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Combining viscoelastic
damping and nonlinearities to
widen the operational speed
range of flutter energy
harvesting
We propose using viscoelastic damping with combined hardening and free-play structural
nonlinearities to enhance energy harvesting performance and control vibration in a pitch
and plunge airfoil with piezoelectric transduction. Numerical simulations are performed
by directly integrating the equation of motion in the time domain under unsteady aerody-
namic load. In addition, a fractional derivative model efficiently accounts for the behavior
of the viscoelastic material. This study analyzes the effect of each structural nonlinearity
and identifies a good condition for harvesting in terms of cut-in speed and operational
speed range. For this condition, the viscoelastic damper in pitch can further reduce the
cut-in speed by 13 %, slightly increase the harvested power, and help reduce the dynamical
complexity of the system response. In turn, the viscoelastic damper in the plunge degree
of freedom can control the vibration amplitude at post-critical flow speeds, increasing the
operational speed range up to 28 % and the power up to two orders of magnitude in some
cases. Viscoelastic damping maintains a favorable harvesting condition for temperature
variations from 10°C to 35°C.

Keywords: Flutter energy harvesting, Passive control, Viscoelasticity, Nonlinear aeroe-
lasticity

1 Introduction

With the rise of the Internet of Things and Industry 4.0, wireless sensors and small-scale electronic devices are becoming increasingly

widespread [1]. However, because they traditionally rely on batteries, their deployment may be impractical in some cases, especially

in remote or hard-to-access areas [2]. In addition, battery replacement is a costly and time-consuming task [1] that creates chemical

waste requiring special processing. Therefore, researchers and engineers have proposed new power generation strategies. Through energy

harvesting, it is possible to convert different readily available energy sources such as wind, solar, thermal, light, and kinetic into electrical

power [3]. The latter is an encouraging possibility, as it has a high power density and is widely available in the form of mechanical

vibrations [4]. Flow-subjected structures are prone to oscillate in the form of aeroelastic-induced vibration. The phenomena include

vibrations induced by vortex and wake, galloping, and flutter, all of which can be used for harvesting [5]. Flutter-driven energy harvesters

can achieve large structural deformations resulting in high output voltage [6]. Furthermore, they are suitable for many environments and

have a low cut-in speed [2], meaning the minimum airspeed necessary to achieve energy harvesting.

Flutter is an aeroelastic phenomenon in which the interaction with the flow changes the stiffness and damping of the system at each

flow speed, causing the structure to extract energy from the flow as one of the vibration modes becomes negatively damped [7]. For a

linear aeroelastic system, the response grows indefinitely upon increasing the airspeed after reaching the neutral stability condition at the
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critical flutter speed, representing a substantial drawback of linear harvesters. This limitation can be overcome by including nonlinearities

since they originate persistent power in the form of Limit Cycle Oscillations (LCO) before and after the critical speed [8], increasing

the range of operational flow speeds of the harvester as a result [9]. Therefore, incorporating nonlinearities is essential to assess the full

potential of the energy harvesting system.

The classical pitch and plunge airfoil can limit the complexity of the aeroelastic system in the presence of nonlinearities while providing

a reasonable insight into the dynamic behavior [10,11]. Thus, the pitch and plunge airfoil has been selected by many researchers when

incorporating nonlinearities in flutter energy harvesting. The authors who first proposed flutter to harvest power, Ref. [12,13], made a

further contribution by considering the nonlinear effect of dynamic stall for a beam connected to a flap while performing experimental

tests [14]. The study offers design recommendations based on whether the flow condition was variable or constant. By combining free

play with hardening nonlinearities in pitch degree of freedom (dof), Ref. [15] concluded that the former reduced the cut-in speed while

the latter could contribute to the control of the LCO in the post-flutter, therefore increasing the operational speed range of the harvester.

Ref. [16] examined cubic hardening nonlinearities in pitch and plunge springs of a two-DOF airfoil, finding that the pitch spring has the

most significant influence on the system. The study also showed that while electrical load resistance affects voltage and power output, it

has little impact on pitch and plunge motions or flutter speed. Ref. [17] demonstrated recently that an airfoil with an unconstrained flap

could alternate between the flutter and the vortex energy harvesting mechanisms, depending on the flap damping coefficient.

References [18,19] proposed multi-segmented nonlinearities to control the LCO. Reference [20] used a nonlinear energy sink and

an energy harvester to control the nonlinear response of a plate in the hypersonic regime. Another option to control the LCO may be

the use of viscoelastic materials. These have been successfully proposed for flutter suppression of both plates in the supersonic regime

[21,22] and of for pitch and plunge airfoils in the subsonic regime [23,24]. When applying a hybrid control to a two-dof airfoil, Ref. [24]

found that the passive viscoelastic approach alone was responsible for most of the gain. Sliding mode control was effective in vibration

suppression of a harmonically excited viscoelastic airfoil [25]. A visco-hysteretic vibration absorber was proposed for the suppression

of flutter [26]. In turn, Ref. [27] investigated the influence of random fluctuations on a two-dof airfoil with viscoelastic terms under

steady aerodynamics. They found that random fluctuations can induce stochastic jumps and that the viscoelastic material meaningfully

influences the airfoil behavior. Reference [28] studied a three-dof typical section with hardening nonlinearities in the pitch and flap dofs,

showing that viscoelastic damping can reduce the LCO amplitudes and increase the flutter speed. Ref. [29] demonstrated the same for a

three-dof typical section with free-play and a rotational viscoelastic damper on the control surface.

Viscoelastic damping may be an alternative way of tuning the harvester performance, given that the viscoelastic material allows for

the convenient incorporation of stiffness and damping with a single element. As shown in the literature [15,16,30,31], the relationship

of stiffness and damping with the harvested power in nonlinear aeroelastic systems is non-monotonic, such that incrementing either

damping or stiffness may increase the power output. Hence, stiffness and damping are key factors for harvester performance. Moreover,

as viscoelastic damping is a passive technique, none of the power harvested is spent with control actuation. Therefore, this paper

evaluates the use of viscoelastic dampers combined with hardening and free-play nonlinearities to control the LCO amplitude and

improve the performance of a piezoelectric flutter energy harvesting (FEH) device. To the best of the authors’ knowledge, this approach

is unprecedented in existing research, representing a new contribution to the wind energy harvesting field. In addition, a recurrent

fractional derivative method is applied to this problem for the first time, enabling efficient analysis in the time domain. Reference [32]
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Fig. 1 Two-dof energy harvesting airfoil with viscoelastic dampers and nonlinear springs.

reported a gain superior to 98 % in computation time when using this method. The possibility of working in the time domain allows the

observation of the complex dynamics of the nonlinear FEH device with viscoelastic damping, marking an advancement in the area.

