in the analysis of second-order mechanical systems, which typically consist of a mass, a spring, and a viscous damper. It quantifies the level of damping present in the system and is defined as the ratio between the actual damping coefficient and the critical damping coefficient, its definition is extended to ζ_n , the modal damping ratio of a given mode n of a structure, whose dynamic behaviours represented by modal mass and modal stiffness;
- the viscous damping coefficient α which relates the velocity to the viscous damping force acting on the system in response to its motion.

From a material point of view:

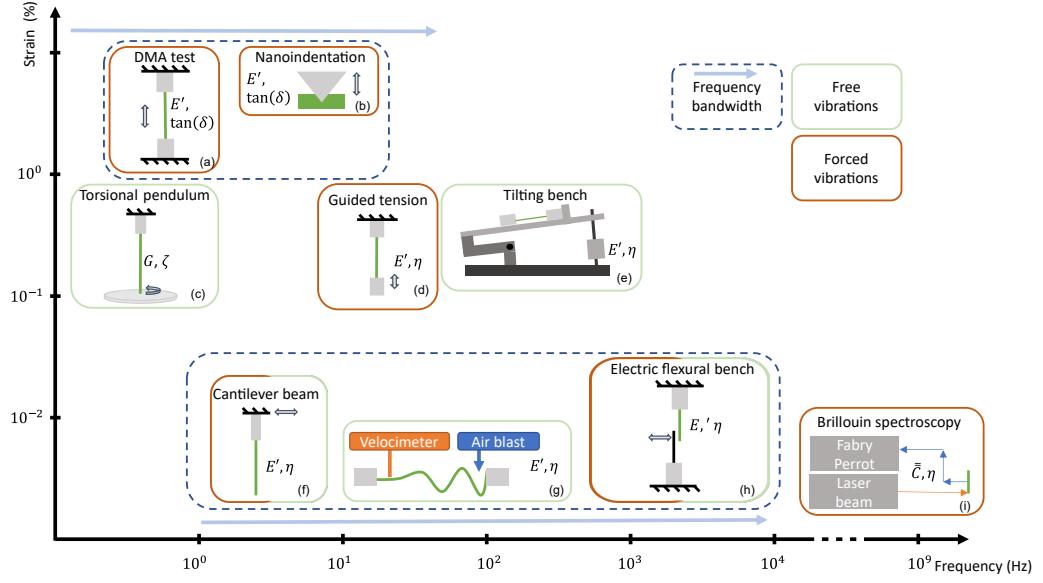
- the loss factor η or $\tan \delta$: is a material quantity that quantifies the ability of a material to dissipate energy when subjected to deformation.

When the mechanical system (the fibre in this article) can be described as a resonant system on a single mode (eg. the first bending mode of the fibre), the damping parameters are linked by the following expressions:


$$\eta = \frac{\psi}{2\pi} = 2\zeta = \frac{\alpha}{\omega_0} = \frac{1}{Q} = \tan \delta. \quad (1)$$

96 They provide different perspectives on the damping properties of the system and are used in
97 different fields of physics. In this work, the formalism used to describe damping is the loss factor
98 η expressed in percent (Eq. 1). By utilizing the loss factor, it aims to give a consistent and unified
99 approach to discuss the damping properties of the fibres under investigation.

100 **3. Fibre scale damping: characterisation methods**


101 Damping characterization is commonly used for macro-scale structures or materials. However,
102 it is important to note that many of the techniques commonly used in structural dynamics at
103 the macro scale cannot be directly applied to elementary fibre damping characterization. At
104 the macro scale, measurements are most of the time conducted with accelerometers glued to
105 the structure or laser vibrometry, both of which can be challenging to perform on fibre samples.
106 Moreover, excitation is usually achieved with a shaker or by impacting with a hammer equipped
107 with a force sensor, neither of which is feasible for a fibre. These limitations highlight the
108 need for specialized methodologies specifically tailored for fibre characterization. Although
109 ropes and wires have been extensively studied, the literature on this specific topic (damping
110 characterization at the fibre scale) remains sparse. Fig.3 illustrates the historical progression
111 of paper contributions to damping knowledge and characterization at fibre scale until now. It
112 emphasizes the limited research performed at this scale. To the best of the authors' knowledge,
113 only around 15 papers have addressed fibre-scale damping properties from 1954 to 2024.

114 In this paper, various methodologies are employed to investigate the dynamic properties of
115 fibres. These methodologies can be classified into three categories based on the nature of the
116 mechanical response: quasi-static methods, modal analysis techniques, and wave propagation
117 techniques. Quasi-static methods assume that the fibre behaves as a simple mass-spring-damper
118 system, with no internal dynamic effects. Techniques such as Dynamic Mechanical Analysis
119 (DMA), torsion pendulum, nanoindentation, guided tension, and tilting bench fall into this
120 category. These methods primarily probe the viscoelastic behaviour and overall mechanical
121 properties of fibres, neglecting density-related effects. Modal analysis techniques focus on the
122 study of resonant behaviours, where vibrational modes emerge with wavelengths ranging from a
123 few fibre lengths (first elastic mode) to fractions of the fibre length. Methods such as cantilever

Figure 3. history of dynamical tests at fibre scale [16–31]

beam excitation, air-blast excitation, and electric flexural bench enable the characterization of structural damping and the dynamic response of fibres. Wave propagation techniques explore the regime where the fibre behaves as a continuous medium, with wavelengths much smaller than its characteristic dimensions. In this case, density effects become significant, and the fibre is treated as an elastic waveguide. Techniques such as Brillouin spectroscopy and ultrasonic methods provide insights into wave dispersion and local dynamic interactions at the microscale. All these methods use vibrations to excite the structure and this work discusses two types of excitations: free and forced responses. In the case of free response, the structure oscillates or responds without any external force acting on it, with movement driven solely by elastic, inertial, and loss forces within the fibre or a passive device, such as an inertial mass. The system's behaviour is determined by its intrinsic properties, including mass, stiffness, and damping, which limit access to only the first eigenfrequency and mode. On the other hand, in forced

Figure 4. dynamic test methods for the dynamical characterization at the fibre scale, considering their strain level and frequency bandwidth [18–32]

136 response, the system is subjected to an external force or input. This external force acts as a
 137 driving function, causing the system to respond in a particular manner. The system's response
 138 is influenced by the characteristics of the external force and the properties of the system itself.
 139 This response allows access to several eigenfrequencies, thus several modes. The overall methods
 140 employed in this work are illustrated in Fig.4. They are categorized based on the applied strain
 141 rate to the sample and the frequency bandwidth they can operate within. Forced and free
 142 excitation are depicted in orange and green, respectively. It is worth emphasizing that the
 143 following of the section is dedicated to methodological discussions, and as such, does not include
 144 numerical data. Subsequent sections will develop the quantitative analysis, providing numerical
 145 values and further elucidating literature findings.

