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Abstract

In the research, a novel accelerometer concept leveraging the mode-localization phe-
nomenon is put forward. The sensor measures external acceleration through monitoring
changes in the relative amplitude ratio among coupled resonators. The sensing part of
the presented accelerometer comprises a doubly clamped beam coupled with a cantilever
beam. Its design ensures the initial bending mode of the clamped beam approximates
the secondary bending mode of the cantilever. Drawing on Euler-Bernoulli beam theory,
the governing formulas of the coupled resonators are deduced and analyzed via Galerkin
discretization integrated with the multiple-scale method. During working in both linear
as well as nonlinear operating regions, this sensor’s dynamic behavior can be tuned by
adjusting the drive voltage. The obtained results demonstrate that the nonlinear dynamics
increases the accelerometer sensitivity, which can be further enhanced by adjusting the
coupling voltage without severe mode overlap. The presented model offers one viable
method to enhance the overall performance in multi-mode MEMS accelerometers.

Keywords: acceleration sensor; mode localization; electrostatic coupling; nonlinear dynamics

1. Introduction

The micro resonant accelerometer is a category of MEMS sensors that transform
inertial input into shifts in resonance frequency [1,2]. High-sensitivity resonant acceleration
sensors exhibit extensive demand and considerable application potential within the domain
of automotive safety, consumer electronics, aerospace, and intelligent equipment, and
continue to play an important role in the development of emerging technologies such as
unmanned driving and intelligent manufacturing [3-5]. Traditional resonant accelerometers
primarily employ a single resonator as the sensing element, detecting changes through its
frequency shift. Several studies have reported that operating resonators in higher-order
modes can lead to significant improvements in sensitivity [6-9]. Under the constraints of
detection principle and processing technology, it is difficult to enhance the sensitivity of
traditional resonant acceleration sensors, which is a key technical problem restricting the
application of micro-mechanical resonant acceleration sensors [10].

In recent years, the exploration into the theory and application of mode localization has
offered a new approach to overcoming the bottlenecks of traditional sensor technology [11].
Since mode localization can significantly improve the sensitivity of resonant sensors by
using a new detection mechanism, the schematic diagram of mode localization is shown in
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Figure 1c. When the system is disturbed, the amplitude undergoes drastic changes. The
phenomenon has been rapidly developed in the design and application of acceleration
sensors [12,13]. Zhang et al. [14] developed a mode localization-based accelerometer, which
utilizes a structure comprising a pair of coupled resonators. Performance was evaluated by
comparing the measured relative amplitude proportion against the frequency deviation.
Results demonstrate that this occurrence exhibits high sensitivity and robust immunity
to disturbances. Zhao et al. [15] proposed a novel modal-localized acceleration sensor
incorporating a lever mechanism, which amplifies the axial force applied to the resonator,
changing its stiffness and leading to a significant eigenstate variation. It should be noted
that the resonators in the described structure are mechanically coupled. While this form of
coupling offers excellent stability, it also results in a fixed coupling strength that cannot
be adjusted after fabrication, significantly impacting the sensitivity of the device. Thus, to
realize tunable coupling intensity and boost the sensitivity in mode-localized sensors, nu-
merous scholars have proposed employing electrostatic coupling [16]. Thiruvenkatanathan
et al. [17] first proposed the use of electrostatic coupling in the study of mode localization
and they found that the use of such a mechanism can significantly reduce the coupling
strength, making it possible for the system to obtain a stronger and tunable mode local-
ization phenomenon. It is noteworthy that electrostatic coupling and stiffness modulation
have also been widely investigated in frequency-modulated (FM) resonant accelerometers,
where the acceleration-induced stress shift is transduced into a resonant frequency change,
demonstrating high resolution and stability [18]. Morozov et al. [19] developed an elec-
trostatically coupled mode-localized accelerometer model, systematically investigated the
dependence of resonant frequencies and eigenvector elements with respect to the inten-
sity of inertial effect, and comprehensively analyzed the influence on coupling potential
over the characteristic frequency. It was shown that as the coupling potential increases,
the frequency disparity at the mode veering point decreases gradually. Peng et al. [20]
developed a novel mode-localized acceleration sensor consisting of four resonators. Specif-
ically, resonator 1 and resonator 2 are mechanically linked in series to resonator 3, while
resonator 4 is electrostatically coupled to both resonator 1 and resonator 3. Open-loop
tests revealed that under varying tuning voltages, the measured amplitude proportion
sensitivity ranges, exhibiting a tunable range of up to 2050%. These findings illustrate
that the mode localization phenomenon in coupled resonators has achieved substantial
maturity in sensor design and applications—with particular relevance to accelerometers.