First, section 2 describes the nonlinear piezoaeroelastic system, including the fractional derivative formulation of the viscoelastic

material. Section 3 addresses the influence of the combined nonlinearities and suggests a favorable configuration for harvesting from

the hardening and free-play combined nonlinearities. The viscoelastic damping is applied to this configuration in section 4, on the pitch

and plunge dofs, and section 5 presents the conclusions.

2 Nonlinear piezoaeroelastic model with viscoelastic damping

As previously stated, the well-known two-dof typical section can give a reasonable physical representation of aeroelastic phenomena

while restricting the analysis complexity when dealing with nonlinearities [10,11]. The typical section has pitch 𝜃 and plunge ℎ degrees

of freedom (dof) , interacting with an inviscid and incompressible flow of speed 𝑉 (Fig. 1). ℎ is measured on the elastic axis (EA) and

is positive downward, while 𝜃 is positive nose up. The dashed rectangle highlights the energy harvesting circuit. As can be seen, the

piezoelectric coupling is in the plunge dof, and the electric resistance 𝑅 dissipates the voltage output 𝑣. Thus, as the flow excites the

system, the direct piezoelectric effect converts part of the vibration energy associated with ℎ into electrical power.

The extended Hamilton principle yields the equation of motion [33], leading to Eq. (1), where 𝑚̄ is the total mass of the airfoil and

its support; 𝑚 is the mass of the airfoil alone; 𝑏 is the semi-chord; 𝐼 = 𝑚𝑟2
𝜃

is the moment of inertia around EA with 𝑟𝜃 being the

radius of gyration; 𝑐ℎ,𝜃 and 𝑘𝑛𝑙
ℎ, 𝜃

are respectively the viscous structural damping and nonlinear stiffness terms associated with ℎ and

𝜃. B is a reference point at 𝑏, from which the dimensionless parameter 𝑎 specifies the EA location. Moreover, 𝑥𝜃 is the chord-wise

offset between the reference point at the EA and the center of gravity CG, also dimensionless. Finally, 𝐿 is the lift force, and 𝑀 is the

momentum about the EA, both given per unit length of the span 𝑙. As a result of electromechanical coupling 𝛼, the voltage dof appears

in Eq. (1). Therefore, one more differential equation is necessary to fully describe the system, which is given by Eq. (2), where 𝐶𝑒𝑞 is

the equivalent capacitance of the piezoceramic layer.
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⎛⎜⎜⎝
𝑚̄ 𝑚𝑥𝜃

𝑚𝑥𝜃 𝐼

⎞⎟⎟⎠
⎛⎜⎜⎝
ℎ̈

𝛼̈

⎞⎟⎟⎠ +
⎛⎜⎜⎝
𝑐ℎ 0

0 𝑐𝛼

⎞⎟⎟⎠
⎛⎜⎜⎝
ℎ̇

𝛼̇

⎞⎟⎟⎠
+
⎛⎜⎜⎝
𝑘ℎ

𝑛𝑙 0

0 𝑘𝛼
𝑛𝑙

⎞⎟⎟⎠
⎛⎜⎜⎝
ℎ

𝛼

⎞⎟⎟⎠ −
⎛⎜⎜⎝
𝛼𝑣

0

⎞⎟⎟⎠ = 𝑙
⎛⎜⎜⎝
−𝐿

𝑀

⎞⎟⎟⎠
(1)

𝐶𝑒𝑞 𝑣̇ + 𝑣/𝑅 + 𝛼ℎ̇ = 0 (2)

In the proposed work, hardening-type nonlinearity is combined with free-play in the discontinuous fashion as given by:

𝑘𝑛𝑙𝑥 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑘𝑙𝑥
𝑥

(︂
𝑎𝑥0

(︁
𝑥 − 𝑥𝑓 𝑝

)︁
+ 𝑎𝑥1

(︁
𝑥 − 𝑥𝑓 𝑝

)︁3)︂
𝑥 > 𝑥𝑓 𝑝

0 −𝑥𝑓 𝑝 ≤ 𝑥 ≤ 𝑥𝑓 𝑝

𝑘𝑙𝑥
𝑥

(︂
𝑎𝑥0

(︁
𝑥 + 𝑥𝑓 𝑝

)︁
+ 𝑎𝑥1

(︁
𝑥 + 𝑥𝑓 𝑝

)︁3)︂
𝑥 < −𝑥𝑓 𝑝

(3)

where 𝑥 represents either ℎ or 𝜃 such that 𝑥𝑓 𝑝 denotes the total free-play gap in plunge (ℎ𝑓 𝑝) or pitch (𝜃𝑓 𝑝), respectively. The term 𝑘𝑙𝑥

is the linear stiffness. For plunge, 𝑘𝑙
ℎ
= 𝑚̄𝜔2

ℎ
, and for pitch 𝑘𝑙

𝜃
= 𝐼𝜔2

𝜃
. 𝜔ℎ and 𝜔𝜃 are the uncoupled natural frequencies of plunge and

pitch, respectively. It is worth mentioning that 𝑎ℎ1 and 𝑎𝜃1 are coefficients used to control the hardening intensity. For the linear case,

𝑎ℎ0 = 𝑎𝜃0 = 1 and 𝑎ℎ1 = 𝑎𝜃1 = 0.

The unsteady aerodynamic load is described by thin airfoil theory [34], assuming a bi-dimensional incompressible potential flow.

