
Wang et al. Microsystems & Nanoengineering          (2025) 11:210 Microsystems & Nanoengineering
https://doi.org/10.1038/s41378-025-01059-2 www.nature.com/micronano

ART ICLE Open Ac ce s s

Tunable energy transfer in coupled nonlinear
MEMS resonators under parametric modulation for
enhanced sensor performance
Guijie Wang 1, Shenglin Hou2, Najib Kacem3, Lifang Ran1, Xiaolong Wen 1,2✉ and Ashwin Seshia 2✉

Abstract
Coherent control of coupled microelectromechanical resonators within the framework of classical nonlinear dynamics
is of relevance in fundamental studies and the development of high-performance sensors. Coherent control can be
achieved through the parametric modulation of one of the two coupled resonators. However, microelectromechanical
resonators are commonly operated in the nonlinear regime, and a thorough description of key phenomena involving
parametric modulation of coupled resonators, such as sideband generation and mode splitting, remains limited in this
regime. We use a weakly coupled double-ended tuning fork (DETF) resonator under strong parametric modulation to
demonstrate tunable energy transfer and mode interactions governed by classical analogs of well-established
quantum phenomena. The method uses a red-sideband parametric signal to manipulate the coupling between two
adjacent modes dynamically. This approach is theoretically assessed thanks to a nonlinear reduced-order model that
takes into account the modal interactions and virtual coupling induced by the parametric modulation. Furthermore,
the proof of concept of the proposed tuning mechanism is validated on a DC electric field sensor with enhanced
sensitivity. The nonlinear parametrically driven sensor exhibits two orders of magnitude sensitivity boost while
maintaining a broad measurement range. While our investigation focuses on coupled microresonator systems
modeled within a classical framework, the observed dynamics and the simulation extend to the advancements of
other cognate fields, such as optomechanics and two-level systems.

Introduction
Coupled resonator structures have attracted significant

attention in the field of micro-electromechanical sys-
tems1–3 (MEMS). One of the key approaches to achieving
ultra-high sensitivity or an extended measurement range
in MEMS sensing is by leveraging the principle of vibra-
tion mode localization in weakly coupled resonators4–6. In
a symmetric system, any perturbation caused by external
physical influences leads to a substantial shift in mode
shape amplitudes. The amplitude ratio (AR) between two

resonators serves as an indicator of the perturbation
magnitude, with sensitivity in the linear regime being
inversely proportional to the system’s coupling strength6.
This coupling can be realized mechanically, through
connecting beams, or via electrostatic forces7.
In recent years, the introduction of an additional para-

metric pump has been proposed to enhance sensitivity
further and broaden the operational range8–11. By apply-
ing an electrical pump signal at a frequency correspond-
ing to either the sum or difference of two mechanical
modal frequencies—referred to as blue-or-red-sideband
excitation—energy transfer between modes can be dyna-
mically controlled12–17. Dual-frequency excitation enables
tunable mode interactions, which have been previously
explored for their potential in sensing applications18–20.
Prior research has demonstrated the fundamental beha-
vior of parametrically excited electromechanical systems
and their associated performance benefits.
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As device dimensions continue to shrink, nonlinear
effects are evident in MEMS devices4,21–25. For para-
metrically modulated coupled resonators, previous studies
have primarily focused on employing linear resonator
models15,18,19. Those that do consider nonlinearities, on the
other hand, neglect crucial characteristics, such as the
effect of the intra-modal coupling interactions in a para-
metrically modulated system14. As a result, their predic-
tions deviate from what would be expected in such systems
with strong nonlinear interactions. For instance, the phe-
nomenon of mode splitting induced by strong parametric
modulation in weakly coupled nonlinear resonator systems
remains to be thoroughly investigated. Thereafter, moti-
vated by experimental observations where nonlinear effects
due to spring hardening/softening are evident, a framework
that incorporates such behavior, together with intra-modal
and inter-modal coupling is essential. Even though pre-
vious work has separately accounted for other nonlinear
characteristics, such as nonlinear modal interactions26–28

and dynamic-range-and-frequency-stability improve-
ments4,29 in parametrically driven resonators, the inter-
connection of these phenomena within the same model
remains of interest.
In this work, we investigate the nonlinear dynamics of

weakly coupled double-ended tuning fork (DETF) micro-
resonators30 and demonstrate a mechanism to tune
coherent energy transfer under strong red-sideband para-
metric modulation. We explore third-order mechanical
nonlinearities and bistability effects induced by appropriate
parametric pumping and driving voltages. A comprehen-
sive theoretical framework that fully incorporates nonlinear
modal coupling and energy transfer strategies is developed.
Numerical results are provided to complement the
experimental results and assess the capabilities of the
proposed approach. Finally, we configure the MEMS
resonator as a DC electric field sensor to demonstrate the
enhanced performance achievable when operating in the
nonlinear regime while controlling the coherent energy
transfer. It is seen that the DETF electric field sensor based
on the traditional mode localized-sensing mechanism,
enables wide-range electric field strength detection while
compromising the sensitivity30. The red-sideband
approach employed within the same device demonstraes
an option to enhance the sensitivity while retaining the
measurement range12,16.