The aforementioned studies demonstrate that notable outcomes have been attained in
the design and practical application of acceleration sensors based on the mode localization
phenomenon in coupled resonators. However, it should also be noted that most of these
research studies use mainly linearized models for dynamics analysis. In fact, there is a
shortage of effective research regarding the influence of nonlinear force terms in coupled
resonators. Zhang et al. [21] experimentally investigated the nonlinear behavior of a mode-
localized accelerometer. By elevating the excitation voltage to operate the sensor in the
nonlinear regime, they employed shifts in the bifurcation point for acceleration detection.
In addition, temperature control was adopted to reduce phase and amplitude variations
caused by thermal drift, which significantly decreased 1/f noise at the operational frequency.
Lyu et al. [22] proposed a modal localization phenomenon and applied it to the design of
an accelerometer sensor integrating a lever and a proof mass and investigated its sensitivity
change under nonlinear vibration.
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Figure 1. Sketch of the mode-localized accelerometer: (a) applied voltage connection line; (b) acceler-
ation sensor size structure; (c) schematic diagram of a 2-DoF system; (d) schematic diagram of the
coupled system operating with modes of different orders.

However, when it comes to applying the mode localization effect within sensors, the
majority of the proposed structures are made up of coupled identical or near-identical
resonators, we investigate in this paper a new configuration that couples two different
resonators and exploits the coupling between different order modes to further expand
the application of this phenomenon in sensors. To address this gap, a new accelerometer
configuration utilizing the mode localization effect is proposed, comprising a sensing
element consisting of a clamped-clamped beam linked to a cantilever beam. The proposed
sensor exploits the phenomenon of modal coupling that arises between modes of different
orders in a coupled system and the magnitude of the acceleration can be obtained by
detecting the relative amplitude ratio between the two different resonators. First, drawing
on Euler-Bernoulli beam theory, the motion equations of the coupled system are derived
(incorporating both electrostatic and geometric nonlinearities) and solved via Galerkin
discretization combined with the method of multiple time scales; next, the coupled system
is switched into linear and nonlinear states by adjusting the AC voltage, and its sensitivity
under each state is explored; finally, the influence in coupling voltage variations upon the
dynamic behavior and performance of the designed sensor is investigated. It is important
to note that this study primarily serves as a theoretical and numerical investigation into a
novel accelerometer concept. The primary aim is to establish a foundational model and
explore the potential performance benefits, particularly the significant enhancement in
sensitivity, offered by coupling dissimilar resonators and exploiting nonlinear dynamics.
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2. Design and Model
2.1. Accelerometer Design and Working Principle

Figure la presents a schematic diagram of the proposed accelerometer design. Un-
like traditional mode-localized accelerometers, the sensing component consists of two
electrostatically coupled resonators with distinct characteristics, as shown in Figure 1d.
Specifically, this design explicitly refers to the coupling between the primary-order mode in
a doubly clamped beam and the secondary-order mode in a cantilever beam. The cantilever
beam is electrostatically coupled to the clamped-clamped beam. The latter is actuated
via an electrode on which DC and AC voltages are superimposed. The proof mass is me-
chanically supported on its left side by a clamped beam, which connects it to a stationary
anchor. When external acceleration along the horizontal axis is applied, the proof mass
undergoes axial displacement. This displacement changes the axial stress in the clamped
beam, which in turn disrupts the equilibrium of the fully coupled system. The proposed
design allows acceleration detection by measuring the amplitude shift between the two
coupled resonators.

