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Abstract. Metamaterials have thrived in recent years, with negative stiffness

mechanical metamaterials emerging as an essential branch. Extensive research in

the past decade has yielded fruitful results in this field. This work encompasses an

in-depth exploration of the origin of negative stiffness behavior, along with detailed

demonstrations of the implementation mechanism and construction methods used in

negative stiffness mechanical metamaterials. Furthermore, the paper highlights the

diverse range of applications for these metamaterials, including energy absorption,

advanced actuators, deployable and morphing structures, vibration control, and more.

Lastly, a brief glimpse into the future development direction of this metamaterial is

proposed.
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1. Introduction

The concept of metamaterials originated in the field of electromagnetic materials

[1–6] but has since been extended to various domains, encompassing optical [7–9],

thermal [10–14], acoustic [15–19], and mechanical metamaterials [20–28]. Mechanical

metamaterials are a type of structural materials that achieve unique mechanical

properties through microstructure design rather than altering chemical composition

[29–31]. In the present day, mechanical metamaterials mainly include [27] pentamode

metamaterials [32], compression-twist coupling metamaterials [33–37], ultra-property

metamaterials [38–40], and metamaterials with negative constant such as negative

compressibility [41–43], negative stiffness [44–46], negative thermal expansion coefficient

[47], and negative Poisson’s ratio [48–58]. Additionally, drivable [59], adaptive [60–62],

programmable [63] metamaterials, as well as origami and kirigami materials [64–69],

also fall within the realm of mechanical metamaterials.

Negative stiffness mechanical metamaterials (NSMMs) have gained significant

attention in recent years as a critical area of metamaterial research. They are known for

their unconventional mechanical properties and vast potential applications. NSMMs

exhibit traits such as elastic buckling, multistability, and negative stiffness, which

make them suitable for various purposes, as depicted in Fig. 1. These applications

include energy absorption [76], actuators [78], deployable structures [79], morphing

structures [80], vibration control [77], and more [81,83].

Research on negative stiffness behavior has a historical foundation dating back to

the 1930s [84]. Negative stiffness behavior is characterized by an increase in deformation

of a structure or material resulting in a decrease in load [85, 86], or by a region on

the load-displacement curve with a negative tangent slope. It’s important to note

that the study of negative stiffness structures typically excludes behavior caused by

structural fracture or failure. Some literature also refers to this behavior as negative

incremental stiffness [87, 88]. The occurrence of negative stiffness behavior is often

accompanied by a snap-through phenomenon, depicted by the red line in Fig. 2.



CONTENTS 3

Figure 1: Overview of negative stiffness mechanical metamaterials’ construction concept

[70–75] (Copyright 2019, Elsevier. Copyright 2020, Elsevier. Copyright 2021, Elsevier.

Copyright 2022, Elsevier. Copyright 2019, Jhon Wiley and Sons. Copyright 2016, Royal

Society of Chemistry) and possible application field, including energy absorption [76]

(Copyright 2019, Elsevier), vibration control [77] (Copyright 2017, Elsevier), actuator

[78] (CC BY 4.0), deployable structures [79] (Copyright 2022, Elsevier), morpging

structures [80] (Copyright 2021, Elsevier), and etc [80–83] (CC BY 4.0).

Snap-through refers to the dynamic transition of an elastic system’s equilibrium from

a critical point to a stable equilibrium point that is not adjacent [74]. Previously,

structural instability was strictly avoided due to the catastrophic consequences it could

entail, such as building collapses [89]. However, in the 21st century, there has been a

shift in academic understanding towards skillfully utilizing unstable phenomena rather
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Figure 2: Diagram of negative stiffness response: increase of deformation results in a

decrease in load, ∆Fx < 0.

than solely avoiding them. NSMMs are a result of harnessing structural instability for

practical applications [89].

Negative stiffness mechanisms have found widespread use in industries, particularly

in the field of micro-electromechanical systems (MEMS) [90–92]. This is due to their

advantages of simple structures, low cost, fast response, and the absence of a power

supply requirement. Furthermore, emerging applications like microfluidics [93] have

demonstrated significant potential. In contrast, the development of NSMMs started

relatively late, and research in this area is primarily focused on structural design.