146 3.1. *Quasi-static techniques for damping identification*

147 3.1.1. *Torsion method*

148 In the literature, the torsion pendulum method (see Fig.4.c) stands out as an interesting and
 149 unique technique for torsional modulus and torsional damping phenomena across diverse mate-

150 rials [33]. Inspired by the original Coulomb pendulum design, this method employs a wire (usu-
151 ally the sample of interest) supporting an inertial mass [33–36]. The suspended mass is twisted
152 and then released, creating oscillatory motion driven by a torque proportional to the angular dis-
153 placement oscillating, the fibre playing the role of a linear torsion spring. The damping (torsional
154 damping) is typically determined thanks to the logarithmic decrement method with the oscilla-
155 tions made by the mass. The torsional pendulum method proves efficient in characterizing mul-
156 tiple materials' damping properties [34]. Its sensitivity enables the detection of low damping lev-
157 els, providing good insights into material performance [36]. Despite its efficiency, challenges per-
158 sist. Sensitivity to external factors like temperature, humidity, and aerodynamical effects needs
159 strict environmental control for accurate data. However, ongoing efforts by Adams et al. [19] on
160 carbon fibre, Philips et al. [22] on wool fibre and Yu et al. [36] on carbon, copper, silver and tung-
161 sten fibre, aim to overcome these challenges, pushing the boundaries of the torsion pendulum
162 method, enhancing its accuracy.

163 *3.1.2. Tension method*

164 Among the identified work on damping characterization, another solicitation method is ten-
165 sion. Tension occurs when a fibre bears weight, parallel to its longitudinal axis, on one end, while
166 undergoing dynamic solicitations. For the quasi-static methods, the main method for damping
167 characterization is the well-known DMA (Fig.4.a). This method subjects the material to dynamic
168 mechanical forces or displacement while measuring its response. This method evaluates prop-
169 erties such as storage modulus, loss modulus, and damping across diverse environmental condi-
170 tions, offering insights into the material's viscoelastic behaviour. This method gives the loss fac-
171 tor that corresponds to the phase shift between the strain and stress curve. While DMA is com-
172 monly used for larger-scale structural and material applications, damping characterization at the
173 fibre scale presents challenges: clamping conditions are not well optimized for small fibre diam-
174 eters, risking damage to the fibre microstructure and possible slippage between the jaws. How-
175 ever, studies on ceramic fibre (sapphire and silicon carbide) by Sternstein et al. [25] and Warren
176 et al. [37] and on hemp fibre by Placet [28] have explored fibre-scale damping showcasing the
177 feasibility of such kind of studies.

178 Beyond DMA, other quasi-static tension methods have been explored for fibre damping char-

acterization. For instance, the work of Gibson et al. [23] on steel, copper, aluminium, boron, and silicon carbide (SiC) introduces an apparatus for quasi-static fibre evaluation. This setup suspends a mass from the fibre specimen, inducing extensional vibrations and utilizing an impulse frequency response technique for experimentation at less than 25 Hz. The method involves longitudinal excitation using an electromagnetic hammer equipped with a force transducer, ensuring impulses for precise measurements (Fig.4.d). This comprehensive apparatus allows the testing of elementary fibre on forced vibrations with an impulse, ensuring the characterization of their dynamic properties across diverse temperatures conditions. The modulus as well as the damping are then identified. The loss factor is identified with the bandwidth at the half-power point method from the frequency response function (FRF). However, despite its design, the apparatus faces limitations. It can reach temperatures up to 1400°, but expansion of stainless-steel bolts in clamping fixtures poses a risk of specimen slippage. Another study by Davies et al. [26] introduced an alternative approach in the case of nettle and flax fibre. A tilting bench (Fig.4.e) was used to apply tension to the fibre under investigation, with tilting controlled by a motor. This incremental motor mechanism induced vibrations (between 10 and 300 Hz) at each tilting step, enabling the determination of damping values for nettle and flax fibre with free response induced by the increments of the motor. The damping was identified using the logarithmic decrement method.

3.1.3. *Nanoindentation*

Although typically applied at the composite scale, nanoindentation provides valuable insights into fibre damping, hence its relevance in this discussion. In this method (Fig.4.b), a sharp indenter is pressed into a material's surface with controlled force, creating a small indentation. By measuring the resulting force-displacement curve, key properties such as hardness, elastic modulus, and material deformation behaviour can be determined. This study has been used to determine the damping and the rigidity of fibres inside the composite between 1 to 5 Hz by Liu et al. [14]. In this study focusing on the fibre scale, two distinct methods, continuous stiffness measurement (CSM) and constant amplitude method (CAM), are employed to unravel the dynamic properties of the flax-reinforced composite. These methods offer diverse perspectives on inelastic behaviour assessment. CSM, by considering energy dissipation during both loading

208 and unloading phases, accounts for irreversible mechanisms, while CAM emphasizes determin-
209 ing damping capacity and viscoelastic parameters after the initial loading and unloading. How-
210 ever, it is important to note that fibres are embedded within the resin during these experiments,
211 resulting in a possible infusion of resin inside the fibres. Additionally, the exact boundary condi-
212 tions are uncertain (because fibres are placed inside the matrix), and the deformation rate asso-
213 ciated with nanoindentation is among the highest compared to previously presented methods.
214 Consequently, a significant challenge lies in ensuring that the measurements primarily capture
215 the behaviour of a fibre, rather than contributions from the overall system.

216 In conclusion, quasi-static methods, torsion pendulum [19,36], with tension method
217 [22,25,28,37] and nanoindentation [14], represent tools for characterizing damping proper-
218 ties across varying material. These methodologies offer insights into material behaviour, even if
219 they present challenges when applied at the fibre scale.

220 *3.2. Modal range techniques for damping identification*

221 For the characterization of fibre damping using modal range techniques, in the litterature,
222 only flexion is studied. In applied mechanics, flexure (or bending) describes how a slender
223 structure deforms under a load perpendicular to its length. For example, the studies conducted
224 by Garson et al. [20] on hair using a method that consists of exciting embedded fibres using
225 an electric field with the fibre's resonant frequencies (Fig.4.h). These fibres are stimulated
226 by an electric potential, inducing charges on their surface. This periodic electrostatic action
227 generates detectable vibrations, and by adjusting the frequency of the electric field, the resonant
228 frequencies of the fibre and the corresponding damping ratio can be identified with the FRF and
229 the half-power point method.