2.2. Dynamic Model

Drawing on Euler—Bernoulli theory and under the assumption that the geometric
nonlinearity of the cantilever is negligible compared to the mechanical nonlinearity in the
clamped-clamped beam, the governing motion equations for the coupled-resonator system
are formulated as below [23]:

EbK3 847771 Xt 827:171 Xt ~ 0wy (X Ebh 1 8w1 82{[11 X,
T17337(4~)+pbh1 8?<2~)+Cl a(tA) [N-f— 1f1 A) dax agA)

WDy o (@) 1
2(grm(En-m(ED) 2 B @
%a wz~(4x,?) +pbhza w2(x’?) + E’Z awz(Nx’?) _ thYcszfaN - =
12 ox or ot 2(g+w1 (x,?) — Wy (x}) )

where Hi and H; are Heaviside functions
I —1 ~ L+l
Hh (x ‘H< 124>—H(x— 124)‘ )
Hy(¥) = (172 - 37)

Moreover, the boundary conditions for the microbeams are prescribed as follows:

{ @1 (0,F) =@ (1, 1) = 52 (0,1) = G2 () = 0 -
w2(0 “) E)wz( ”) D w2 12, — E) w2 (12,“) -0

where w1, W, represent the transverse deflection of the two resonators along the x axis, Ny
denotes the mechanical axial force, I, I, k1, hy, and b stand for the length, thickness, and
width corresponding to the two resonators, p represents the material density, gy the dielectric
constant, E stands for Young’s modulus, g the capacitor gaps, V, the alternating current
(AC) drive voltage, V. the direct current (DC) biasing voltage, () the excitation frequency.

3. Solving Procedure
3.1. Nondimensionalization

For the sake of convenience, Equation (1) can be normalized by means of the following
dimensionless parameters.
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substituting the dimensionless variable (4) into (1), the following coupled equations
are derived:

2
B4w1 wl owq awl 02wy
T +a5r — N+ a fO dx

oxt 9x?
_ ap Hy (%) (Vge+ Vac cos(Qt)) - 1x2H2(x)VC (5)
(1 wl)2 (14w, —w, )
526 wy 92w, NP _ ag Hy (x) V2
ox* ot? (1w —wy)?

The dimensionless coefficients in Equation (5) are given by

c 12674 = 12674 _LNE (s 2
1= Ebh3 27 Ebhg?n’ " Ehh3’ 1= 9\

(6)
beol4 B [1201%
ay = h3 3,5* 2,T1 ?}%,Q:QT

3.2. Nonlinear Reduced Order Model

Through Galerkin discretization, the partial differential equation system in Equation (5)

is reduced to a set of ordinary differential equations. Given the weak inter-resonator
coupling, the linear mode function of an undamped straight beam is adopted as the basis
for discretization. An approximate solution to the dimensionless dynamic equation is
formulated as follows:

NV”
wi(x,t) = wa(x) + L q1(t)¢1,i(x)

. (7)
wy(x, ) = we(x) + Zl 2,j(t)$2,;(x)

where w1 (x), wsp(x) denote the static displacement of the clamed-clamped beam and the
cantilever, respectively, and ¢1 j(x), ¢, j(x) represent the j-order mode of the corresponding
resonator, respectively, based on the bending vibration of the beam, according to the
boundary conditions.

While assuming that only a single bending mode is dominant for each resonator and
the other modes are neglected and neglecting the effects of higher modes (N, = 1) [24], the
dynamic formulas for the system may be derived as below:

{ dy + gy + K31 + K12q7 + K133 + Kaqi + Keaga + ficos(Q) =0 ®)
Gy + P2y + 13192 — K11 — K22 = 0

where a dot denotes the time derivative. The resulting differential system corresponds
to a forced Duffing equation—incorporating quadratic and cubic nonlinearities—that is
coupled to a linear oscillator. The parameters of the generated reduced order model are
given in Appendix A.
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3.3. Static Analysis

When a micro-resonator is electrostatically driven, exceeding a critical driving voltage
can cause the resonator to pull in toward the fixed electrode, leading to a short circuit and
eventual device failure. To prevent this static pull-in phenomenon, it is necessary to analyze
the static deformation of the electrostatically driven resonator and determine the pull-in
voltage threshold under the specified parameters.