Several mechanical issues pertaining to NSMMs remain unresolved, and there is limited

exploration of their applications. The objective of this review is to introduce the

construction methods of NSMMs and highlight their potential applications. It is

intended to serve as a valuable reference for scholars working in related fields.

2. Construction/Concept of negative stiffness mechanical metamaterials

Negative stiffness mechanical metamaterials (NSMMs) are typically comprised of an

array of negative stiffness elements, displaying periodic negative stiffness responses when

subjected to loading [94]. The literature [95] demonstrates early examples of NSMMs

exhibiting periodic characteristics. NSMMs can be further categorized as monostable

or multistable. Multistable NSMMs can maintain deformed shapes, while achieving

this effect with monostable NSMMs is challenging. Structures such as curved beams

(cosine beams) and inclined beams (V-shaped beams) have gained popularity in NSMM

design due to their simplicity and extensive research on their nonlinear responses. These

structures have accumulated substantial early work [96–98] in the field. In addition

to these, multi-magnet systems [72], perforated plate structures [63], rotating shell
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structures [84], origami [73], and other structural forms [99,100] are commonly employed

in NSMMs design, as depicted in Fig. 1.

2.1. Negative stiffness mechanical metamaterials based on beam elements

Curved beams (cosine beams) and inclined beams (V-shaped beams) are commonly

used in the design of NSMMs [45, 101–105] due to their simplicity. Early designs

involving curved beam elements include two-dimensional NSMMs [101] (Fig. 3(a)) and

micro-scale NSMMs [45], both of which exhibit negative stiffness characteristics under

compressive loads. Curved beam elements can also be employed to create NSMMs with

negative stiffness under tensile loads [88]. These structures achieve negative stiffness

and multistable behavior through the buckling instability of the beams. Typically,

these beam structures are made of soft materials, although some research has explored

their implementation with metal substrates [106–109].

NSMMs [110–112] can also be constructed using inclined beam elements (Fig.

3(b)). Both curved and inclined beam elements can be designed as a double-layer

configuration [113] (Fig. 3(c)), which effectively prevents local asymmetrical buckling

and maintains structural performance [114, 115]. Comparative studies [116] between

inclined and curved beam elements reveal that curved beam elements offer slight

advantages in mechanical performance and designability, while inclined beam elements

are simpler in terms of structure.

Figure 3: (a) NSMM with curved beam elements [101] (Copyright 2015, Elsevier), (b)

NSMM with inclined beam elements [110] (Copyright 2015, Jhon Wiley and Sons), (c)

NSMM with double-layer beam elements [113] (CC BY 4.0), (d) NSMM with variable

cross-section beams [111] (Copyright 2016, Jhon Wiley and Sons), (e) pre-compressed

beam element [117] (Copyright 2020, Elsevier).

In addition to curved and inclined beam elements, NSMMs can also be designed
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using other beam structures, such as pre-compressed beams [117] and variable cross-

section beams [118–120]. Variable cross-section beams [111] are characterized by varying

thicknesses along the axial direction. Careful design of the beam’s thickness and width in

the axial direction allows for specific performance requirements to be achieved. Fig. 3(d)

[111] showcases multi-stable reconfigurable metamaterials constructed using variable

cross-section beams. These materials offer significant shape and volume changes, and the

incorporation of variable cross-section beams notably enhances their energy absorption

capacity. Pre-compressed beam structures refer to beams that have been compressed and

buckled along their axial direction [117], as depicted in Fig. 3(e). Furthermore, porous

beam elements generated through topological optimization [121–123] have been utilized

in NSMM construction. Research results [121] have demonstrated that porous beam

structures exhibit approximately twice the energy dissipation of solid beams, leading to

improved performance in terms of energy absorption.