Using the Duhamel formulation [35] and an approximation for the Wagner function, it is possible to simulate arbitrary motion of the

airfoil [36]. Following this approach, employing the Jones approximation, the lift 𝐿 and moment 𝑀 are represented by:

𝐿 = 𝜋𝑏2𝜌
(︁
ℎ̈ +𝑉𝜃̇ − 𝑏𝑎𝜃

)︁
+2𝜋𝜌𝑉𝑏 (𝑄 + 𝜒1 + 𝜒2)

(4)

𝑀 = 𝜋𝑏2𝜌
(︂
𝑉ℎ̇ + 𝑏𝑎ℎ̈ +𝑉2𝜃 − 𝑏2

(︂
1
8 + 𝑎2

)︂
𝜃

)︂
−𝜋𝜌𝑉𝑏2𝑄 + 𝑏

(︂
𝑎 + 1

2

)︂
2𝜋𝜌𝑉𝑏 (𝑄 + 𝜒1 + 𝜒2)

(5)

where 𝑄 = 𝑉𝜃 + ℎ̇ + 𝑏 (0.5 − 𝑎) 𝜃̇ is the downwash at three quarters of the chord and 𝜒1 and 𝜒2 are augmented aerodynamic states. The

following expression defines these terms:

⎛⎜⎜⎝
𝜒̇1

𝜒̇2

⎞⎟⎟⎠ =
⎛⎜⎜⎝
−0.041

(︂
𝑉
𝑏
𝜒1

)︂
− 0.165𝑄̇

−0.032
(︂
𝑉
𝑏
𝜒2

)︂
− 0.335𝑄̇

⎞⎟⎟⎠ (6)

By writing Eq. (4), Eq. (5) and Eq. (6) in matrix form and combining with Eq. (1) and Eq. (2) it is possible to create the following
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system of equations:

⎛⎜⎜⎜⎜⎜⎜⎝
𝑴̃ 0 0

−𝒃1 0 0

0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠
q̈ +

⎛⎜⎜⎜⎜⎜⎜⎝
𝑪̃ 0 0

−𝒃2 𝑰 0

H 0 𝐶𝑒𝑞

⎞⎟⎟⎟⎟⎟⎟⎠
q̇

+

⎛⎜⎜⎜⎜⎜⎜⎝
𝑲̃ −𝒂4 HT

−𝒃3 −𝒃4 0

0 0 𝑅−1

⎞⎟⎟⎟⎟⎟⎟⎠
q = 0

(7)

where: 𝑴̃ =
⎛⎜⎜⎝
𝑚̄ 𝑚𝑥𝜃

𝑚𝑥𝜃 𝐼

⎞⎟⎟⎠ − 𝒂1 , 𝑪̃ =
⎛⎜⎜⎝
𝑐ℎ 0

0 𝑐𝜃

⎞⎟⎟⎠ − 𝒂2 , 𝑲̃𝒏𝒍
=
⎛⎜⎜⎝
𝑘𝑛𝑙
ℎ

0

0 𝑘𝑛𝑙
𝜃

⎞⎟⎟⎠ − 𝒂3 , H =

(︃
𝛼 0

)︃
and q =

(︃
ℎ 𝜃 𝜒1 𝜒2 𝑣

)︃T
.

Appendix A provides the matrices 𝒂𝒋 and 𝒃𝒋 .

The proposed viscoelastic damping consists of the incorporation of two discrete elements, as illustrated by Fig. 1. The component

in pitch is a cylindrical segment of angular perimeter Θ, height 𝑙𝑥 , and thickness 𝑙𝑧 = 𝑅𝑒 − 𝑅𝑖 , where 𝑅𝑒 and 𝑅𝑖 are respectively the

external e internal radii (Fig. 2). In this setup, the viscoelastic material is between the shaft connected to the airfoil and a fixed surface.

A layer of dimensions 𝑙𝑥 X 𝑙𝑦 X 𝑙𝑧 made of viscoelastic material interacts with the plunge dof only after a given displacement ℎ𝑣
𝑓 𝑝

is

exceeded (Fig. 2). This amount is indeed a free-play nonlinearity combined with the viscoelastic damping, represented in a discontinuous

fashion by the following equation:

𝑘𝑣
ℎ, 𝑓 𝑝

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑘𝑣
ℎ

ℎ
ℎ > ℎ𝑓 𝑝

0 −ℎ𝑓 𝑝 ≤ ℎ ≤ ℎ𝑓 𝑝

𝑘𝑣
ℎ

ℎ
ℎ < −ℎ𝑓 𝑝

(8)

where 𝑘𝑣
ℎ

is the stiffness of the viscoelastic element in plunge.

The two viscoelastic elements work in shear. To model the stress-strain relationship, a fractional derivative method (FDM) is employed

(Eq. (9)) as this type of approach allows for more accurate modeling of viscoelastic damping and of the system memory at the cost

of a generally higher computation time [32]. To address this inconvenience, [32] proposed a recurrence term that eliminates the stress

self-dependency, increasing simulation performance. This aspect is relevant because evaluating the system’s nonlinear response involves

numerically integrating the equation of motion at several discrete flow speeds until each reaches a steady state. In Eq. (9), 𝐺 is the shear

modulus at low frequency, 𝜉 is the fractional order of the time derivative, and 𝛾1 and 𝛾2 are curve fitting coefficients. All these quantities

are temperature-dependent and determined from experimental data. The values used here are in Table 1, which was obtained by [32]

for the 3M-ISD112, a viscoelastic material manufactured by 3M™. More values are available in the aforementioned source. Since the

objective was to characterize the behavior of the viscoelastic damping globally, this study only considered the minimum, maximum, and

intermediate available temperatures.
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Fig. 2 Plunge viscoelastic element (a), pitch viscoelastic element (b) and viscoelastic element in shear (c).

Table 1 FDM parameters for the considered temperatures [32]

𝑇𝑣(°C) 𝐺(Pa) 𝛾1(Pa·s) 𝛾2(s) 𝜉(unit: 1)

10 412,887 147,864 8.217·10−4 0.66714
20 419,582 57,563 3.162·10−4 0.66780
35 429, 484 16,272 1.302·10−4 0.67902

𝜏𝑡 + 𝛾2
𝑑 𝜉 𝜏𝑡

𝑑𝑡 𝜉
= 2𝐺𝜀𝑡 + 𝛾1

𝑑 𝜉 2𝜀𝑡
𝑑𝑡 𝜉

(9)

Following the methodology referred to, the Grünwald-Letnikov approximation Eq. (10) represents the fractional derivative [37] of the

shear constitutive law, Eq. (9).

𝑑 𝜉 𝑓 (𝑡)
𝑑𝑡 𝜉

= Δ𝑡−𝜉
𝑁𝑙∑︂
𝑗=0

𝐴
𝜉

𝑗+1 𝑓 (𝑡 − 𝑗Δ𝑡) (10)

where 𝐴𝑗+1 =
𝑗−𝜉−1

𝑗 𝐴𝑗 , with 𝐴1 = 1, are the Grünwald coefficients, which are straightforward to implement numerically. Next, as

proposed by [32], the stress 𝜏𝑡 at a time 𝑡 is related to a strain history 𝜖𝑡− 𝑗Δ𝑡 by Eq. (11), where 𝑁𝑙 = 𝑁 · Δ𝑡 is the memory size given

several discrete points 𝑁 and a time step Δ𝑡. The stress in Eq. (11) is no longer self-dependent.