230 The other bending method identified in the existing literature consists of cantilevered fibre
231 subjected to flexural forced or free vibrations (Fig.4.f). In this method, the fibre is clamped at
232 one end and excited at its base, causing it to oscillate like a cantilever beam. The experimental
233 setup consists of mounting the fibre on an electrodynamic shaker through a support system.
234 This differs from the method used by Garson et al. [20], where excitation occurs at the free end.
235 By systematically scanning through a range of frequencies, the resonance of the fibre can be

236 identified. The technique relies on simple beam theory based on the zones of resonance detected
237 during the frequency scan. Jamart et al. [29] also used this type of measurement system on
238 hair, using compressed air cycles and precise laser measurements to induce impacts on the hair
239 sample without direct contact (Fig.4.g). By measuring the deflection at the impact point and
240 monitoring wave propagation using lasers, the system allows for analysing the fibre's dynamic
241 behaviour under varying moisture conditions. Valtorta et al. [27] in their research on copper,
242 aluminium, and polypropylene (PP), also developed a flexural damping measurement technique
243 using this type of resonance approach. Disturbances in a light beam, caused by the fibre's
244 motion, are detected generating peaks corresponding to instances when the fibre intercepts the
245 light beam. Utilizing phase information between the excitation signal and the fibre's motion
246 provides valuable insights into the damping characteristics. This method eliminates the need
247 for continuous measurement of fibre displacement by focusing on periodic disturbances in the
248 light beam, enabling the process of characterizing flexural damping in thin fibres.

249 Other studies should be mentioned because they also use modal range method but limit it
250 to rigidity characterization. Indeed, Perrin et al. [38] and Chupin et al. [39] used the cantilever
251 method to assess Young's modulus of glass and miscanthus fibres.

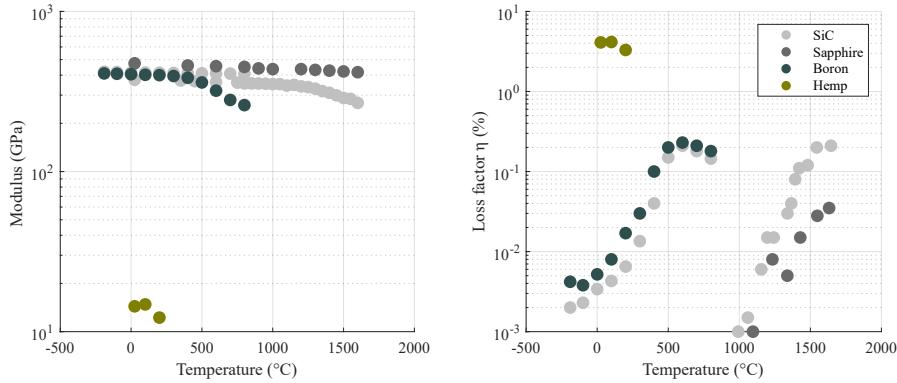
252 3.3. *Wave propagation method for damping identification*

253 The main method used in high frequency for damping characterization at fibre scale is the
254 Brillouin Light Spectroscopy (BLS). BLS primarily used in optical applications and notably in
255 optical fibre, can also serve as a sophisticated technique for characterizing damping in multiple
256 materials [40–42]. This method revolves around the interaction of light and elastic waves within
257 a material. Micro-Brillouin light spectroscopy is a non-invasive and non-contact technique
258 based on the inelastic scattering of light from acoustic phonons inherent in the probed material
259 (Fig.4.i). By measuring the frequency shift of the Brillouin scattering peaks relative to the probing
260 laser, BLS determines the velocity of elastic waves, which is directly related to the elastic storage
261 modulus and the damping at the corresponding frequency. This approach offers insights into the
262 mechanical behaviour of fibres in different directions (longitudinal and transverse to the fibre
263 axis) [32,41,42].

264 Today, there is only one paper (to the best of the authors' knowledge) in this field that treats
265 single fibre damping behaviour using Brillouin spectroscopy. Indeed, Elsayad et al. [30] used this
266 technique on cellulosic fibre to determine their modulus and damping. It is worth mentioning
267 that Koski et al. [32] worked at the scale of silk fibre but kept it to the modulus. The limitation
268 of this technique is the requirement for sophisticated data analysis that pose challenges in ob-
269 taining accurate and reliable results. For example one of the main difficulty lies in the challenge
270 of accurately determining the material's refractive index, which is essential for reliable measure-
271 ments. Moreover, due to the very high frequencies involved, it is often unclear which component
272 of the system is actually responding, whether it is the material itself or another constituent.
273 Despite this constraint, Brillouin Light Scattering (BLS) remains a powerful technique for inves-
274 tigating material mechanics, particularly due to its ability to perform localised measurements
275 and spatial mapping.

276

277 Each method, as depicted in Fig.4, brings insights into the dynamic properties of fibres,
278 offering a piece of understanding of their mechanical dynamical responses. However, these
279 methods present challenges, from intricacies in setup and calibration to limitations in frequency
280 ranges and susceptibility to surrounding factors. Therefore, the damping characterization should
281 be approached with care, considering the potential limitations of each method.


282 **4. Influencing parameters on fibre's damping**

283 This section examines the impact of temperature, humidity, boundary conditions and frequency
284 on the dynamic behaviour of the fibre, based on the litterature results obtained using the
285 previously presented methods. It is important to note that the damping levels reported in this
286 section are taken from the published data, without trying to quantify the precision/uncertainties
287 associated with the values.

288 *4.1. Temperature*

289 Limited studies have investigated the effect of temperature on fibre damping. This section sum-
290 marizes the significant changes observed in damping and rigidity properties due to temperature

291 fluctuations. The literature primarily focuses on inorganic fibre, including silicon carbide, sapphire, carbon, and various metal fibres, predominantly utilized in aerospace applications.

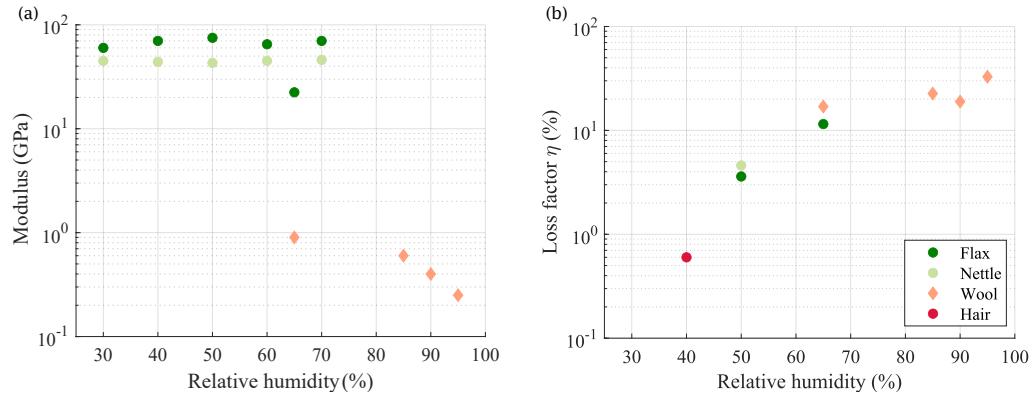
Figure 5. (a) longitudinal moduli and (b) loss factor of different types of fibre as a function of temperature [21,25,28].