2.2. Negative stiffness mechanical metamaterials based on perforated plate

Perforated plate structures, featuring periodically distributed holes with regular

shapes (such as circles, squares, and rhombuses) on an elastic plate (Fig. 4(a)), can

exhibit negative stiffness and multistable properties [124]. These structures, commonly

known as phase transition metamaterials, undergo structural transformations through

instability. Topological design allows these materials to achieve negative stiffness or

negative Poisson’s ratio effects under compression or tension loading [125]. Current

research on these materials primarily focuses on phase transition paths, phase transition

morphologies, and the regulation of various functions before and after phase transition,

such as acoustic [126] and optical [127] regulation, as well as energy absorption [63].

From a developmental perspective, perforated plate structures are derived forms

of beam-type NSMMs. In theoretical studies, these structures are often approximated

as periodic structures composed of variable cross-section beams. Similarly, previous

research [128–130] has also explored phase transition structures constructed using

periodic beam structures. Although the emphasis may not primarily be on the negative

stiffness effect in these structural materials, due to their reliance on the instability

principle and significant similarities, they are also classified within the scope of NSMMs.

In recent years, significant progress has been made in the development of perforated

plate structures, leading to numerous notable research studies. For instance, Jie et

al. [131] and Jiang et al. [132] explored the use of membrane structures with periodically

distributed pores, combined with shape memory materials, to achieve optical regulation.

Bastiaan et al. [75] designed a tunable, multi-stable, negative stiffness metamaterial

utilizing a plate structure with periodically distributed pores (Fig. 4(b)). This

study demonstrated the ability to regulate negative stiffness behavior and damping

performance by adjusting the transverse pre-strain of the structure. Extensive research

on perforated plate structures has been carried out by Bertoldi et al [124,126,133–135].

They investigated the influence of pore shape on structural buckling modes, proposed
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Figure 4: (a) Typical perforated plate structures [124] (Copyright 2012, Jhon Wiley and

Sons), (b) tunable and multi-stable NSMMs based on perforated plate structures [75]

(Copyright 2005, Royal Society of Chemistry).

a porous phase transition structure in the form of a cylindrical shell [136], utilized

the phase transition behavior of perforated plate structures for structural bandgap

regulation [133], and designed new types of actuators [134] using such structural

materials. Furthermore, the development of microscale perforated plate structures [137]

and tunable perforated plate structures [138] has also greatly expanded the potential

application scenarios for these structural materials.

Indeed, many perforated plate structures have inherent monostable characteristics,

meaning that their deformed states require external forces to be maintained. To

achieve specific functionalities, these structures often rely on the coordination of external

physical fields [139, 140]. Various methods are employed for state transformation and

stability maintenance in such materials, including temperature fields [141], magnetic

fields [142], shape memory materials [132], pneumatic drive [143], and more. These

external influences facilitate the implementation of desired functions in the perforated

plate structures.

2.3. Negative stiffness mechanical metamaterials based on shell structures

Shell structures, such as spherical and conical shells (Fig. 5(a-b)), can exhibit

negative stiffness and multi-stable behavior when subjected to loading [144–148].

Compared to other negative stiffness elements, shell structures are advantageous in terms

of tuning due to their cavity property [149]. Additionally, shell structures often possess

pseudo-bistable characteristics, meaning that after maintaining a deformed steady state

for a period of time, the structure gradually returns to its initial state, as shown in

Fig. 5(c). These pseudo-bistable characteristics [149] hold great promise in the field of

deployable structures, as the structure can automatically revert from the deformed state

to the initial state without external force intervention. Given these unique properties,

spherical and conical shells are commonly employed in the design of NSMMs.

The common telescopic straw we often use for beverages is actually composed
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Figure 5: (a) Spherical shell structure [145] (Copyright 2014, Elsevier), (b) conical shell

structure [147] (CC BY 4.0), (c) pseudo-bistable characteristics of shell structures [146]

(Copyright 2012, Elsevier).

of multiple conical shells arranged in series. The ability of the straw to stretch and

shrink reflects the presence of a multi-stable phenomenon. Drawing inspiration from this

design, a 3D pixel mechanical metamaterial [150] with negative stiffness and multistable

properties has been developed (Fig. 6(a)). These metamaterials exhibit remarkable

mechanical programmability. Tan et al. have also designed NSMMs utilizing conical

shells, including the tridirectional NSMM [71, 149] and the bio-inspired NSMM [147].