Results
Coupled MEMS DETF resonators in the nonlinear regime
This experimental investigation utilizes a coupled

MEMS resonator system comprising DETFs (Fig. 1a; see
also Supplementary Section S2 for details of the testing rig
and electrical interfaces). The interaction between two of
the in-plane oscillation modes (denoted as Mode 1 and
Mode 2) is studied (Fig. 1b). The system is composed of

two mechanically coupled DETFs, which are individually
supported by the T-shape anchoring (Fig. 1c). The
dimension of each beam in a given DETF system is
300 μm lengthð Þ ´ 3μm widthð Þ ´ 25 μmðthicknessÞ. The
surrounding electrodes in the optical microscopic dia-
gram are used for input excitation, output sensing, tuning,
and input perturbation (see Supplementary Fig. S2.1.2).
The resonator body is biased with a DC voltage of 25 V for
capacitive sensing. A harmonic excitation signal VAC at
ωd � ω1 is applied to resonator 1 (Res. 1). In addition to
the AC drive, a parametric pump signal at ωp is applied to
the electrode for Res. 2 for coherent control. The effect of
the perturbation in the sensing mechanism and the
detailed post-amplification circuitry are discussed in
Supplementary Information Sections S1.3 and S2.1. The
modes we used in this study are the combined in-phase
and out-of-phase modes, respectively (see Supplementary
Fig. S1,.2.1). Modes 1 and 2 are located at ω1 ¼
104:338 kHz and ω2 ¼ 105:590 kHz, where Mode 1 is
directly excited and Mode 2 is triggered through the
interaction from the parametric modulation. Owing to the
geometry of the DETF design, the two modes experience
strong Duffing hardening effects when directly excited.
The development of the frequency response spectra of

the two modes is presented in Fig. 1b. The curves are
measured without the parametric excitation signals
applied. The figures only record the amplitudes of reso-
nator 1 (through CH1 in Fig. 1a) subjected to different
excitation intensities.

Dynamic coupling between the mechanical modes and the
Stokes and anti-Stokes sidebands
The experiments are conducted on the weakly-coupled

mechanical resonator system (see Supplementary Figs.
S2.1.1, S2.1.2, and Method section for full testing rig
description). The MEMS chip is placed in a customized
vacuum chamber to achieve low-damping conditions (with
a quality factor of 31300 at 1 Pa under linear operation).
The signals are amplified by a cascade two-stage amplifier
using ADA4817-1 with an overall gain of 160 MV/A (See
Supplementary Section S2 for detailed circuit parameters).
The system is characterized by linear responses with
varying pump frequency within Δω± 40Hz and strength
from 0 to 1 V (Fig. 2a–f), where Δω ¼ ω2 � ω1. The two
input harmonics interact with each other to introduce two
additional frequency components at ωd ±ωp. For the pro-
posed excitation scheme, one of the sidebands is located
near the untriggeredMode 2 asω1 þ ωp � ω2, namely anti-
Stokes sideband, as the sideband located on the right-hand-
side of the fundamental frequency ω1. Correspondingly,
symmetrical sidebands are also located at ω1 � ωp, which is
the Stokes sideband of Mode 1. There are four first-order
sidebands, each corresponds to the Stokes and anti-Stokes
sideband for Mode 1 and 2 (see Supplementary Section
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S3,.2.4 for theoretical derivations). When the pumping
frequency approaches the difference between the two
modal frequencies, the anti-Stokes sideband triggers the
resonance of Mode 2. During the process, a greater pro-
portion of energy is transferred to the indirectly excited
Mode 2. Simultaneously, due to the presence of a resonant
peak at ω2, a new pair of frequencies at ω2 ±ωp also par-
ticipates in dynamic behaviors. The Stokes sideband of
Mode 2 at ω2 � ωp is located at the modal frequency of
Mode 1. Despite the bidirectional development of the
sidebands, only the anti-Stokes sideband ofMode 1 induces
oscillation at the frequency of Mode 2, whereas the Stokes
sideband of Mode 2 introduces a term at the Mode 1 fre-
quency. The results are most significant when the pump
frequency is close to Δω. In this circumstance, the devel-
oped sidebands exhibit the highest amplitudes owing to
resonance with the mechanical modes.
The dynamic energy transfer scheme leads to two