293 The study of Dicarlo et al. [21] examined the impact of temperature variations (ranging from
 294 -190 °C to 800 °C) on SiC and boron fibres (Fig.5, respectively light grey and dark blue) with
 295 an electrical flexural bench (Fig.4.h) in the range of 15 to 20 kHz. The findings suggested, in
 296 terms of rigidity, a slight decrease from -190 °C to 800 °C as presented in Fig.5.a. In terms of
 297 damping, a significant increase of both fibre types by approximately two orders of magnitude
 298 within this temperature range (from 0.002% to 0.21% for the SiC and 0.004% to 0.23% for boron
 299 fibre). Notably, a significant rise in damping began around 0 °C, reaching a maximum at 600 °C
 300 before declining. Another study by Sternstein et al. [25] and Warren et al. [37] on SiC and sapphire
 301 fibres observed an increase in damping for both types (from 0.001% to 0.035% for sapphire and
 302 0.001% to 0.2% for SiC) presented in Fig.5.b (respectively in dark grey and light grey) in the
 303 frequency range of 0.1 to 1000 Hz between 1000 to 1800 °C. Moreover, at higher temperatures,
 304 SiC demonstrated a more pronounced increase compared to the slower increase observed for
 305 sapphire. Additionally, the modulus decreased with rising temperatures for both fibre types.

306 A study by Placet [28] also investigated the temperature's impact on hemp fibre mechanical
 307 properties using a DMA test (see Fig.5, represented in golden brown). A increase in normalized
 308 modulus of 0.6 GPa between room temperature and 100 °C, followed by a decrease is observed.
 309 Regarding damping, an increase from 4.1% to 4.2% between room temperature and 100 °C,
 310 followed by a decrease from 4.1% to 3.3% between 100 °C and 200 °C is observed.

311 At macro scale also, temperature is demonstrated to present a significant impact. Observa-
312 tions on inorganic (boron, SiC, and sapphire) fibres suggest a substantial increase in damping
313 capacity with elevated temperatures, followed by a subsequent decline in some cases. These
314 temperature-induced alterations in damping properties, coupled with changes in rigidity for cer-
315 tain fibre types, underscore the intricate dynamics within fibre materials. Another consideration
316 is the drying process of vegetal fibres with temperature increase, further highlighting the chal-
317 lenges associated with these materials. It is worth noting that for inorganic fibres, increasing the
318 temperature to thousands of degrees is manageable without damaging the microstructure of the
319 fibre, unlike natural fibres, which are much more thermally sensitive.

320 Moreover, these comprehensive investigations into temperature effects emphasize the need
321 for further research to understand the nuanced relationships between temperature fluctuations
322 and fibre damping characteristics, particularly in the context of natural fibres.


323 4.2. *Humidity*

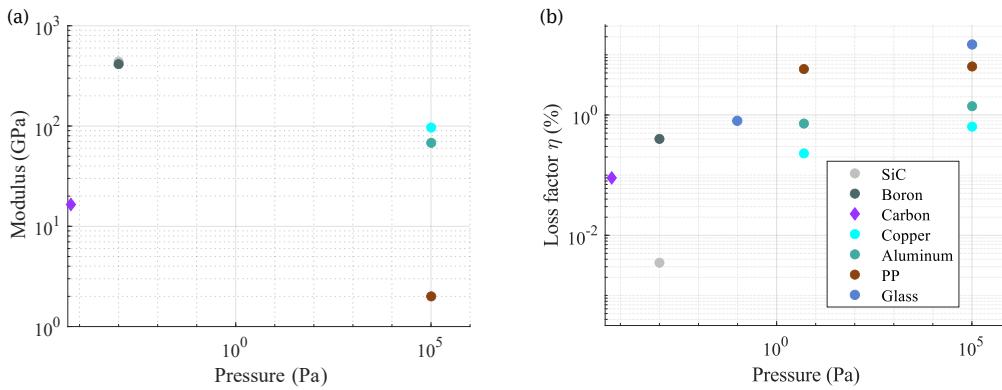
324 This section presents a summary of existing research on the influence of humidity on elementary
325 fibre properties.

326 Firstly, one can consider the study conducted by Davies et al. [26] using a tilting bench. This
327 research primarily investigated the effects of relative humidity (RH) on the dynamic modulus
328 of flax and nettle fibres (Fig.6, in green) from 0.1 to 600 Hz. It can be observed that as RH
329 increased within the range of 30-70%, the dynamic modulus of flax fibre exhibited an increase
330 of 0.7% per percentage change in RH (starting at 60 GPa), whereas nettle fibre increased by 0.2%
331 in their modulus (starting at 45 GPa). Regarding the loss factor, measurements were conducted
332 exclusively under ambient relative humidity conditions, yielding values of 3.6% for flax fibres and
333 3.9% for nettle fibres.

334 Another significant study, by Philips et al. [22], focused on wool fibre's response to humidity
335 fluctuations (Fig.6, diamond marker in light orange) with the use of a torsional pendulum in
336 the range of 0.01 to 0.1 Hz. The first conclusion that can be made is that the modulus tends to
337 decrease as humidity increases from 65% to 95% RH from 0.9 GPa to 0.25 GPa torsional modulus).

338 In addition, wool fibre damping increases with humidity (from 16.9% to 32.8%). Finally, the work

Figure 6. (a) moduli and (b) loss factor of different types of fibre as a function of relative humidity (diamond-shaped markers represent torsional moduli/loss factor, while circular markers represent longitudinal moduli/loss factor). [22,26,29,31].