Research results have shown that the bio-inspired NSMM (Fig. 6(b)) outperforms

certain commercial packaging materials, such as air bubble film and foams, in terms

of mechanical properties.

Spherical shells are widely utilized in the construction of NSMMs [152] as well.

Udani et al. [144] introduced a programmable metamaterial with highly tunable stiffness

by utilizing locally bistable spherical shells, as depicted in Fig. 6(c). Meanwhile,

Jia et al. [153] presented a mechanical metamaterial employing thin spherical shells

that exhibits negative stiffness, negative bulk modulus, and negative Poisson’s ratio

simultaneously. Apart from spherical and conical shells, curved shell structures

[151, 154–156] also possess negative stiffness and bistable characteristics. Fig. 6(d)

displays a typical NSMM [151] constructed using curved shell elements. Currently,

mainstream shell structures [157–159] are generated by rotating and sweeping beam

elements, while diverse design options are available with certain special shell forms [160].

2.4. Negative stiffness mechanical metamaterials based on multiple magnets system

The interaction between magnets can be characterized by repulsion and attraction,

which is determined by the relative positions of the magnets. By harnessing this

magnetic interaction, it is possible to achieve negative stiffness and develop bi-stable

systems [72]. The advantage of magnet-based interaction lies in its non-contact

nature, which eliminates concerns related to structural fatigue and offers the potential

for extended service life. Previous studies [161] have shown that the strength of
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Figure 6: (a) An 3D pixel mechanical metamaterial [150] based on conical shells

(Copyright 2019, Jhon Wiley and Sons), (b) bio-inspired NSMMs [147] based on conical

shells (CC BY 4.0), (c) programmable metamaterials with highly tunable stiffness [144]

based on spherical shells (Copyright 2021, Elsevier), (d) typical NSMMs constructed

with curved shell element [151] (Copyright 2019, Elsevier).

the magnetic force is directly proportional to the square of the magnetic induction

intensity. Therefore, introducing magnets with high magnetic induction intensity,

such as superconducting magnets [162], has the potential to enhance the mechanical

performance of metamaterials.

In recent years, numerous studies [72, 163–169] have focused on harnessing the

potential of magnets to construct NSMMs. Alderson et al. [163] and Dudek et al.

[164] designed double-negative mechanical metamaterials that exhibit negative stiffness

and negative Poisson’s ratio simultaneously (Fig. 7(a-b)). Tan et al. [72] conducted

theoretical analyses to determine the key parameters that influence the mechanical

performance of magnet systems and identified the optimal system layout for energy

trapping. Additionally, Tan et al. [165] introduced a shear-induced NSMM capable of

effectively cushioning glancing mechanical impacts (Fig. 7(c)). Seyedkanani et al. [166]

developed a mechanical metamaterial with negative incremental torsional stiffness by

arranging permanent magnets in a circular pattern. This design was then utilized to

create a tunable fluid-free rotary metadamper that dissipates energy through repeated

snap-back instabilities (Fig. 7(d)).
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Figure 7: (a-b) Double-negative mechanical metamaterials [163, 164] based on multiple

magnets system (Copyright 2016, Jhon Wiley and Sons. Copyright 2018, The Royal

Society(U.K.)), (c) shear-induced NSMM [165] based on multiple magnets system

(Copyright 2019, Elsevier), (d) negative incremental torsional stiffness mechanical

metamaterial [166] based on multiple magnets system (Copyright 2022, John Wiley

and Sons).