The relationship between the static displacement of the two resonators and the ap-
plied voltage is illustrated in Figure 2. For the clamped—clamped beam, the maximum
deformation occurs at the midpoint, whereas for the cantilever beam, it occurs at the free
end. As the DC bias voltage (Vdc) increases, the deformation of the clamped-clamped
beam grows progressively, bringing it closer to the fixed drive electrode. In contrast, the
cantilever beam is influenced only by electrostatic coupling forces and therefore does not
experience collapse. At a drive voltage of approximately 130 V, the clamped—clamped beam
adheres to the electrode, indicating pull-in. Accordingly, the safe operating voltage should
remain below 130 V.

1.2 T T T T T T
e Clamped—clamped beam

Tr * Cantilever 7

Amplitude (pm)
s o o
B [=2) o0

e
to
T

.
.
.

v o
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DC voltage (V)

Figure 2. Static analysis simulation results.

3.4. Eigenvalue Analysis

Mode veering is an important phenomenon characterizing mode localization. Thus,
the existence of mode turning is explored in this coupled system by performing an eigen-
value analysis. As illustrated in Figure 3a, the eigenfrequencies of the coupled system
change with respect to the driving voltage V., and remarkably the second-order mode of
the cantilever beam and the first-order mode of the doubly clamped undergo mode veering
as V. keep increasing, which proves that the structure can produce mode localization
phenomenon. Figure 3b shows the two vibration modes of the structure at the veering
point, obtained using the Reduced Order Model (ROM) and verified by Finite Element (FE)
simulations implemented in COMSOL Multiphysics 5.6. The out-of-phase and in-phase
modes exhibit resonant frequencies of 125.27 kHz and 126.86 kHz, respectively. When
the direct current V. reaches 64 V, the two eigenfrequencies reach the veering point, and
then, the two modes gradually move away from each other with the increase of V.. Con-
sequently, the proposed coupled structure can be used as a sensitive part based on mode
localization for acceleration sensing.
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3.5. Nonlinear Frequency Response

The nonlinear dynamic behavior in the designed structural design is analyzed via the
method of multiple scales.

{ iy + gy + K301 + ex1247 + K137 + EKaqr + kg + €2 f1cos(Qf) = 0

4 ! ©)
iy + €2l + k3192 — K11 — €202 = 0
the relationship between the different scale times T}, is
T, =¢t(n=0,1,2) (10)
d _dTy 9, dTy 9 dT, 9 _ 2
ﬁzfﬁm‘f'dfgﬁ‘f'dftzﬁ%-...—[)o—ks[)l—l—eDz—f—... 1)
&5 = D§ +2¢DoDy + ¢2(DF +2DoDz) + ...

the detuning parameters 07 and o, are introduced to characterize the motion near the
resonant frequencies.
Q=xn+ 820'1

12
K11 = Kp1 + 820'2 (12)

the solutions of Equation (9) are assumed as follows
71 = q10(To, T1, T2) + eq11(To, Tv, To) + €2412(To, Ty, T2) (13)

72 = q20(To, T1, T2) + eq1(To, Ty, T2) + €292 (To, Th, T2)

substituting Equation (13) into Equation (9), the following system of equations is generated
based on the order of ¢

e+ Do+ 141q10 =0 (14)
D3q20 + k%1420 = 0
el 13,911 + Do(Dogr1 + D1g10) + D1Dog10 = —K1243, (15)

3,921 + Do(Doga1 + D1420) + D1Dogao = 0

¢2: Do(Dogi2 + D1g11 + Dagio) + D1(Dog1 + D1410)
+DyDog10 + k3912 = —cDog10 — (—ke1q10 + K2420)
—K13030 — K12q10911 — f1.c0s(x11To + 01 T>) (16)
Do(Dog22 + D1g21 + D2g20) + D1(Dog21 + D1g20)
+D3Dog20 + k3,422 = —cDog20 + (k1410 + Kc2420)
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The solutions of Equation (14) can be defined as

q10 = Xy exp(ix11Tp) + X7 exp(—ix11Tp)

. - . 17
g20 = Xp exp (i1 To) + Xp exp(—ixp1 Tp) 17

where X; and X; are complex functions (with their complex conjugates denoted as) and
employing the subsequent polar form for representation:

1. 1.
X] = *Alelﬁl,XZ = 7A2€1‘Bz (18)
2 2
where A; and A; denote the amplitudes of resonators 1 and 2, respectively. By substi-

tuting Equation (18) into Equations (15) and (16), and separating the real and imaginary
components, we derive this result.