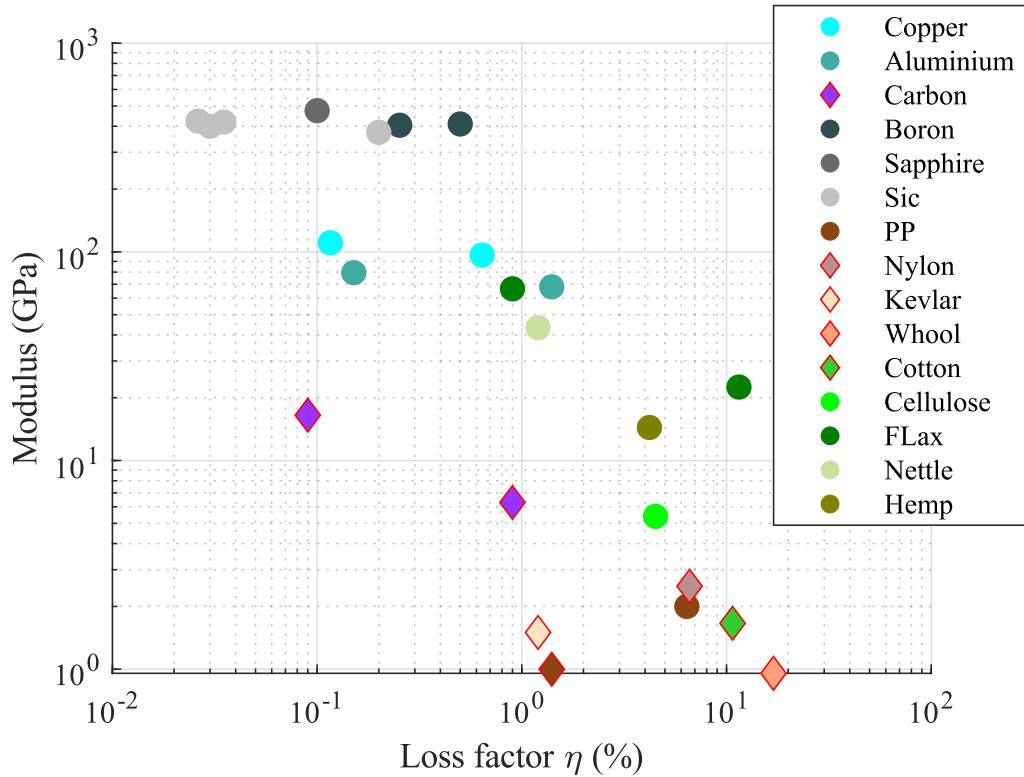

339 of Garson et al. [29] investigated hair damping using flexural vibrations technique and reported a
 340 loss factor of 0.5% (this study focused solely on damping, and no modulus values were provided).

341 Comparative studies on the impact of humidity on fibre-damping characteristics remain
 342 relatively scarce, primarily focusing on the responses of natural fibres to humidity fluctuations.
 343 The study focuses on the impact of RH on flax, nettle, and wool, uncovering diverse behaviours.
 344 Moreover, the unique microstructure of plant fibres, characterized by distinct cell wall layers and
 345 complex cross-sectional areas that vary along the fibre length, may undergo potential changes
 346 with fluctuations in humidity, contributing to variations in damping properties. In contrast, wool
 347 fibres exhibit a unique pattern, demonstrating an increase in damping with humidity, coupled
 348 with a decrease in rigidity.

349 4.3. Aerodynamical effect

350 Depending on the method used, vacuum pressure can affect the characterisation of the damping
 351 behaviour of elementary fibres, particularly due to the aerodynamic effects that occur in its
 352 absence. This section deals with this specific aspect, which occurs mainly in the case of bending
 353 vibrations of a fibre. At the fibre scale, understanding damping is not straightforward, as it
 354 raises questions about whether the measured damping solely reflects the characteristics of the
 355 fibre or if it is influenced by a combination of fibre and air friction damping. The earliest study
 356 by Adams et al. [19] investigated the influence of pressure on carbon fibres using a torsional

pendulum. This setup required accounting for the added mass, which introduced significant inertia and therefore needed to be minimized or removed. It can be observed that at extremely low pressure (above 6×10^{-5} Pa), the impact of air damping becomes negligible and the carbon presents a loss factor of 0.09% (see Fig.7.b in purple diamond). Another study, conducted by Valtorta et al. [27] using vibrations test, focused on copper, aluminium, and PP fibre (respectively light blue, blue, and brown in Fig.7.a.b). Furthermore, under a pressure of 5 Pa to minimise air damping effects, it is observed that the measured damping is primarily governed by the fibre's internal viscoelastic properties, with a residual contribution from viscous air damping. Vacuum experiments effectively mitigated the influence of air damping. Subsequently, it was observed that the loss factor for copper, aluminium, and PP initially measured 0.64%, 1.4%, and 6.4%, respectively, under atmospheric pressure; under vacuum conditions, these values decreased to 0.23%, 0.72%, and 5.8%, respectively (see Fig.7.b). Similarly, Stauff et al. [17] investigated the damping behaviour of glass fibres using vibrations under vacuum conditions and observed a marked pressure dependence: the loss factor decreased from 14.8% at ambient conditions to approximately 0.8% at a pressure of 0.09 Pa.


Figure 7. (a) moduli and (b) loss factor of different types of fibres as a function of surrounding pressure [19,21,27] (diamond-shaped markers represent torsional moduli/loss factor, while circular markers represent longitudinal moduli/loss factor)

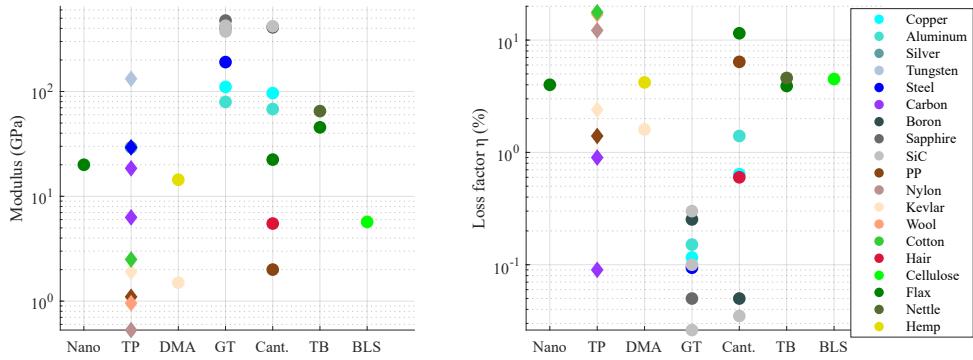
This investigation into the impact of pressure on fibre damping highlights the importance of distinguishing between intrinsic fibre-related damping and the influence of external factors such as air friction, which depends on the experimental method used. Nouira et al. [43,44] conducted a study identifying six sources of energy loss in the case of a cantilever beam vibrating in

376 free gases. Among these, they emphasized airflow damping, described using the Navier–Stokes
377 equations and modeled through the Hosaka approach [45], which links damping behaviour to
378 pressure variations. Similarly, Sumali et al.[46] examined various analytical models[47–50] to
379 characterize the evolution of damping with pressure on small cantilever beams. These studies
380 consistently show that vacuum pressure significantly influences structural damping. Perrin et
381 al. [38] analysed the role of air friction, highlighting its effect on broadening resonance peaks.
382 These presented models suggest that the frequency shift due to air damping is minimal (about
383 0.5%), indicating that its impact on the observed resonance frequency is negligible. It is therefore
384 essential to note that this effect is method-dependent: if a fibre is vibrating in free air, it can
385 be subject to aerodynamic friction, which must be accounted for when interpreting damping
386 measurements. A notable research gap exists regarding natural or plant-based fibres: no dedi-
387 cated studies have explored how pressure variations affect the measurement of their damping
388 properties. Unlike inorganic materials, plant fibres may present specific challenges due to their
389 organic nature. While air friction can influence damping measurements, it is important to clarify
390 that pressure does not alter the intrinsic damping of the fibre itself, but rather affects how it is
391 measured. Furthermore, exposing plant fibres to vacuum conditions could cause dehydration,
392 potentially altering their microstructure, which must be considered when designing experiments.