2.5. Negative stiffness mechanical metamaterials based on origami

Origami [170–180] and kirigami [181–183], the art of paper folding and cutting,

also exhibit negative stiffness and multistable behavior. Origami has evolved into

a design framework applicable to various engineering fields [175]. Multistable

origami/kirigami structures have garnered significant attention [174] due to their

potential to enhance controlling stability and improve energy utilization efficiency

during shape-reconfiguration processes. Fang et al. [175, 184], through extensive

research, have made notable contributions to this field. Their work includes

proposing folding multi-stable stacked-origami [175], programmable self-locking origami

mechanical metamaterials [184], and multistable origami metamaterials (Fig. 8(a)) with

reprogrammable mechanical properties [177]. They have also studied the nonlinear

dynamical characteristics of multi-stable series origami structures [185]. Furthermore,

Chen et al. [174] presented a novel class of multistable origami honeycombs that are

lightweight, scalable in three-dimensional space, and offer flexible and easy designability

(Fig. 8(b)). Filipov et al. [170] explored the mechanical behavior of origami hyperbolic

paraboloids and constructed a bistable thin sheet structure (Fig. 8(c)).

Indeed, kirigami, the art of paper cutting, can be applied to construct NSMMs as

well. Pasini et al. [186] perforated various cut motifs into a rubber sheet, introducing

a class of architected materials that exhibit both auxeticity (negative Poisson’s ratio)

and structural bistability. Many multistable kirigami metamaterials [183,187–189] have

been developed based on similar strategies. Furthermore, certain kirigami structures
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Figure 8: (a) Multistable origami metamaterials with reprogrammable mechanical

property [177] (Copyright 2023, Elsevier), (b) Multistable origami honeycombs [174]

(Copyright 2023, Elsevier), (c) bistable thin sheet structure [170] (Copyright 2018,

Elsevier).

can exhibit negative stiffness or multistability under out-of-plane loading. For instance,

Yang et al. [181] demonstrated that by adjusting the geometric configuration of a

kirigami structure, bistable behavior can be achieved, and the mechanical properties

can be controlled through locally reversible steady-state transformations. Virk et

al. [182] proposed a kirigami structure that exhibits a negative stiffness effect under

flat compression.

2.6. Other novel structural forms

Column buckling is indeed a common form of structural instability, and elastic

rod structures are frequently employed in the construction of NSMMs [190–196] (Fig.

9(a-b)). Research studies [193] have indicated that energy-absorbing materials utilizing

elastic rod structures exhibit significant potential for high-strain impact applications.

One advantage is that their performance is minimally affected by loading rate, making

them effective in absorbing and dissipating energy under dynamic loading conditions.

The phenomenon of instability caused by mutual compression of substructures

is another promising mechanism for achieving negative stiffness. One example of

this is the ’snap-fit’ structures [197], which are typical mechanical metamaterials that

utilize mutual compression to obtain negative stiffness properties (Fig. 9(c)). Bertoldi

et al. [198] designed a phase transition metamaterial by alternating soft crystals of

different sizes. Under loading, the compression of the crystals causes a change in

the relative positions of smaller soft crystals, resulting in a phase transition effect.

Jin et al. [74] employed a similar concept to design an energy-absorbing multi-stable

metamaterial that combines rigid components and stretchable components (Fig. 9(d)).

The stretchable component maintains the structure’s integrity and controls the mode

of phase transition. Friction between the rigid components dissipates energy when

the structure is subjected to a load. The sleeved structure is another example that
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Figure 9: (a-b) NSMMs based on elastic rod structures [190, 193] (Copyright 2020,

Elsevier. Copyright 2021, Jhon Wiley and Sons), (c) NSMMs based on snap-fit

behavior [197] (Copyright 2023, Elsevier), (d) multi-stable metamaterial combining rigid

components and stretchable components [74] (Copyright 2019, Jhon Wiley and Sons),

(e) sleeve-typed NSMMs [99] (Copyright 2019, Elsevier).

utilizes the compression-instability mechanism to achieve negative stiffness and multi-

stable effects. Zhu et al. [99] designed a sleeve-typed NSMM with toothed structures

on cylinder walls. The friction-compression and instability between the inner and outer

sleeves not only achieved negative stiffness and multi-stable effects but also exhibited

high energy absorption performance (Fig. 9(e)). Other NSMMs designed based on this

mechanism can also be found in the literature [199–201].