4,2
. —Aqkqy g+ 2222 ;‘?}c:;zyz
sin(¢q) = I
_ 10A13K%2—9A13K%1K13—12A1K%1K51+24A1K%10'1—COS((pz)
COS(ng) - 121, (19)
: _ Ao
sin(¢y) = — Ak
_ _ Ao(Ke+210101+2k10p)
cos(gp) = — 2240

4. Numerical Results and Discussion

Unlike traditional resonant sensors, which rely on frequency shift as the output, the
mode-localization sensor employs the variation in the amplitude ratio as its readout metric.
To enable a unified comparison of these two output metrics, the relative shifts in frequency
and amplitude ratio are defined as follows:

S¢ = (‘Ul,l - ‘U?,l) / w%l (20)
0 0
wip  Wip ), Wip
Sa = (ZUZZ - w0>/w0 (21)
S 22 22

where Srand S, denote the sensitivities defined as the ratios of the relative frequency shift
and the relative amplitude ratio, wi,]-o represents the natural frequency of the jth order mode
for the ith resonator in the balanced state, w;,; is the frequency after stiffness perturbation
on the clamped-clamped resonator. wq; and wy ; are the amplitudes of the resonators post
stiffness disturbance, while wl,lo and wz,zo refer to the amplitudes of the two resonators in
the balanced condition.

4.1. Linear Behavior

Drawing on the parameters listed in Table 1, this study examines the amplitude
response under balanced conditions. When the AC voltage V. = 0.1V, the coupling voltage
V. =70V, and the driving voltage V. = 62 V, as shown in Figure 4a, both resonators operate
in a linear regime, and the phase variations in the two resonators are shown in Figure 4b.
The two electrostatically coupled resonators exhibit out-of-phase vibration in the first mode,
whereas they demonstrate in-phase motion in the second mode.
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Table 1. Design parameters of the proposed accelerometer.

Type Value
Length of resonator (/) 905 pm
Length of resonator (/) 791 um
Resonator width (h7) 12 um
Resonator width (h,) 9 um
Young’s modulus (E) 169 GPa
Air gap (g) 3 um
Resonator width (b) 25 um
Density (p) 2320 kg/m3
0.4 T T T T T T T T T
a — Resonator ||

— Resonator?)

Amplitude (4 m)
(=)
[\S]

0 .
124 125 126 127 128 129 130 131 132 133 134
Frequency (kHz)

1 i T T T T T T T

b — Resonator ||
— — Resonator?)
9 0.5[ -
b
& i
o 0
<
=
~—0.5" b

_1 1 1 1 1 1 L L
124 125 126 127 128 129 130 131 132 133 134

Frequency (kHz)

Figure 4. Linear (a) amplitude and (b) phase frequency responses for V. =70 V, V4, = 62 V, and
Ve = 0.1 V when the sensor is not subject to an acceleration disturbance.

As illustrated in Figure 5, when the applied acceleration varies between —1 g and
1 g, the amplitude value of Resonator 2 increases monotonically as acceleration changes in
both operating modes, whereas Resonator 1 exhibits a distinct trend. Specifically, in the
in-phase mode, Resonator 1’s amplitude decreases as acceleration rises; conversely, in the
out-of-phase operating mode, its amplitude rises correspondingly.

e
w

S
o

Amplitude (pm)

130 130
135 1 135 1

Figure 5. Variation in the amplitude response with respect to the acceleration disturbance when
the sensor is driven in the linear regime for V. =70V, V4, = 62V, and V, = 0.1 V: (a) resonator 1;
(b) resonator 2.
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Figure 6 depicts the variation in the two sensitivity metrics—defined by Equations (20)
and (21)—over the acceleration range —1 g to +1 g. The relative frequency shift (RSF)
is 0.43%/g in the in-phase mode, decreasing to 0.35%/g in the out-of-phase mode. In
contrast, the relative amplitude ratio shift (RSAR) reaches 29.23%/g (in-phase) and
30.13%/g (out-of-phase). Compared to RSF, RSAR exhibits a two-order-of-magnitude
sensitivity enhancement.