393

394 In summary, studying how temperature, humidity, and boundary conditions influence fibre
395 damping helps reveal the complex behaviour of fibre materials. Humidity emerges as a critical
396 influence, significantly altering natural fibre properties. The effect of pressure on damping,
397 particularly due to air friction, shows how difficult it is to separate fibre-specific damping from
398 external influences. While each parameter brings its unique impact, their coupled influence on
399 fibre behaviour remains an ongoing subject of interest. Understanding and distinguishing the
400 individual contributions of these parameters to fibre damping presents critical challenges and
401 opportunities for further exploration.

Figure 8. modulus as a function of the damping loss factor for different types of fibres [18–31] (diamond-shaped markers represent torsional moduli and loss factors, while circular markers correspond to longitudinal moduli and loss factors. Circled markers indicate values obtained from vacuum studies).


402 4.4. Fibre damping across methods and frequencies

403 The previous section provided an in-depth review of methodologies used to characterize fibre
 404 damping properties, with a focus on environmental influences. While each technique presents
 405 unique advantages and limitations, the following discussion synthesizes key findings from the
 406 literature, offering a comparative perspective on the performance of different fibre classes.

407 Figure 8 illustrates the relationship between modulus and damping loss factor across various
 408 fibre types. Synthetic and metallic fibres exhibit high modulus but low damping. In contrast,
 409 polymeric fibres display low modulus but high damping. Finally, bio-based fibres (in green in the
 410 plot) tend to balance intermediate values of both properties. This comparison underscores the
 411 distinct mechanical behaviours inherent to each fibre type under standard conditions.

412 The difference in damping identification depending on the method used is discussed with

413 reference to Fig.9, where damping values from the literature are converted into loss factors. The
 414 following part of the section focuses on comparing the influence of frequency on the reported
 415 damping values.

Figure 9. (a) moduli and (b) loss factor of different fibres concerning their damping characterization methods [18–31] (diamond-shaped markers represent torsional moduli/loss factor, while circular markers represent longitudinal moduli/loss factor)

416 **From 0.1 to 10 Hz** In this frequency range, three methodologies have been used: nanoinden-
 417 tation, the torsional pendulum, and DMA. Various types of fibres, including natural, inorganic,
 418 and synthetic variants have been studied. Considering the torsional pendulum, there are signifi-
 419 cant discrepancies in modulus and damping values between torsional pendulum studies. For ex-
 420 ample, for the same fibre same method, the torsional modulus and damping of carbon has been
 421 reported and is respectively as 6.3 GPa and 0.9% [24] but also 18.5 GPa and 0.08% [19]. In terms
 422 of damping, using torsional pendulum, cotton exhibits the highest loss factors [18], followed by
 423 wool [22], nylon [18] and flax [31]. Cotton demonstrates a loss factor of 17.7%, while wool and
 424 nylon display loss factors of 16.9% and 12.3%, respectively. DMA and nanoindentation have been
 425 applied to a limited selection of fibres, primarily flax and hemp. For flax, a loss factor of 4% and
 426 a modulus of 20 GPa have been reported. Similarly hemps exhibits a loss factor of 4.2% for a
 427 modulus of 14.4 GPa.

428 **From 10 to 100 Hz** In the open literature, three main methods of identification are prominent:
 429 guided tension (GT), cantilever (Cant), and tilting bench (TB). Various materials such as SiC, steel,
 430 aluminium, copper, and boron fibre have been tested using the guided tension method. PP and
 431 copper have been studied using the cantilever beam method, while flax and nettle fibres have

432 been analysed with the tilting bench method. Notable findings include a modulus of 66.5 GPa
433 and a damping factor of 3.9% for flax, as measured using the tilting bench method [26], which is
434 comparable to that of nettle fibre, exhibiting a modulus of 70 GPa and a damping factor of 4.6%
435 [26]. Copper's modulus and damping measured using the guided tension method at 45 Hz (110.58
436 GPa and 0.12% [23]) are consistent with those obtained via the cantilever method at around 25
437 Hz (96.5 GPa and 0.64% [27]).

438 **From 100 to 1000 Hz and above** The primary method utilized in this frequency bandwidth
439 is the cantilever beam method, with a particular focus on samples such as SiC, boron, and flax.
440 For boron fibre, a modulus and loss factor of respectively 410 GPa and 0.05% are reported [24].
441 In the case of flax fibre, Reda et al. [31] reported a modulus of 22.41 GPa and a loss factor of 11.5%.

442

443 This comparison shows the influence of frequency on the loss factor of the fibre. Unfortu-
444 nately, however, it also shows the significant impact of the measurement method.

445 In conclusion, understanding damping at the elementary fibre scale remains a challenging
446 and still emerging field. The literature reveals a limited number of dedicated studies, with
447 noticeable disparities in both methodologies and reported results. For instance, flax fibre shows
448 a wide variation in reported damping values, ranging from 3.9% to 11.5%, while carbon fibre
449 spans from 0.09% to 0.9%. Similarly, SiC values range between 0.026% and 1.5%, and aluminium
450 between 0.15% and 1.4%. Such variability highlights the absence of even a consistent order of
451 magnitude across studies.

452 This underlines the need for careful selection of characterization methods, ensuring align-
453 ment between each method's frequency range, strain amplitude, and the specific characteristics
454 of the fibres studied. Controlling experimental conditions, such as boundary constraints, envi-
455 ronmental parameters, and handling procedures, is essential to obtain reliable and comparable
456 data.

457 To overcome the inherent limitations and uncertainties associated with individual techniques,
458 combining multiple methods on the same fibre samples is recommended. Such an approach
459 provides a broader perspective, helping to identify consistent trends while mitigating the weak-
460 nesses of single-method analyses. Furthermore, the complex coupling between damping and

461 rigidity highlights the necessity of developing dedicated models. Modelling efforts are crucial to
462 complement experimental data, fill existing knowledge gaps, and provide a deeper, more consis-
463 tent understanding of fibre-scale damping phenomena across different fibre types and applica-
464 tions.

465 **5. Recommendation on damping characterisation at fibre scale**

466 Currently, the comparison of data is challenging due to the disparate information obtained from
467 various experimental techniques. However, this review underscores several critical limitations
468 inherent in current approaches to characterizing damping at the fibre scale. To address these
469 challenges and advance the field, several key recommendations are provided.