unique phenomena, viz. mode splitting and sideband

generation, which are the signatures of parametric cou-
pling. The mode-splitting phenomenon is caused by the
strong virtual coupling between Mode 1 and the Stokes
sideband of Mode 2. The process is similar to the
mechanically coupled systems, except for the dynamic
coupling introduced by the parametric modulation signal.
The intensity of the virtual coupling governs the extent of
mode splitting. For a stronger pump intensity, the mag-
nitude of the sidebands is inherently larger, leading to a
stronger energy transfer between the modes and hence a
more significant virtual coupling. The phenomenon is
further validated in the later experiment section, where
the sideband amplitude is proportional to the pump
intensity. As a result, the coupled model amplitudes
reflect on different pump strengths (Mode 1 exhibits
20.5 mV peak for 0.1 V pump, 14.7 mV coupled peaks for
0.5 V pump and 13.1 mV coupled peaks for 0.9 V pump
voltages). In the theoretical modeling section, it is also
shown that the amplitudes of the sidebands are
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Fig. 1 The schematic overview of the phonon-cavity system using the MEMS resonator-based testing platform. a The schematic view of the
weakly coupled tuning fork resonators and the simplified measurement circuit; the AC drive signal at ω1 and Pump signal at ωp are generated using
the Lock-in Amplifier (LIA); the amplitude of resonator 1 is measured at ω1, and the amplitude of resonator 2 is measured at ω1 þ ωp using a Keysight
signal analyzer. b The schematic diagram of the mechanism for the parametric pump applied in the nonlinear regime of the coupled resonator
system. Each frequency stage and the corresponding mode shapes, along with the energy transfer routes are presented in the figure. The curved-
and-split shape of Mode 1 corresponds to the mode-splitting of the mechanical mode at this frequency, measured at Res. 1. The indirectly triggered
Mode 2 (green) is also measured on Res. 1. The nonlinear backbone curve under the forward frequency sweep of each mode is illustrated on the
right-hand side without the parametric modulation. c A false-color optical image of the MEMS structure for investigation. The layer thickness is 25 μm
and the chip is fabricated using a silicon-on-insulator MEMS process
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proportional to the intra-or-inter model coupling coeffi-
cients (see Supplementary Section S3.2.4). The coeffi-
cients are only proportional to the pump signal amplitude
for a fixed structure with a given driving amplitude.
The experimental results in Fig. 2 match the above-

mentioned explanations. The Stokes sideband of Mode 2
is always located at ω2 � ωp (Fig. 2a, b). However, it is only
visible when ωp � Δω, owing to the resonance amplifi-
cation from the mechanical modes. Meanwhile, when the
Stokes sideband of Mode 2 approaches ω1, the intrinsic
mechanical mode splits into two eigenmodes (see
response curve II in Fig. 2a). The energy is distributed to
each split mode, which is reflected in their reduced
amplitudes compared to the uncoupled Mode 1 in curves
I and III.
The coupling strength is also associated with the pump

signal intensity (see Fig. 2d, e). The parametric excitation
frequency ωp ¼ Δω is fixed at the difference between
modal frequencies and hence the split modes are sym-
metrical. As the pump voltage increases, the frequency
difference between the hybridized eigenmodes (generated
by the coupling between Mode 1 and the Stokes sideband

of Mode 2) increases accordingly, demonstrating a
stronger virtual coupling. This indicates a stronger virtual
coupling between the Stokes sideband and the mechanical
Mode 1 explained before.

Dynamic behavior in the nonlinear regime
The system is driven by an increased AC driving vol-