𝜏𝑡 =

𝑁𝑙∑︂
𝑗=0

𝛽𝑗+1𝜀𝑡− 𝑗Δ𝑡 (11)

The so-called recurrent term 𝛽𝑗+1 is given by:
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𝛽𝑗+1 = 𝐷3𝐴𝑗+1 +
𝑗∑︂

𝑖=0
𝐷1𝐴𝑖+1𝛽𝑗+1−𝑖 (12)

where, from the recurrence formulation, 𝐷1 = − 𝛾2Δ𝑡
−𝜉

1+𝛾2Δ𝑡−𝜉 and 𝐷3 =
2𝛾1Δ𝑡

−𝜉

1+𝛾2Δ𝑡−𝜉 . Finally, the first term of the recurrence is defined by:

𝛽1 = 𝐷2 =
2𝐺+2𝛾1Δ𝑡

−𝜉

1+𝛾2Δ𝑡−𝜉 .

Once the stress-strain relationship has been established, through computing the deformation energy 𝑈 = 1
2
∫
𝜀𝜏𝑑𝑉̃ for the viscoelastic

elements in pitch and plunge their associated stiffness and dissipative efforts are given respectively by:

⎛⎜⎜⎝
𝑘ℎ

𝑣 0

0 𝑘𝜃
𝑣

⎞⎟⎟⎠ =
⎛⎜⎜⎝
𝑝ℎ𝛽1 0

0 𝑝𝜃 𝛽1

⎞⎟⎟⎠ (13)

⎛⎜⎜⎝
−𝐹ℎ

𝑡−Δ𝑡

−𝐹 𝜃
𝑡−Δ𝑡

⎞⎟⎟⎠ =
⎛⎜⎜⎜⎜⎝
𝑝ℎ

𝑁𝑙∑︁
𝑗=1

𝛽𝑗+1ℎ𝑡− 𝑗Δ𝑡

𝑝𝜃
𝑁𝑙∑︁
𝑗=1

𝛽𝑗+1𝜃𝑡− 𝑗Δ𝑡

⎞⎟⎟⎟⎟⎠
(14)

where: 𝑝ℎ =
𝑙𝑥 𝑙𝑦
𝑙𝑧

and 𝑝𝜃 = Θ
4
(𝑅𝑒

4−𝑅𝑖
4)

𝑙𝑥
depend on the geometry of the viscoelastic dampers.

Incorporating the viscoelastic damping in the equation of motion, Eq. (7), results in:

𝑴̄q̈ + 𝑪̄q̇ + 𝑲̄𝒏𝒍
𝒗 q = Fv (15)

where the matrices 𝑴̄ and 𝑪̄ are, respectively, the complete mass and damping matrices with the augmented aerodynamic lag states and

piezoelectric feature, previously described in Eq. (7):

𝑴̄ =

⎛⎜⎜⎜⎜⎜⎜⎝
𝑴̃ 0 0

−𝒃1 0 0

0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠
(16)

𝑪̄ =

⎛⎜⎜⎜⎜⎜⎜⎝
𝑪̃ 0 0

−𝒃2 𝑰 0

H 0 𝐶𝑒𝑞

⎞⎟⎟⎟⎟⎟⎟⎠
(17)

Similarly, 𝑲̄𝒏𝒍
𝒗 is the complete stiffness matrix, which incorporates the nonlinear and viscoelastic stiffness terms, the lag states, and the
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piezoelectric effect:

𝑲̄𝒏𝒍
𝒗 =

⎛⎜⎜⎜⎜⎜⎜⎝
𝑲̄𝒏𝒍
𝒗 −𝒂4 HT

−𝒃3 −𝒃4 0

0 0 𝑅−1

⎞⎟⎟⎟⎟⎟⎟⎠
(18)

where 𝑲̃
𝒏𝒍
𝒗 =

⎛⎜⎜⎝
𝑘ℎ

𝑛𝑙 0

0 𝑘𝜃
𝑛𝑙

⎞⎟⎟⎠ +
⎛⎜⎜⎝
𝑘𝑣
ℎ, 𝑓 𝑝

0

0 𝑘𝜃
𝑣

⎞⎟⎟⎠ − 𝒂3 represents the new stiffness matrix with the combined effects of the structural

nonlinearities and the viscoelastic stiffness. Lastly, Fv represents the dissipative forces introduced by the viscoelastic dampers: Fv =(︃
−𝐹ℎ

𝑡−Δ𝑡 −𝐹 𝜃
𝑡−Δ𝑡 0 0 0

)︃T
.

The flutter speed of the linear airfoil without viscoelastic damping, termed baseline airfoil, can be obtained from the eigenvalues 𝜆 of

the system state matrix 𝑨. As these are in the form 𝜆 = −𝜁𝜔 ± 𝑖𝜔
√︁

1 − 𝜁2 [7], the system will display unstable behavior if the damping

factor 𝜁 becomes negative. The flutter condition is the neutral stability state in which there is no damping. Hence, the flutter speed is

found by computing the eigenvalues of 𝑨 for a set of flow speeds and identifying the speed that nullifies 𝜁 of a given vibration mode.

The relationship between the eigenvalue and the damping factor is 𝜁 = −𝑅𝑒(𝜆)
(︂
𝑅𝑒(𝜆)2 + 𝐼𝑚(𝜆)2

)︂ (−1/2)
. The matrix 𝑨 is detailed in

Appendix B.