470 - Ensure rigorous control of boundary conditions and sample handling. Clamping methods,
471 pre-stress effects, and fibre preparation procedures critically influence damping measurements.
472 Standardising these steps is necessary to improve reproducibility and reduce artefacts, yet de-
473 tailed procedural descriptions are often missing from the literature.

474 - Expand characterisation beyond single-mode and single-direction studies. Most existing
475 works focus on one solicitation mode and one material direction, which may suffice for isotropic
476 fibres but fails to capture the anisotropy and complex geometries of natural fibres. Advanced
477 experimental methods and post-processing techniques must be developed to address this gap.

478 - Clarify damping terminology and units. A consistent definition of damping indicators, with
479 appropriate units and uncertainty intervals, should be systematically provided to enable reliable
480 comparison across studies.

481 - Validate methods and account for experimental artefacts. Variations between different ex-
482 perimental protocols highlight the need for method validation campaigns, particularly regard-
483 ing acquisition chain contributions and the influence of added mass or pre-stress on measured
484 damping.

485 - Broaden the range of studied fibre types and explore alternative measurement methods.
486 While glass and carbon fibres are well documented at the composite scale, their fibre-scale
487 damping characterisation remains limited. Plant-based fibres are also underexplored in terms of
488 their damping properties. Methods such as ultrasound could complement existing approaches

489 by extending frequency ranges.

490 - Systematically assess environmental effects. Temperature, humidity, and pressure can all
491 influence measured damping, particularly for organic fibres where dehydration under vacuum
492 may impact microstructure. Controlled environment setups should become a standard practice.

493 In conclusion, a deeper understanding of fibre-scale damping remains essential for advancing
494 applications in both high-performance and bio-based composite materials. Addressing the
495 identified methodological gaps, diversifying the range of studied fibres, and exploring multi-
496 physical effects will enable more accurate, transferable knowledge in this field.

497 **6. Acknowledgement**

498 Gratitude is extended to the National Research Agency for the funding of this project, particularly
499 within the framework of the MIDIFIC project (ANR-22-CE51-0001). Appreciation is also directed
500 towards the EIPHI Graduate School, especially through the ANR-17-EURE-0002 project.

501 **Conflicts of interest**

502 The authors do not work for, advise, own shares in, or receive funds from any organization
503 that could benefit from this article, and have declared no affiliations other than their research
504 organizations.

505 **Dedication**

506 The manuscript was written through contributions of all authors. All authors have given approval
507 to the final version of the manuscript.

508 **References**

- 509 [1] R. R. Nagavally, "Composite materials-history, types, fabrication techniques, advantages, and applications", *Int.*
510 *J. Mech. Prod. Eng* **5** (2017), no. 9.
- 511 [2] K. N. Keya, N. A. Kona, F. A. Koly, K. M. Maraz, M. N. Islam and R. A. Khan, "Natural fiber reinforced polymer
512 composites: history, types, advantages and applications", *Materials Engineering Research* **1** (2019), no. 2.
- 513 [3] T. Liu, P. Butaud, V. Placet and M. Ouisse, "Damping behavior of plant fiber composites: A review", *Composite
514 Structures* **275** (2021).

515 [4] K. Charlet, *Contribution à l'étude de composites unidirectionnels renforcés par des fibres de lin: relation entre la*
516 *microstructure de la fibre et ses propriétés mécaniques*, PhD thesis, Université de Caen/Basse-Normandie, 2008.

517 [5] M. Z. Rahman, "Mechanical and damping performances of flax fibre composites – A review", *Composites Part C: Open Access* **4** (2021).

519 [6] B. Wielage, T. Lampke, H. Utschick and F. Soergel, "Processing of natural-fibre reinforced polymers and the
520 resulting dynamic-mechanical properties", *Journal of Materials Processing Technology* **139** (2003), no. 1.

521 [7] E. Bodros and C. Baley, "Study of the tensile properties of stinging nettle fibres (*Urtica dioica*)", *Materials Letters*
522 **62** (2008), no. 14.

523 [8] C. Baley, "Is the low shear modulus of flax fibres an advantage for polymer reinforcement?", *Materials Letters*
524 (2016).

525 [9] R. Chandra, S. P. Singh and K. Gupta, "Damping studies in @ber-reinforced composites ± a review", *Composite*
526 *Structures* (1999).

527 [10] H. Hadjji, M. Assarar, W. Zouari, F. Pierre, K. Behloui, B. Zouari and R. Ayad, "Damping analysis of nonwoven
528 natural fibre-reinforced polypropylene composites used in automotive interior parts", *Polymer Testing* **89** (2020).

529 [11] F. Duc, P. E. Bourban, C. J. G. Plummer and J. - E. Månson, "Damping of thermoset and thermoplastic flax fibre
530 composites", *Composites Part A: Applied Science and Manufacturing* **64** (2014).

531 [12] R. Chandra, S. P. Singh and K. Gupta, "A study of damping in fiber-reinforced composites", *Journal of Sound and*
532 *Vibration* **262** (2003), no. 3.

533 [13] C. D. Wingard and C. L. Beatty, "Crosslinking of an epoxy with a mixed amine as a function of stoichiometry. II.
534 Final properties via dynamic mechanical spectroscopy", *Journal of Applied Polymer Science* **41** (1990), no. 11-12.

535 [14] T. Liu, Y. Gaillard, P. Butaud, V. Placet and M. Ouisse, "In situ damping identification of plant fiber composites
536 using dynamic grid nanoindentation", *Composites Part A: Applied Science and Manufacturing* **163** (2022).

537 [15] R. R. Mather and R. H. Wardman, *The chemistry of textile fibres*, 2nd edition edition, Royal Society of Chemistry:
538 Cambridge, 2015.

539 [16] R. Meredith and B.-S. Hsu, "Dynamic bending properties of fibers: Effect of temperature on nylon 66, terylene,
540 orlon, and viscose rayon", *Journal of polymer science* **61** (1962), no. 172, pp. 271–292.

541 [17] D. W. Stauff and D. Montgomery, "Effect of air damping on transverse vibrations of stretched filaments", *Journal*
542 *of Applied Physics* **26** (1955), no. 5.

543 [18] R. Meredith, "30—The Torsional Rigidity of Textile Fibres", *Journal of the Textile Institute Transactions* **45** (1954),
544 no. 7.

545 [19] R. D. Adams, "The dynamic longitudinal shear modulus and damping of carbon fibres", *J. Phys. D: Appl. Phys.* **8**
546 (1975), no. 7.