tage, leading to a strong nonlinear response. The fre-
quency response curves of the spring-hardened system
show a clear distinction between the forward and reverse
sweep (see Fig. 3b, h, where each pair of graphs shares the
same color legend). Since the nonlinear dynamics is
governed by a hardening behavior, the forward sweep
shows a greater amplitude and bandwidth compared to
the reverse sweep results (see Fig. 3b, h). The half-
amplitude bandwidth of Mode 1 for forward sweep,
8.81 Hz, is 35% larger than that for the reverse sweep at
6.55 Hz (see slices I and VII in Fig. 3a, g). Overall, the
amplitude of the nonlinear responses is about three times
higher than that of the linear operations. This matches the
driving amplitude, where the AC drive intensities for the
linear and nonlinear tests are 1 mV and 3mV respectively.
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Fig. 2 The experimental results and the numerical simulations of the weakly-coupled resonator system under parametric modulation in
the linear regime. a The three frequency response spectra from the amplitude of Res. 1 around the Mode 1 frequencies under different pump
frequencies. The pump frequencies are selected so that the Stokes sideband of Mode 2 are located on the left, around, and on the right of the
mechanical Mode 1. b The 2D rendered heatmap from multiple driving frequency sweeps with different frequencies of pumping signals. The discrete
samples are rendered automatically by OriginLab. The locations of the three slices in (a) are labeled in the heatmap. c The corresponding heatmap
obtained from the numerical simulation. The color scales and ranges of sweeps are identical to the experimental results. d–f A similar set of figures
where the y-axes are the voltage of the pump signals. The color scales are identical to the previous heatmaps while orange is used for clarity
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Fig. 3 The experimental results and the numerical simulations of the weakly-coupled resonator system under parametric modulation in
the nonlinear regime. a The three forward frequency response spectra from the amplitude of Res. 1 around the Mode 1 frequencies under different
pump frequencies. The pump frequencies are selected so that the Stokes sideband of Mode 2 is located on the left, around, and on the right of the
mechanical Mode 1. b The 2D rendered heatmap from multiple forward driving frequency sweeps with different frequencies of pumping signals. The
discrete samples are rendered automatically by OriginLab. The locations of the three slices in (a) are labeled in the heatmap. c The corresponding
heatmap obtained from the numerical simulation. The color scales and ranges of sweeps are identical to the experimental results. d–f A similar set of
figures where the y-axes are the voltage of the pump signals. The color scales are identical to the previous heatmaps while orange is used for clarity.
g–l A similar set of experimental and simulated figures where the amplitudes are obtained via reverse frequency sweeps
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Despite higher amplitude and wider bandwidth, the 2D
heatmaps with varying pump frequencies show a similar
shape compared to the previous linear tests. In particular,
the amplitude of the nonlinear peaks is proportional to
the pump frequency, whereas the frequency of the bifur-
cation point of Mode 1 is shifted by 9 Hz to the right with
an AC drive of 3 mV (see Fig. 1b). The Duffing non-
linearity induces sharp amplitude drops at the high-
frequency bifurcation points. The split modes also exhibit
nonlinearity but with lower amplitudes (see slices in
Fig. 3a, g). Interestingly, owing to the frequency difference
between the bifurcation points of nonlinear spectra, the
split modes are symmetrical in nonlinear sweeps but
noticeably asymmetrical in linear operation for the same
pump frequency ωp ¼ 1258Hz (Fig. 2a II compared to
Fig. 3a II). For the linear sweeps, the optimal pump fre-
quency ωp;linear ¼ Δω ¼ 1252Hz which leads to symme-
trical mode-splitting. The corresponding optimal pump
frequency value is 1258 Hz in the nonlinear scenario.

In particular, when the pump frequency ωp <Δω or
ωp >Δω, the mechanical peak remains nonlinear,
whereas the Stokes sideband response appears to be
linear and with a smaller amplitude; When ωp � Δω,
both peaks exhibit nonlinear effects. The transition of
the sideband toward nonlinearity is shown along the
diagonal asymptotes in the heatmap (Fig. 3b, h). As the
frequency approaches Δω, nonlinearity in the Stokes
sideband starts to develop, and the falling edge emerges
until the strongest mode-splitting occurs. The process is
then reversed when the pump frequency leaves the
bandwidth of the mechanical Mode 1, similar to the
linear responses.
The variation under different pump signals is also

investigated using the same range of pump intensities as
the linear experiments (Fig. 3d, e, j, k). The frequency
differences of the split modes resemble those in the linear
scenario under the same pump strength. This justifies the
extent of mode-splitting, and hence, the virtual modal
coupling is dominated by the pump signal characteristics
instead of the intrinsic properties of the resonators for
both linear and nonlinear operation. Interestingly, as the
virtual coupling strength increases from zero, the extent
of nonlinearity decreases until the split eigenmodes no
longer overlap. Quantitatively, the eigenmodes split when
the pump voltage exceeds 0.4 V, for both linear and
nonlinear tests. The resonant amplitude of the forward-
sweep frequency responses around ω1 decreases as the
coupling strength increases (Mode 1 exhibits 128.8 mV
peak for 0.1 V pump, 86.0 mV coupled peaks for 0.5 V

pump, and 71.9 mV coupled peaks for 0.9 V pump vol-
tages). The Duffing nonlinearity is more pronounced
when the modal amplitude is large. Therefore, since the
virtual coupling splits the energy of the mechanical mode
into two hybridized eigenmodes due to mode interactions,
the Duffing nonlinearity becomes no longer observable in
each split frequency sweep peak. Without parametric
modulation, the Mode 1 amplitudes from forward and
reverse sweeps are 120.7 mV and 107.2 mV, respectively.
With strong virtual coupling, the reverse-sweep response
does not show a significant difference in amplitudes
compared to the forward sweeps (the average coupled
peak amplitude from the reverse sweep is 71.2 mV, similar
to 71.9 mV in the forward responses).