4C 0.5

a Out—of-phase b Out—of—phase

— — Linear fit — Linear fit
£ 30 In—phase — In—phase
° — Linear fit ?\i — Linear fit
s ) y==26.56>x+1.33 z
[5) R =0.9947 S
3 RMSE = 5.389 3 y =0.389xx+0.0177
& . g R*=0.9956
g* :‘f RMSE =0.07162 /4
< 0 o
o 2
I h=
&= 3
= o
S 10 = y=0.4035xx —0.02

— = 2 _ 45
2 {'=126.04xx+1.201 = R’ =0.9945
k= R = 0.9955 2 RMSE = 0.0834
~—20) RMSE =4.16

=30 -0.5

-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
Acceleration Acceleration
g g

Figure 6. Sensitivity change in different modes when the sensor is driven in the linear regime for
V=70V, V. =62V, and V4 =0.1 V: (a) relative shift in amplitude ratio; (b) relative shift in frequency.

4.2. Nonlinear Behavior

At low AC driving voltages, the vibration amplitude of both resonators remains
limited, resulting in a linear frequency response. However, as the AC drive voltage
increases, the vibration amplitude gradually rises until it enters the nonlinear domain.
When the coupling voltage V. = 70 V is constant and the AC voltage is raised as high
as Vg = 0.3V, as shown in Figure 7a, both resonators operate in a nonlinear region and
demonstrate spring-softening behavior. The vibrational amplitude demonstrates a marked
increase relative to the linear operational regime.

1 T T T T T T T e e
a — Resonator]

g 0.8 — Resonator2 ]
3

3 0.6 T
2
= 04 .
)
< 0.2r .

1 1

0 1
124 125 126 127 128 129 130 131 132 133 134
Frequency (kHz)

1 T T T T T T T T

b — Resonatorl

0.5 — Resonator2

Phase (7 rad)
(=)

124 125 126 127 128 129 130 131 132 133 134
Frequency (kHz)

Figure 7. Nonlinear (a) amplitude and (b) phase frequency responses for V. =70V, V4. =62V, and
Vge = 0.3 V when the sensor is not subject to an acceleration disturbance.

As shown in Figure 8, when the perturbation acceleration is added in the range [-1 g,
1 g], the form of change in this system in the nonlinear state is consistent with the trend of



Sensors 2025, 25, 5632

11 of 15

change in the linear state. When using the same acceleration perturbation range as when
the system is in a linear state, the two sensitivity outputs are shown in Figure 9. It can be
found that in the in-phase mode, the RSF is 0.38%/g, while the RSAR is 27.11%/g, which
rises to 33.34%/g in the out-of-phase mode. The sensitivity, as defined by the relative
amplitude ratio in the out-of-phase mode, exhibits a notable enhancement when compared
to the linear vibration regime. As shown in Figure 9, when the resonators are subject to
nonlinear behavior, the residuals for the in-phase and out-of-phase modes, as determined
by linear fitting, are 4.87 and 6.613, respectively. Compared to linear behavior, an increase
in residuals can be observed, which can be explained by an increase in the nonlinearity on
the scale factor.

1_
B ~0.8-
3 g
X 3
L ~
-g 2 0.6
=0. E]
g 2047
< g
<02+
0_

Figure 8. Variation in the amplitude response with respect to the acceleration disturbance when the
sensor is driven in the nonlinear regime for V. =70V, V4, = 62V, and V,c = 0.3 V: (a) resonator 1;
(b) resonator 2.

4 - - 0. - -
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= ,=—28.6 -
s y =289 +1633 > Y= 03513%x + 0.01466
=200 R*=10.9963 5 ) <
3 RMSE = 6.613 5 02 R"=09963
= ‘ s RMSE =0.05904
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: S|
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= y=24.34xx+1.02 & o4 RMSE =0.1061
~—20 R*=0.9962

RMSE = 4.87
_3 L L N —06 N N N
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
Acceleration(g) Acceleration(g)

Figure 9. Sensitivity change in different modes when the sensor is driven in the nonlinear regime for
V=70V, Vy, =62V, and Ve = 0.3 V: (a) relative shift in amplitude ratio; (b) relative shift in frequency.