547 [20] J. C. Garson, M. Vidalis, P. Roussopoulos and J. L. Leveque, "Les propriétés vibratoires transversales des fibres de
548 kératine. Influence de l'eau et d'autres agents", *International Journal of Cosmetic Science* **2** (1980), no. 5.

549 [21] J. DiCarlo and W. Williams, "Dynamic modulus and damping of boron, silicon carbide, and alumina fibers", in
550 *Ann. Conf. on Composites and Advanced Mater.*, 1980.

551 [22] Philips, *Effects of Humidity, Ageing, Annealing, and Tensile Loads on the Torsional Damping of Wool Fibers*.
552 (accessed on October 11, 2023).

553 [23] R. F. Gibson, R. Thirumalai and R. Pant, *Apparatus and process for measuring mechanical properties of fibers*, 1993.
554 US Patent 5,269,181.

555 [24] V. R. Mehta and S. Kumar, "Temperature dependent torsional properties of high performance fibres and their
556 relevance to compressive strength", *Journal of metrial science* **29** (1994), no. 14.

557 [25] S. Sternstein, C. Weaver and J. Beale, "High-temperature dynamic mechanical testing of ceramic fibers: Apparatus
558 and preliminary results", *Materials Science and Engineering: A* **215** (1996), no. 1-2.

559 [26] G. Davies and D. Bruce, "Effect of Environmental Relative Humidity and Damage on the Tensile Properties of Flax
560 and Nettle Fibers", *Textile Research Journal* **68** (1998), no. 9.

561 [27] D. Valtorta, J. Lefèvre and E. Mazza, "A new method for measuring damping in flexural vibration of thin fibers",
562 *Experimental Mechanics* **45** (2005), no. 5.

563 [28] V. Placet, "Characterization of the thermo-mechanical behaviour of Hemp fibres intended for the manufacturing
564 of high performance composites", *Composites Part A: Applied Science and Manufacturing* **40** (2009), no. 8.

565 [29] J. Jamart, M. Djaghoul, J. Bergheau and H. Zahouani, "Effect of water desorption on the rheology and dynamic
566 response of human hair to a non-contact impact", *Journal of the Mechanical Behavior of Biomedical Materials* **46**
567 (2015).

568 [30] K. Elsayad, G. Urstöger, C. Czibula, C. Teichert, J. Gumulec, J. Balvan, M. Pohlt and U. Hirn, "Mechanical Properties
569 of cellulose fibers measured by Brillouin spectroscopy", *Cellulose* **27** (2020), no. 8.

570 [31] A. Reda, T. Dargent and S. Arscott, "Dynamic micromechanical measurement of the flexural modulus of
571 micrometre-sized diameter single natural fibres using a vibrating microcantilever technique", *J. Micromech. Mi-
572 croeng.* **34** (2024), no. 1.

573 [32] K. J. Koski, P. Akenblit, K. McKiernan and J. L. Yarger, "Non-invasive determination of the complete elastic moduli
574 of spider silks", *Nature Mater* **12** (2013), no. 3.

575 [33] A. E. Schwanek and R. W. Nash, "An Improved Torsion Pendulum for Measuring Internal Damping", *Review of
576 Scientific Instruments* **40** (1969), no. 11.

577 [34] D. J. Plazek, M. N. Vrancken and J. W. Berge, "A Torsion Pendulum for Dynamic and Creep Measurements of Soft
578 Viscoelastic Materials", *Transactions of the Society of Rheology* **2** (1958), no. 1.

579 [35] A. Schwanek and R. Nash, "An Improved Torsion Pendulum for Measuring Internal Damping", *Review of Sci-
580 entific Instruments* **40** (1969), no. 11.

581 [36] L. Yu, D. Liu, K. Peng and Y. He, "An improved torsion pendulum based on image processing for single fibers",
582 *Measurement Science and Technology* **27** (2016), no. 7.

583 [37] R. Warren, C. Weaver and S. Sternstein, "Dynamic and transient characterization of silicon carbide fibers at
584 elevated temperatures", in *Proc. ICCM*, 1997, pp. 633–642.

585 [38] D. Perrin, M. Alteirac, S. Corn and M. E. Shanahan, "A novel method for the measurement of elastic moduli of
586 fibres", *Composites Part A: Applied Science and Manufacturing* **38** (2007), no. 1.

587 [39] L. Chupin et al., "Thermal and dynamic mechanical characterization of miscanthus stem fragments: Effects of
588 genotypes, positions along the stem and their relation with biochemical and structural characteristics", *Industrial
589 Crops and Products* **156** (2020).

590 [40] R. Prevedel, A. Diz-Muñoz, G. Ruocco and G. Antonacci, "Brillouin microscopy: an emerging tool for mechanobi-
591 ology", *Nature methods* **16** (2019), no. 10.

592 [41] P. D. Dragic, "Brillouin spectroscopy of Nd–Ge co-doped silica fibers", *Journal of non-crystalline solids* **355** (2009),
593 no. 7.

594 [42] M. Nikles, L. Thevenaz and P. Robert, "Brillouin gain spectrum characterization in single-mode optical fibers", *J.
595 Lightwave Technol.* **15** (1997), no. 10.

596 [43] H. Nouira, E. Foltête, L. Hirsinger and S. Balandras, "Investigation of the effects of air on the dynamic behavior of
597 a small cantilever beam", *Journal of Sound and Vibration* **305** (2007), no. 1-2.

598 [44] H. Nouira, L. Heller, E. Foltête and L. Hirsinger, "Influence of air pressure on the micro-beam dynamics", in
599 *International Modal Analysis Conference*, 2006.

600 [45] H. Hosaka, K. Itao and S. Kuroda, "Damping characteristics of beam-shaped micro-oscillators", *Sensors and
601 Actuators A: Physical* **49** (1995), no. 1-2.

602 [46] H. Sumali and T. G. Carne, *Air Damping on Micro-Cantilever Beams.*, tech. rep., Sandia National Lab.(SNL-NM),
603 Albuquerque, NM (United States), 2007.

604 [47] P. Li and R. Hu, "On the air damping of flexible microbeam in free space at the free-molecule regime", *Microfluid
605 Nanofluid* **3** (2007), no. 6.

606 [48] K. Kokubun, M. Hirata, H. Murakami, Y. Toda and M. Ono, "A bending and stretching mode crystal oscillator as a
607 friction vacuum gauge", *Vacuum* **34** (1984), no. 8-9.

608 [49] F. Blom, S. Bouwstra, M. Elwenspoek and J. Fluitman, "Dependence of the quality factor of micromachined silicon
609 beam resonators on pressure and geometry", *Journal of Vacuum Science & Technology B: Microelectronics and
610 Nanometer Structures Processing, Measurement, and Phenomena* **10** (1992), no. 1.

611 [50] R. Christian, "The theory of oscillating-vane vacuum gauges", *Vacuum* **16** (1966), no. 4.