Modeling
The 2-degree-of-freedom (2-DOF) resonant system

could be described by the following equation (see Sup-
plementary Information Section S3.2.1):

Where x1;2 are the modal displacements at resonance, ω1;2

are the corresponding natural frequencies, γ is the energy
dissipation rate and μ is the hardening nonlinear
coefficient. It is assumed that only Mode 1 exhibits
nonlinearity since the resonance at Mode 2 is triggered by
the frequency interactions at a lower amplitude compared
to the directly excited resonance. The harmonic driving
force F cos ωdtð Þ is only applied to Mode 1, where F is the
dimensionless driving amplitude and ωd is the driving
frequency. In addition, the intra-modal coupling coeffi-
cients Γ1;2 and the homogeneous inter-modal coupling
coefficient Λ are the dimensionless parameters generated
through the decoupling process. The two parameters each
correspond to the virtual coupling between the Stokes and
anti-Stokes sidebands and the mechanical mode. Both
parameters are proven to be proportional to the pump
strength (see Supplementary Section S3.2.3 for detailed
calculations using the multiple scale method).
The numerical results of Eq. (1) could be obtained

through the multiple-scale approximation method31 (see
Supplementary Information Section S3.2 for the full
derivation). The amplitude responses are therefore gen-
erated by solving the equations of motion at different
driving and pump parameter settings. The multiple-scale
analysis is conducted up to the first-order slow-changing
time variable O ε1ð Þ, whereas the amplitudes and phases of
each mode are assumed to change at that time scale. By
extracting the secular terms that oscillate with the fre-
quency of ω1, we obtain the following coupled differential

€x1 þ γ _x1 þ ½ω2
1 þ Γ1 cosðωptÞ�x1 þ Λ cosðωptÞx2 þ μx31 ¼ F cosðωdtÞ; €x2 þ γ _x2 þ ω2

2 þ Γ2 cos ωpt
� �� �

x2 þ Λ cos ωpt
� �

x1 ¼ 0 ð1Þ
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complex equations:

�jω1a01 þ ω1a1ϕ
0
1 � jγω1a1

�ðΓ1a1 þ Λa2ej ω2�ω1ð ÞT0þϕ2�ϕ1ð ÞÞejωpT0

� 3
8 μa

3
1 þ Fej ωdT0�ω1T0�ϕ1ð Þ ¼ 0

�jω2a02 þ ω2a2ϕ
0
2 � jγω2a2

�ðΓ2a2 þ Λa1ej ω1�ω2ð ÞT0þϕ1�ϕ2ð ÞÞejωpT0 ¼ 0

8>>>>>><
>>>>>>:

ð2Þ

Where T0 ¼ t is the normal time scale and T 1 ¼ εT0 is
the slowly changing time since the dimensionless
perturbation ε is small. ai;ϕi; i ¼ 1; 2 are the slowly
varying amplitudes and phases of each mode relative to
the driving signal at the time scale T1 and a0i;ϕ

0
i are the

derivatives with respect to T1. The resulting equations
for the secular terms could not be simplified using the
previously reported method by neglecting the intra-
model coupling terms Γi:The response of each mode is
subjected to two harmonic excitations with distinctive
frequencies caused by the interaction of the drive and
pump signals. The simplification is valid for low-intensity
pump signals, where the phenomenon of mode-splitting
could be negligible. However, the intra-modal coupling
coefficient contributes significantly to the dynamic
behavior in our weakly coupled system. We therefore
introduce a novel detuning method by neglecting the
influence of the pump frequency on the amplitude of
fundamental modes since ωp � ω1. However, the rate of
change of the detuned parameters is retained as the
frequency of parametric pump governs the locations of
the sidebands. Hence the second detuned phase θ2 ¼
ðσd þ σpÞT1 þ ϕ2, where σd and σp are the detuning
variables for the driving and pump signals near ω1 and
Δω respectively, and ϕ2 is the phase of Mode 2 relative to
the harmonic excitation. The detuned phase θ2 for the
second mode considers both the detuned variable for the
driving frequency and the pump frequency despite ωp �
ωd . This approach ensures that the influence of the
change in pump frequency can be investigated despite its
small magnitude. The steady-state amplitude response of
each mode a1;2 could be obtained by solving the
Supplementary Eq. (S3.2.30):