Numerical integration of Eq. (15) is used to obtain the response of the system. Following the Newmark method, the acceleration and

speed vectors at the next instant of time are given, respectively, as:

q̈𝑘
𝑡+Δ𝑡 =

1
𝜈Δ𝑡2

(︂
q𝑘
𝑡+Δ𝑡 − q𝑡

)︂
− 1

𝜈Δ𝑡
q̇𝑡 −

(︃
1
2𝜈

− 1
)︃

q̈𝑡 (19)

and

q̇𝑘
𝑡+Δ𝑡 = q̇𝑡 + Δ𝑡 (1 − 𝛿) q̈𝑡 + 𝛿Δ𝑡q̈𝑘

𝑡+Δ𝑡 (20)

which are substituted in Eq. (15) to define the residue R𝑘−1
𝑡+Δ𝑡 :

R𝑘−1
𝑡+Δ𝑡 =

(︂
𝑲̄𝒏𝒍
𝒗 + 𝜩1

𝑡+Δ𝑡

)︂
q𝑘−1
𝑡+Δ𝑡

− 𝜩1
𝑡+Δ𝑡q𝑡 − 𝜩2

𝑡+Δ𝑡 q̇𝑡 − 𝜩3
𝑡+Δ𝑡 q̈𝑡 − Fv (21)

where:

𝜩1
𝑡+Δ𝑡 =

1
𝜈Δ𝑡2

𝑴̄ + 𝛿

𝜈Δ𝑡
𝑪̄ (22)

𝜩2
𝑡+Δ𝑡 =

1
𝜈Δ𝑡

𝑴̄ +
(︃
𝛿

𝜈
− 1

)︃
𝑪̄ (23)
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Table 2 Parameters of the two dof energy harvesting airfoil [8,39]

Parameter Value Parameter Value

𝑏 0.145 m 𝑐ℎ 1.2113 Ns/m
𝑙 0.8 m 𝑐𝜃 0.0043 Ns
𝑎 −0.1379 𝜔ℎ 14.954 rad/s
𝑥𝜃 0.1897 𝜔𝜃 26.955 rad/s
𝑟𝜃 0.064 m 𝛼 1.55 mN/V
𝜌 1.119 kg/m³ 𝐶𝑒𝑞 120 nF
𝑚̄ 13.5 kg 𝑅 100 kΩ
𝑚 6.5 kg

𝜩3
𝑡+Δ𝑡 =

(︃
1
2𝜈

− 1
)︃
𝑴̄ + Δ𝑡

2

(︃
𝛿

𝜈
− 2

)︃
𝑪̄ (24)

The residue is to be minimized by iterative computation of q𝑘
𝑡+Δ𝑡 through the Newton-Raphson method. Hence, 𝑘 represents a given

iteration. By assuming constant acceleration, the Newmark’s parameters are 𝜈 = 1/4 and 𝛿 = 1/2. These values make the Newmark

method unconditionally stable [38].

3 Nonlinear parametric study of the piezoaeroelastic airfoil

This section evaluates the effect of nonlinear springs with hardening and free-play to determine a favorable condition for energy

harvesting. So far, there has been no viscoelastic damping. The airfoil considered is a NACA 0012 profile, which was studied by [39]

without the harvesting circuit. Its parameters are in Table 2. Since the flap does not move, the airfoil only has the pitch and plunge dofs.

The specifications of the energy harvesting circuit are also in Table 2, based on the usual values found in the literature for similar flutter

energy harvesting systems [8,18].

For the baseline airfoil without the energy harvesting circuit and with linear springs (𝑎ℎ0 = 1, 𝑎ℎ1 = 0, 𝑎𝜃0 = 1, 𝑎𝜃1 = 0), flutter happens

at 𝑉∗ = 14.01 m/s (Fig. 3), agreeing with the experimental measures of [39], who found the flutter speed to be around 14 m/s. The

results will display the flow speed 𝑉 normalized by the critical speed of the linear airfoil, 𝑉∗, where 𝑉̄ = 𝑉/𝑉∗, to simplify the distinction

between the subcritical and supercritical regions.

3.1 Hardening effect on the nonlinear pitch and plunge springs. Initially, there is no free-play (ℎ𝑓 𝑝 = 0, 𝜃𝑓 𝑝 = 0) and only cubic

non-linearity in stiffness. The nonlinear coefficients are varied from the following reference configuration: 𝑎ℎ0 = 1, 𝑎ℎ1 = 1, 𝑎𝜃0 = 1,

𝑎𝜃1 = 10 to evaluate the influence of the nonlinear springs on each degree of freedom. Figure 4(a) and Fig. 4(b) show the reduction in

amplitude of ℎ and 𝜃 with increasing hardening coefficient in pitch (𝑎𝜃1 ). This hardening effect benefits energy harvesting as it may be

employed to control the vibration amplitude in the post-flutter regime, thus allowing safe operation for a wider flow speed range before

oscillations reach a prohibitive amplitude. The reduction in amplitude due to the increase in the nonlinear coefficient imposes a reduction

in the voltage and power produced at a given flow speed, as illustrated by Fig. 4(c) and Fig. 4(d). Thus, there is a compromise between

harvested power and operational speed range for hardening in pitch, whereas the effect of hardening in plunge (𝑎ℎ1 ) is negligible, as

illustrated by Fig. 5(a). Furthermore, because of the electromechanical coupling in the plunge dof, the voltage behavior concerning the

flow speed is similar to that of the plunge dof.
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Fig. 3 Damping factor and natural frequencies versus the flow speed for each vibration mode.

3.2 Free-play effect on the nonlinear pitch and plunge springs. From Fig. 4 and Fig. 5, it is clear that the cubic non-linearity

creates a supercritical Hopf bifurcation, implying there is no energy harvesting before the critical flutter speed. However, free-play

addition in the hardening springs may generate LCOs prematurely, in a subcritical fashion, thus allowing power generation at lower

speeds. Therefore, their introduction in the nonlinear springs is considered. The same reference configuration for the stiffness coefficients

is kept: 𝑎ℎ0 = 1, 𝑎ℎ1 = 1, 𝑎𝜃0 = 1, 𝑎𝜃1 = 10.

Adding free-play to the nonlinear plunge spring alone does not produce any response for the flow speed range considered (Fig. 5(b)).

If there is free-play in the nonlinear pitch spring, one obtains a more interesting result.. For this configuration, an increasing amount of

𝜃𝑓 𝑝 results in a higher amplitude at a given flow speed (Fig. 6(a)). This behavior is desirable for energy harvesting, as the increased

amplitude results in higher power (Fig. 6(b)) compared with the case without free-play. For instance, at 𝑉̄ = 1, an over 2000 % gain is

observed for 𝜃𝑓 𝑝 = 2◦. Moreover, the Hopf bifurcation becomes subcritical, meaning harvesting can start before the linear flutter speed.

Within this regard, the increment of the free-play gap reduces the flutter onset until a certain point, after which there is an opposite trend,

suggesting the existence of an optimal free-play gap for pitch. The maximum reduction observed is about 3 %.