Table 2 compares the sensitivity of the proposed accelerometer (in both linear and
nonlinear regimes) with other state-of-the-art mode-localized accelerometers reported in
the recent literature. Although a direct experimental comparison is not yet available, the
simulated sensitivity of our device demonstrates competitive potential, particularly noting
that the achieved sensitivity is obtained with a simple two-resonator structure and tunable
via the coupling voltage.
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Table 2. Comparing sensitivity performance of different sensor designs.

Reference (Device Type) Sensitivity (RSAR) Detection Mechanism

Zhang et al. [14] (4 resonators) 1.14-23.37%/g Linear Mode Localization

Peng et al. [20] (Series-Parallel) ~20%/g (tunable) Linear Mode Localization

This work (Linear, Out-of-phase) 30.13%/g Linear Mode Localization

This work (Nonlinear, Out-of-phase) 33.34%/g Nonlinear Mode Localization

Zhang et al. [21] (Nonlinear) ~0.1%/g (Bifurcation) Nonlinear Bifurcation

4.3. Effect of the Coupling Voltage on Sensitivity

The variation in coupling voltage V. is studied and the accelerometer sensitivity is
numerically analyzed. As the coupling voltage rises, the coupling strength gradually
increases. To further explore the effect of the coupling voltage on the sensitivity in the
mode-localization accelerometer, V. is gradually increased while setting V,c = 0.1 V and
V. = 62 V. The sensitivity changes are compared and analyzed, as shown in Figures 10-12.
The coupling voltage V. influences the natural frequency of both resonant modes. Since
as the coupling voltage increases, the driving force grows, and accordingly, the intrinsic
frequency decreases—owing to its dependence on electrostatic negative stiffness.

— |71
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Figure 10. Variation in the amplitude response with respect to the acceleration disturbance for
V=40V, V. =62V, and V, = 0.1 V: (a) resonator 1; (b) resonator 2.
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Figure 11. Variation in the amplitude response with respect to the acceleration disturbance for
V=90V, V4, =62V, and V, = 0.1 V: (a) resonator 1; (b) resonator 2.
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Figure 12. Variation in the relative shift in amplitude ratio with respect to the acceleration disturbance
and the coupling voltage for V. = 62V, and V,. = 0.1 V: (a) out-of-phase; (b) in-phase.

Figure 12 illustrates that the relative amplitude ratio shift decreases with increasing
V.. For instance, at a coupling voltage V. of 40 V, the RSAR in out-of-phase mode is 94%,
at a voltage of 100 V, this value drops to 13.65%. The sensitivity similarly decreases with
increasing coupling strength when the sensor operates in the in-phase mode. Comparing
Figures 10 and 11, it can be found that although the reduction in the coupling voltage
serves to enhance the sensitivity, the two modes will be gradually close to each other with
the reduction of V., which will result in a modal coupling without severe mode overlap.

5. Conclusions

In this work, the proposed accelerometer operates via mode localization, featuring a
doubly clamped beam coupled with a cantilever beam. Focusing on the coupling between
the initial mode of the doubly clamped beam and the secondary mode of the cantilever
beam, the Euler-Bernoulli equation of motion for the system was derived. The sensor’s
linear and nonlinear responses are controlled by an AC voltage on the drive electrode.
Simulations revealed a more pronounced out-of-phase mode compared to linear vibration.
By measuring the relative amplitude ratio between the two beams, the applied acceleration
is determined. This approach achieves a 67-fold sensitivity enhancement over frequency-
shift-based detection. Additionally, the coupling voltage’s influence on sensitivity was
investigated, revealing that sensitivity is tunable via coupling voltage variation. Specifically,
reducing the coupling voltage enhances sensitivity: numerical simulations show an 80.35%
increase when the drive voltage decreases from 100 V down to 40 V. In order to translate
this theoretical concept into a real device, future work will focus on experimental validation
through SOI-MEMS manufacturing, characterization under vacuum, and calibration with
precision instrumentation.
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