ω1a1σd � Γ1a1 � Λa2 cos θ1 � θ2ð Þ � μ 3
8 a

3
1 þ F cosðθ1Þ ¼ 0

�γω1a1 � Λa2 sin θ1 � θ2ð Þ þ F sin θ1ð Þ ¼ 0

ω2a2 σd þ σp
� �� Γ2a2 � Λa1 cos θ2 � θ1ð Þ ¼ 0

�γω2a2 � Λa1 sin θ2 � θ1ð Þ ¼ 0

8>>><
>>>:

where the detailed generation and explanations of the
detuning parameters are introduced in the Supplementary
Information. The parameters for numerical simulation are
fitted to the experimental data using the measured
frequencies and amplitudes (the parameters are listed in
Supplementary Table S3.1).

The experimentally measured heatmaps and the simu-
lation results are plotted in pairs for theory validation (see
Fig. 2 for linear operation, Fig. 3 for nonlinear operation).
The simulated results exhibit all the discussed phenom-
ena. The general shape of each pair of plots is also similar,
except for the slight frequency shift introduced by the
temperature change during the experiment. In particular,
the sudden changes at the bifurcation points and the
nonlinear mode-splitting phenomenon are presented as
ωp approaches Δω, and the extent of mode splitting is also
proportional to the pump signal intensity Vp as expected.
The evolution of this unique shape could be explained by
manipulating the simulation parameters and their corre-
sponding responses. During the frequency sweep, the
resonance first rises along the upper branch of the spring-
hardened Duffing oscillation response before falling to
another stable branch with a lower amplitude. Meanwhile,
when ωp � Δω, the trough from between the split modes
may overlap with the drop from nonlinear oscillation,
leading to an earlier sharp edge of the lower-frequency
hybridized eigenmode. The Stokes sideband, through
simulation, acts as a small linear peak located at a fre-
quency of ω2 � ωp. As the Stokes sideband approaches the
mechanical nonlinear peak, energy is transferred to the
sideband from Mode 1 (Fig. 1b). The magnitude of the
sideband is therefore increased. In addition, the ampli-
tudes of the sidebands are mathematically proven to be
proportional to the modal coupling coefficients32, and
hence the parametric pump intensity Vp. The reverse
frequency response also exhibits a similar pattern, except
for the different stable branches and bifurcation-point
responses as explored in the experiment section.
The sidebands play essential roles in such a para-

metrically modulated weakly-coupled resonator system.
Previous work has demonstrated the potential of sensors
based on the phenomenon of mode-localization in high-
sensitivity detection33. The sensitivity of this mechanism
is inversely proportional to the coupling stiffness (see
Supplementary Section S1.3). In our system with para-
metric excitation, the dynamic coupling between the
mechanical mode and the sidebands is suitable for this
application. When the ωp � Δω, the anti-Stokes sideband
with a frequency of ω1 þ ωp appears near Mode 2 (the
coupling process is presented in green in Fig. 4a, b). In
this process, the virtual coupling strength is controllable
by the magnitude of the pump signal, hence achieving a
manipulable AR sensitivity as suggested before. According
to the coupling mechanism, the amplitude ratio (AR)
between Mode 1 of Res. 1 and the anti-Stokes sideband
measured at Res. 2 could therefore reflect the amount of
stiffness perturbation exerted onto Res. 1. Since the
resonators are coupled together, each mode shape
involves oscillation of both DETF beams, and the mea-
surement electrodes are selected as in Fig. 1a. The
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perturbation is intrinsically induced by the target physical
quantity through structural design34–36 (electric field,
acceleration through a proof mass, thermal stress, etc.).
The sensitivity enhancement due to nonlinearity for a

parametrically driven sensor is more significant. In both
the linear and nonlinear regime, the energy from the
linear Mode 1 is transferred to the anti-Stokes sideband
around ω2 (Fig. 4). However, the amount of energy
transferred, hence the amplitude of the sideband and
induced resonance of Mode 2, are proportional to the
pump intensity Vp and the inter-and-intra-modal cou-
pling coefficients. Therefore, for a known mechanical
structure and fixed pump strength, the AR is only