Another implication of the subcritical regime is that different bifurcation points may be obtained depending on whether the numerical

integration is made by increasing or decreasing the flow speed, as displayed in Fig. 7(a) for 𝜃𝑓 𝑝 = 1°. Thus, the minimum speed that

may achieve harvesting can be further reduced, up to 37 %. The bifurcation occurs at a lower speed when the flow speed is swept

downward. By adding free-play to the nonlinear plunge spring, premature bifurcation can also happen when sweeping the speed upward

(Fig. 7(b)). Even the amount of ℎ𝑓 𝑝 = 0.5 mm is enough to make both paths almost match. This behavior is desirable for harvesting,

as the operational speed range extends regardless of whether the flow speed increases or decreases. It is worth mentioning that unless

otherwise stated, all results are for an increasing flow speed.

The coefficient ℎ𝑓 𝑝 is incremented in Fig. 8(a) to further investigate its impact on the system performance. The influence of ℎ𝑓 𝑝 is

mainly in the subcritical regime, where it reduces the onset of bifurcation. Regardless of the amount of ℎ𝑓 𝑝 , all amplitudes converge to

10 / PREPRINT FOR REVIEW Transactions of the ASME



0 0.2 0.4 0.6 0.8 1 1.2 1.4

 V/V
*

0

5

10

15

20

25

30

35

40

 h
 (

m
m

)

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4

 V/V
*

0

5

10

15

 (
d

e
g

)

(b)

0 0.2 0.4 0.6 0.8 1 1.2 1.4

 V/V
*

0

10

20

30

40

50

60

70

80

90

100

 v
 r

m
s
 (

v
o

lt
s
)

(c)

0 0.2 0.4 0.6 0.8 1 1.2 1.4

 V/V*

0

10

20

30

40

50

60

70

 p
 (

m
W

)

(d)

Fig. 4 Sensitivity of plunge (a), pitch (b), voltage (c) and power (d) bifurcation diagrams to the hardening coefficient
𝒂𝜽1 for the case without free-play in the nonlinear springs.

the same curve as the flow speed increases.

4 Combination of viscoelastic damping with structural nonlinearities

After establishing the effects of hardening and free-play nonlinearities, this study examines the effect of viscoelastic damping from an

energy-harvesting perspective. One should mention that the term "viscoelastic damping" implies the addition of damping itself from the

dissipative forces Fv (Eq. (15)) and stiffness (Eq. (18)). At first, it might seem counterintuitive that damping and stiffness could improve

harvesting. However, for a discontinuous nonlinear system, it is not possible to determine beforehand how the stiffness and dissipative

properties of each mode will influence the system at a particular airspeed after the onset of flutter, particularity considering the modal

coupling characteristic of this phenomenon (Fig. 3). As the damping of a vibration mode becomes negative in the post-flutter regime,

the increase of damping could increase the vibration amplitude and, by extension, the harvested power, as demonstrated in Ref. [31].

Furthermore, the relationship between stiffness and power is another example of non-monotonic behavior [15,16,30]. Therefore, the

stiffness and dissipative forces of the viscoelastic damper could favor energy harvesting, motivating the parametric study proposed.
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Fig. 5 Sensitivity of power bifurcation diagram to the hardening coefficient 𝒂𝒉1 (a), and to the free-play in the plunge
nonlinear spring hf p (b).
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Fig. 6 Sensitivity of plunge (a) and power (b) bifurcation diagrams to free-play in the pitch nonlinear spring (θf p ).

4.1 Viscoelastic damping in pitch. Although the free-play in the nonlinear pitch and plunge springs favors energy harvesting, as

previously discussed, it may lead to complex phenomena such as chaos [40]. Viscoelastic damping can be added in the pitch dof to

prevent this undesirable behavior, following the configuration of Fig. 2. For the free-play combination ℎ𝑓 𝑝 = 2 mm and 𝜃𝑓 𝑝 = 1° in

Fig. 8(b), it is possible to stabilize the response by adding only a small amount of viscoelastic material. Moreover, adding viscoelastic

damping can further anticipate the onset of flutter by about 13 %. The opposite trend happens as the thickness increases, and there is a

delay in the bifurcation. This behavior comes with improved power at supercritical speeds. The effect of viscoelastic damping on the

voltage response is in Fig. 9. The limit cycle becomes less complex and periodic as due to viscoelastic damping.

Again, it is necessary to note that by imposing a given maximum allowable vibration amplitude, there is a compromise between

harvested power and operational speed range such that having overall higher power implies a shorter speed range and vice-versa, similar

to the hardening effect discussed. In terms of harvested power, there is a tendency for the viscoelastic damping in pitch to yield higher

power for most of the flow speed range compared to the configuration without it (Fig. 8(b)).
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Fig. 7 Power bifurcation diagrams when increasing and decreasing the flow speed for θf p = 1°, hf p = 0 mm (a) and
for θf p = 1°, hf p = 0.5 mm (b).
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Fig. 8 Sensitivity of power bifurcation diagrams to hf p for θf p = 1° (a) and to the thickness of the viscoelastic damper
(lz ) in pitch for θf p = 1°, hf p = 2 mm and Θ = π (b).

So far, the temperature has been kept constant at 20°C. However, temperature dependence is a fundamental characteristic of viscoelastic

materials. The temperature is changed to check whether the behavior in Fig. 8(b) holds. As in Fig. 10(a), there is a discontinuity for

the temperature of 35°C due to the associated stiffness reduction of the viscoelastic material. In addition, increasing temperature causes

an early onset of flutter due to loss of stiffness while harvested power decreases. One can avoid discontinuous bifurcations due to

temperature change if a thicker viscoelastic damper is employed, as illustrated in Fig. 10(b) , although this comes at the cost of increasing

the flow speed for harvesting. Nevertheless, the bifurcation is still subcritical. Furthermore, the overall temperature effect on the system

is the same as in Fig. 10(a), meaning the higher the temperature, the earlier the flutter onset and the lower the harvested power. Thus,

the benefits of viscoelastic damping in the pitch are evident, as it can prevent the occurrence of complex unwanted dynamical behavior,

reduce the flow speed for energy harvesting, and increase the power in the supercritical regime.
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Fig. 10 Sensitivity of power bifurcation diagrams to temperature for the case study with free-play in the pitch and
plunge nonlinear springs (θf p = 1°, hf p = 2 mm) and viscoelastic damping in pitch (Θ = π), where lz = 1 mm (a) and
lz = 3 mm (b).

4.2 Viscoelastic damping in pitch and plunge. In all former cases, the focus was on the onset of the bifurcation and how a

subcritical bifurcation could occur prematurely, as these are key aspects of flutter energy harvesting. Nonetheless, it is necessary to

consider the need to control the vibration amplitude in the post-flutter, as excessive oscillations may damage the system or result in stall.