dominated by Mode 1 amplitude. Despite slight amplitude
variation introduced by nonlinearity, the amplitudes of
Mode 1 for both resonators are proportional to the AC
drive signal amplitude, and hence the AR sensitivity. On
the contrary, in the physically coupled systems, an
increased driving intensity leads to the amplitude ampli-
fication of both resonators, which indicates a minimal
enhancement of the AR sensitivity. An ultra-low
mechanical or electrostatic coupling could resolve it, but
a minimum strength limits the sensitivity enhancement,
below which the energy transfer between resonators is
fully dissipated by material damping. Besides, a weak
physical coupling could result in modal overlap,
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Fig. 4 Performance optimization of mode localization sensing in a nonlinear coupled resonant system utilizing parametric pump. a, b The
expected frequency spectra of the system under fixed frequency driving for linear operation and nonlinear operations. c The operating point of a
mechanically coupled system can be adjusted by tuning the parametric pump frequency ωp . The unperturbed AR varies linearly to the pumping
frequency. The AR is the amplitude ratio of the two resonators' mechanical Mode 1. d The amplitude ratio (AR) sensitivity is compared under different
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complicating the measurements in such a mode-localized
design37.

Mode-localized electric field sensor based on nonlinear
oscillation and parametric excitation
The design and driving mechanism are tested through

the testing rigs described in Supplementary Figs. S2.1.1,
S2,.1.2. The amplitudes of the mechanical Mode 1 and the
anti-Stokes sideband are read simultaneously using the
output spectrum of the Keysight Signal Analyzer for
multi-frequency readout rather than the frequency-sweep
spectra. The enhancement of the sensing performance is
tested using an external electric field and a metal plate
acting as a charge collector. Resonator 1 is driven with the
fundamental frequency ωd ¼ ω1 and the pump signal
ωp � Δω simultaneously. The electrostatic force exerts a
longitudinal stress on the DETF (see Supplementary
Information Section S2 for detailed testing methods). The
MEMS resonator is placed in a 1 Pa environment to
eliminate air acoustic damping. The unperturbed AR of
the two resonator amplitudes at Mode 1 could be linearly
adjusted by the pump frequency (Fig. 4c). The pump
signal effectively exerts an external perturbation to Res. 2,
leading to slight asymmetry and mode localization in the
system. Using this method, we could adjust the operation
point of the mode-localized sensor under unperturbed
situations.
The sensor performance readings are obtained from

the spectra of the Keysight Signal Analyzer. Due to the
fixed-frequency excitation, the split modes could not be
observed in the frequency domain (See spectra in
Fig. 1a). This is attributed to the fact that the spectra are
obtained from the Fourier transform of the time-domain
oscillation instead of the frequency sweep, so only the
driving frequencies and the generated sidebands are
recorded. The pump frequency in the remainder of this
experiment is fixed to ωp ¼ 1258Hz for the best per-
formance. The AR sensitivity curves in the nonlinear
regime, subjected to different AC driving voltages, are
plotted in Fig. 4d, where the pump voltage Vp ¼ 500mV
. The electric field is used as the source of perturbation
up to 80 kV/m, beyond which the sideband is submerged
in the noise floor. The perturbation changes the
mechanical stiffness of Res. 1, leading to a change in the
inter- and intra-modal coupling and, further, the
amplitude of the sideband. Simultaneously, the energy is
localized to the mechanical Mode 1, leading to the
sensitivity enhancement under different AC driving
strengths (3.4/(kV/m) for 3 mV drive, 6.5/(kV/m) for
4 mV drive, 13.4/(kV/m) for 5 mV drive). The influence
of pump intensity on sensitivity is also investigated with
a fixed AC drive VAC ¼ 3mV. As expected, the pump
strength influences the amplitude of the sideband, and
hence inversely influences the AR. The sensitivity is

therefore inversely proportional to the pumping voltage
(3.4/(kV/m) for 500 mV pump, 2.4/(kV/m) for 750 mV
pump, 2.1/(kV/m) for 1000 mV pump) as the resonant
behavior of Mode 1 is unchanged by the pump. How-
ever, a small sideband leads to a low signal-to-noise
ratio, hence the selection of the pump strength should
consider the trade-off between the noise performance
and the sensitivity.
The performance advancement of the mode-localized