Therefore, this paper evaluates the use of viscoelastic damping in the plunge dof to control the vibration amplitude at supercritical speeds.

As there is no intention of losing the subcritical Hopf bifurcation obtained from combining the nonlinear springs with the viscoelastic

damping in pitch, the idea is to add free-play to the viscoelastic material in plunge as illustrated by Fig. (2). Otherwise, the extra stiffness

and damping could result in supercritical bifurcations, which are detrimental to the harvester’s performance. The viscoelastic damping

in plunge consists of two layers, defined by 𝑝ℎ = 24 mm. Figure 11 displays the effect of varying ℎ𝑣
𝑓 𝑝

on the pitch, plunge, voltage,

and power bifurcation diagrams. Initially, there is no difference among the curves. This behavior changes when the the system reaches

the threshold ℎ𝑣
𝑓 𝑝

, where it begins interacting with the viscoelastic component in plunge. The discontinuity in stiffness originates a
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Fig. 11 Sensitivity of plunge (a), pitch (b), voltage (c) and power (d) bifurcation diagrams to hv
f p

for the case with
free-play in the pitch and plunge nonlinear springs (θf p = 1°, hf p = 2 mm), viscoelastic damping in pitch (Θ = π, lz = 3
mm) and in plunge (ph = 24 mm).

sudden increase in vibration amplitude and thus in voltage and power, meaning that as ℎ𝑣
𝑓 𝑝

decreases, a higher harvesting performance

is achieved sooner compared to the case without viscoelastic damping in plunge. Moreover, the vibration amplitude has been contained

and does not increase any longer with the airspeed, extending the operational speed range of the harvester. For instance, if a maximum

vibration amplitude of 11 mm in plunge is selected, the configuration ℎ𝑣
𝑓 𝑝

= 5 mm will make energy harvesting attainable between

0.86 ≤ 𝑉̄ ≤ 1.28 in contrast to the 0.86 ≤ 𝑉̄ ≤ 0.99 range of the case without viscoelastic damping, a 28 % gain. At 𝑉̄ = 0.86, the use of

viscoelastic damping for ℎ𝑣
𝑓 𝑝

= 5 mm represents a two-order power increase compared to the case without viscoelastic damping, which

would reach that same amount of power only at 𝑉̄ = 1.26. By increasing ℎ𝑣
𝑓 𝑝

, the system is allowed a higher amplitude, generating

more power, but the sudden increase in voltage and power will occur at superior speeds. There is a compromise between the operational

harvesting speed range and the power harvested in that range. The plunge and voltage time responses at 𝑉̄ = 1.2 are shown in Fig. 12.

When the plunge amplitude reaches the value of ℎ𝑣
𝑓 𝑝

= 10 mm around 2.5 s, the added stiffness of the viscoelastic damping increases

the frequency of the LCO and its amplitude.

As stated previously, it is fundamental to quantify the effect of temperature on the performance of the proposed harvester. For the
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Fig. 12 Plunge (a) and voltage, (b) time responses at V̄ = 1.2 for the case study with free-play in the pitch and plunge
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= 10 mm).

case with ℎ𝑣
𝑓 𝑝

= 10 mm, Fig. 13 shows that increasing the temperature lowers the cut-in speed due to the reduced stiffness. However, in

the post-flutter regime, the higher temperature is not associated with the higher vibration amplitude. The lower temperature of 𝑇𝑣 = 10°C

causes the higher amplitude. Furthermore, increasing temperature is detrimental to the harvested power. The incorporation of the

viscoelastic material with free-play in plunge does not change the subcritical Hopf bifurcation dynamic, favoring energy harvesting.

5 Conclusions

Motivated by the non-monotonic relationship between stiffness and damping in nonlinear aeroelastic systems, this work proposed the

unprecedented combination of viscoelastic damping with hardening and free play nonlinearities to enhance the performance of a two-dof

flutter energy harvesting system. The results indicate that the hardening spring in pitch has a superior influence on the system behavior

than the one in plunge , and the cubic coefficient in pitch can tune the compromise between vibration amplitude and power at supercritical

flow speeds. Regarding free-play, its addition to the nonlinear pitch spring can improve the voltage and power outputs of the harvester,

the main benefit being a sudden increase at the onset of flutter. The power enhancement can exceed 2, 000 %. Another advantage of

incorporating free-play into the pitch hardening spring is the creation of a subcritical bifurcation, allowing energy harvesting at speeds

inferior to the linear onset of flutter, with a reduction of 3 %. This effect improves with the introduction of free-play in the nonlinear

plunge spring, extending the operational speed range to 37 %. However, increasing the free-play gap in the plunge nonlinear spring

may lead to potentially unwanted complex dynamical behavior. The proposed viscoelastic damping in pitch can be employed to address

this inconvenience, generating a periodic response. Also, it can further reduce the flow speed to achieve energy harvesting by 13 %.

Moreover, the viscoelastic damping in the plunge dof can passively control the vibration amplitude for supercritical flow speeds, thus

widening the operational flow speed range to obtain persistent power generation. There was a 28 % increase in the operational speed

range. The additional stiffness provided by the viscoelastic damper enhanced the system’s ability to store energy in the supercritical

regime, resulting in a substantial power increase. Viscoelastic dampers conserve a favorable behavior for harvesting for the temperature

range of 10◦C to 35◦C. Therefore, viscoelastic damping may represent a way to fine-tune the FEH system, highlighting the relevance of

the parametric analysis proposed in this study. Future work will focus on the experimental validation of the numerical model.
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Fig. 13 Sensitivity of plunge (a) and power (b) bifurcation diagrams to temperature for the case study with free-play
in the pitch and plunge nonlinear springs (θf p = 1°, hf p = 2 mm), viscoelastic damping in plunge (ph = 24 mm, hv

f p
= 10

mm) and in pitch (Θ = π, lz = 3 mm).
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Nomenclature

𝑏 = airfoil semi-chord (m)

𝐶𝑒𝑞 = equivalent capacitance (F)

𝑐 = damping coefficient (N s m−1)

𝐹 = dissipative efforts (N)

𝐺 = low frequency shear modulus (Pa)

ℎ = plunge degree of freedom (m)

𝐼 = moment of inertia (kg m2)

𝑘 = stiffness coefficient (N m−1)

𝐿 = lift force per unit of span (N m−1)

𝑙 = airfoil span (m)

Journal of Applied Mechanics PREPRINT FOR REVIEW / 17



𝑙𝑥 = width of the viscoelastic damper (m)