sensor with nonlinearity and parametric modulation is
now compared in Fig. 4f–h. For all sets of experiments,
the linear driving voltage is 1 mV and the nonlinear
driving voltage is 3 mV. The pump strength is 500 mV.
The AR sensitivity curves are plotted at the log scale for
their distinctive amplitudes (Fig. 4f). The AR sensitivities
SAR are measured as the slope of the linear-fitted curves in
the figure. The AR sensitivity of the linear operation is
increased by 28 times due to the addition of parametric
modulation, from 0.014 to 0.39/(kV/m). Similarly, para-
metric excitation boosts the nonlinear sensitivity by 200
times, from 0.017 to 3.4/(kV/m). The parametric pump
method successfully increases the sensitivity while only
compromising the measurement range by a factor of 2.5
(See ref. 30 for performances of the previously reported
sensor using the same structure). Meanwhile, nonlinearity
enhances the sensitivity by 1.2 times for the system
without parametric modulation. The value rises to 8.7
with parametric excitation. The differences match the
theoretical model and the experimental results
mentioned above.
Other aspects of the electric field sensors are also

investigated. The Allan deviation spectra reveal the noise
performances and the longer stability of the sensor
(Fig. 4g). At a short time cluster, both nonlinearly miti-
gated solutions exhibit a low noise level compared to the
linear operations. For the longer integration times, the
system with both nonlinearity and parametric pump
exhibits the best stability. Compared to the nonlinear
resonators without the pump, the instability decreases
from 0.14 to 0.08 V/m because of the large operating AR.
However, this improvement is not reflected in the linear
sets for intermediate integration times at 10 s (when an
increase in the Allan deviation from 0.15 to 0.25 V/m).
This is attributed to the noise induced by the pump sig-
nals, whereas in the linear operation with low resonant
amplitude, the magnitudes of sidebands are easily influ-
enced by any additional noise. Besides, the parametrically
modulated system shows better noise performances
compared to the traditional mode-localized sensors (see
Fig. 4h). The sensor achieves the lowest average noise
floor of 0.04 (V/m)/

ffiffiffiffiffiffi
Hz

p
, with the addition of both non-

linear operation and parametric modulation. The value is
improved by 557.5 times compared to the linear sensors
with mechanical mode-localization.
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Discussion
The experimental results extend the understanding of

the parametrically excited coupled-resonator systems
with nonlinearity. Interesting phenomena such as side-
band generation and mode splitting are explored in
nonlinear operation regimes. The controllable virtual
coupling between the mechanical Mode 1 and a virtual
eigenmode generated through the interaction between the
resonator structure and the parametric pumping signal
illustrates distinctive characteristics compared to physics-
governed coupling. The theoretical derivations and the
corresponding simulation program enable better visuali-
zation and understanding of further optimization of the
system and future study regarding such systems in their
nonlinear regimes.
The model also provides insights into other related

fields. The energy transfer process resembles the phonon
exchange routes in a parametrically manipulated phonon-
cavity system. The observed nonlinear mode interactions
and coherent energy transfer mechanisms closely resem-
ble phonon dynamics in solid-state quantum systems,
where controlled phonon exchange is pivotal for quantum
information processing38, phononic logic39, and high-
precision sensing14. In quantum phononics, phonons
serve as carriers of quantum information and can be
manipulated using parametric excitation similar to the
one demonstrated in the study. The controlled mode
splitting and nonlinear interactions can be analogized to
phonon-mediated quantum state transfer in optomecha-
nical and nanomechanical systems. Advances in cavity
optomechanics have shown that phonon-photon interac-
tions enable coherent coupling between mechanical
models and quantum states of light, enabling translation
between optical and microwave frequencies.
The paper demonstrates the potential of the system for

high-performance sensing. The compromise between the
broad measurement range and high sensitivity often limits
traditional sensors. In previous work, we have demon-
strated the potential of this DETF-based weakly coupled
resonator to provide a wide electric field sensing range of
up to 200 kV/m30. The quantity is crucial in fields like
atmospheric sensing or high-voltage DC power trans-
mission system monitoring. However, with the parametric
pump techniques proposed in this work, we modified the
exact same structure into a sensor with a 200-times boost
in sensitivity while maintaining a measurement range of
80 kV/m. The same sensing mechanism could be used in
accelerometers, gyroscopes, pressure, and mass sensors
with remarkable sensitivity and operating range
simultaneously.

Methods
The die embedding the MEMS resonator is fixed in a

ceramic leadless chip carrier, which is further soldered

to a customized PCB for post-amplification and signal
input. The PCB is placed in a customized vacuum pump
under an ambient room temperature environment. The
full testing rig and the detailed testing methods,
including the devices, the generation of the electric field,
etc. are discussed in detail in Supplementary Informa-
tion Section S2. The simulation codes are based on
Python 3.12 with Numpy and Matplotlib as basic
establishment and visualization packages. SciPy.optimize
is used for numerical solutions to the nonlinear simul-
taneous equations.
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