𝑙𝑦 = length of the viscoelastic damper (m)

𝑙𝑧 = thickness of the viscoelastic damper (m)

𝑀 = pitching moment per unit of span (N)

𝑚 = airfoil mass (kg)

𝑚̄ = total mass (kg)

𝑁𝑙 = memory size (s)

𝑝ℎ = geometric factor of the viscoelastic damper in plunge (m)

𝑝𝜃 = geometric factor of the viscoelastic damper in pitch (m3)

𝑄 = downwash at 3/4 of the chord (m s−1)

𝑅 = electrical resistance (Ω)

𝑅𝑒 = external radius of the viscoelastic damper in pitch (m)

𝑅𝑖 = internal radius of the viscoelastic damper in pitch (m)

𝑟𝜃 = radius of gyration (m)

𝑡 = time (s)

𝑈 = strain energy (J)

𝑉 = airspeed (m s−1)

𝑉̃ = volume (m3)

𝑣 = voltage (V)

Greek Letters

𝛼 = electromechanical coupling term (N V−1)

𝛽𝑗+1 = recurrent term of the fractional derivative method (Pa)

𝛾1 = curve fitting coefficient of the fractional derivative representation (Pa s)

𝛾2 = curve fitting coefficient of the fractional derivative representation (s)

Δ𝑡 = time step (s)

Θ = angular perimeter of the viscoelastic damper in pitch (rad)

𝜆 = state matrix eigenvalue (rad s−1)

𝜌 = air density (kg m−3)

𝜏𝑡 = shear stress at a given time instant (Pa)

𝜒1,2 = aerodynamic lag states (m −1)

𝜔 = undamped natural frequency (s−1)

Dimensionless Groups

𝐴𝑗 = Grünwald coefficients

𝑎 = location of the elastic axis
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𝑎
ℎ,𝜃
0 = linear stiffness coefficient

𝑎
ℎ,𝜃

1 = cubic stiffness coefficient

𝑁 = number of points used to set the memory size

𝑉̄ = normalized airspeed

𝑥𝜃 = offset between the elastic axis and the center of gravity

𝛿 = Newmark velocity parameter

𝜖𝑡 = strain at a given time instant

𝜃 = pitch degree of freedom

𝜉 = fractional order of the time derivative

𝜈 = Newmark acceleration parameter

𝜁 = damping factor

Superscripts and Subscripts

fp = free play

h = associated with the plunge dof

l = linear term

nl = nonlinear term

𝜃 = associated with the pitch dof

∗ = at the linear flutter condition

Appendix A: Aerodynamic matrices

The aerodynamic matrices 𝒂𝑗 and 𝒃𝑗 obtained from the Jones approximation to the Wagner function are given by the following

equations:

𝒂1 = 𝑙
⎛⎜⎜⎝
−𝜋𝑏2𝜌 𝜋𝑏3𝜌𝑎

𝜋𝑏3𝜌𝑎 −𝜋𝑏−4𝜌
(︂

1
8 + 𝑎2

)︂⎞⎟⎟⎠ (A1)

𝒂2 = 𝑙
⎛⎜⎜⎝

−2𝜋𝜌𝑉𝑏 0

2𝑏2
(︂
𝑎 + 1

2

)︂
𝜋𝜌𝑉 0

⎞⎟⎟⎠
+𝑙

⎛⎜⎜⎝
0 −2𝜋𝜌𝑉𝑏2 (1 − 𝑎)

0
[︂
−𝜋𝑏3𝜌 + 2𝑏3

(︂
𝑎 + 1

2

)︂
𝜋𝜌

]︂
𝑉

(︂
1
2 − 𝑎

)︂⎞⎟⎟⎠
(A2)

𝒂3 = 𝑙
⎛⎜⎜⎝
0 −2𝜋𝜌𝑉2𝑏

0 2𝑏2
(︂
𝑎 + 1

2

)︂
𝜋𝜌𝑉2

⎞⎟⎟⎠ (A3)
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𝒂4 = 𝑙
⎛⎜⎜⎝

−2𝜋𝜌𝑉𝑏 −2𝜋𝜌𝑉𝑏

2𝑏2
(︂
𝑎 + 1

2

)︂
𝜋𝜌𝑉 2𝑏2

(︂
𝑎 + 1

2

)︂
𝜋𝜌𝑉

⎞⎟⎟⎠ (A4)

𝒃1 =
⎛⎜⎜⎝
−0.165 −0.165𝑏 (0.5 − 𝑎)

−0.335 −0.335𝑏 (0.5 − 𝑎)

⎞⎟⎟⎠ (A5)

𝒃2 =
⎛⎜⎜⎝
0 −0.165𝑉

0 −0.335𝑉

⎞⎟⎟⎠ (A6)

𝒃3 =
⎛⎜⎜⎝
0 0

0 0

⎞⎟⎟⎠ (A7)

𝒃4 =
⎛⎜⎜⎝
−0.041𝑉

𝑏
0

0 −0.320𝑉
𝑏

⎞⎟⎟⎠ (A8)

Appendix B: System State Matrix

By imposing linear springs in Eq. (7), 𝑎ℎ0 = 𝑎𝜃0 = 1, 𝑎ℎ1 = 𝑎𝜃1 = 0, the state space representation is ẏ = 𝑨y, where

y =

(︃
ℎ 𝜃 ℎ̇ 𝜃̇ 𝜒1 𝜒2 𝑣

)︃T
and the matrix 𝑨 is given by:

𝑨 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 𝑰 0 0

𝑨21 𝑨22 𝑨23 A24

𝑨31 𝑨32 𝑨33 A34

0 A42 0 𝐴44

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(B1)

where:

𝑨21 = −𝑴̃−1𝑲̃ (B2)

𝑨22 = −𝑴̃−1𝑪̃ (B3)

𝑨23 = 𝑴̃−1𝒂4 (B4)
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A24 = 𝑴̃−1HT (B5)

𝑨31 = 𝒃3 − 𝒃1
(︂
𝑴̃−1𝑲̃

)︂
(B6)

𝑨32 = 𝒃2 − 𝒃1
(︂
𝑴̃−1𝑪̃

)︂
(B7)

𝑨33 = 𝒃4 − 𝒃1
(︂
𝑴̃−1𝒂4

)︂
(B8)

A34 = 𝒃1𝑴̃
−1HT (B9)

A42 = −𝐶𝑒𝑞
−1H (B10)

𝐴44 = −
(︁
𝑅𝐶𝑒𝑞

)︁−1 (B11)
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