In addition, there are some less popular schemes for achieving negative stiffness

behavior, such as the design of omnidirectional NSMMs based on spring (elasic wire)

[202], and the block negative stiffness structures [203]. The laminates [204] can

be equipped with multistable property, but are rarely used to constrcut mechanical

metamaterials.

3. Application of negative stiffness mechanical metamaterials

The application exploration of NSMMs is still in the laboratory stage. Potential

application fields mainly include [205] energy absorption, actuators, deployable

structures, morphing sturtucres, vibration control, etc. The following are the details:
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3.1. Energy absorption

NSMMs exhibit remarkable potential in the field of energy absorption, with

applications found across various sectors including transportation vehicle collisions,

athlete protection, and safeguarding precision instruments and valuable items. While

traditional energy-absorbing materials rely on mechanisms such as plastic deformation

of metals, fragmentation of brittle materials, and velocity-related viscoelastic processes,

these methods typically suffer from repeatability and velocity-related effects. In

contrast, NSMMs offer effective solutions to these challenges, providing advantages such

as the ability to accommodate large deformations, absence of rebound after impact, and

adjustable impact response amplitudes [206]. In terms of development, early NSMMs

[207] relied on the damping properties of base materials for energy absorption, but

recent advancements have introduced two innovative mechanisms: the energy trapping

mechanism [110,150,160] and the twinkling mechanism [45,46,101,104,208,209], which

enable efficient energy absorption.

Figure 10: (a) Energy trapping mechanism of multistable metamaterials [110]

(Copyright 2015, Jhon Wiley and Sons), (b) micro-scale multilayer metamaterials

[210] (Copyright 2011, American Chemical Society), (c) twinkling mechanism [101]

(Copyright 2015, Elsevier).

Shan et al. [110] firstly demonstrated the energy trapping mechanism with a beam

typed NSMM. This metamaterial has the capability to capture mechanical energy from

external sources and convert it into strain energy stored within the structure itself, as

depicted in Fig. 10(a). To prevent structure recovery and the release of strain energy, it

is essential for this type of metamaterial to possess multi-stable properties. The energy

trapping mechanism offers several advantages, including reusability, effective suppression

of shock acceleration response, and minimal velocity effects. Building upon this concept,
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Pan et al. [150] designed a pixel metamaterial that not only captures energy but also

exhibits self-adaptive characteristics, thereby ensuring stable protection of impacted

objects and preventing secondary damage.

The ”twinkling” mechanism represents an intriguing and significant energy

absorption strategy in NSMMs. Daraio et al. [210,211] first discovered this phenomenon

in micro-scale multilayer metamaterials, as illustrated in Fig. 10(b), and conducted

experimental verifications. The crux [101] of this mechanism lies in the relationship

between the energy absorption efficiency and the number of cells connected in series.

When only a small number of cells (e.g., 1, 2, 3, etc.) are connected, the loading

and unloading response curves exhibit extensive overlap, indicating minimal dissipated

energy. However, as the number of connected cells increases, the energy absorption

efficiency progressively improves. At a certain point, the rate of change in energy

absorption and dissipation efficiency starts to diminish, eventually reaching a plateau,

as depicted in Fig. 10(c). The ”twinkling” mechanism suggests that the energy

absorption and dissipation efficiency of NSMMs is independent of velocity effects,

and the viscoelasticity of the base material has minimal influence on the structure’s

energy absorption efficiency. The ”twinkling” mechanism has been experimentally and

theoretically verified by Frenzel et al. [45] and Liu et al [104]. Frenzel et al. [45]

designed a micro-scale negative stiffness energy absorption device using curved beams

and provided a physical explanation for the ”twinkling” phenomenon. They posited that

the ”twinkling” behavior is akin to the hysteresis observed in the loading and unloading

process of metal materials. When a single metal crystal acts as a nonlinear spring unit

for tension and compression, hysteresis does not occur. However, the mechanical model

of numerous gathered metal crystals resembles countless springs in series. Under loading

and unloading conditions, this configuration manifests the hysteresis phenomenon.

The reusability of NSMMs is attributed to the fact that their structural deformation

remains within the elastic range. To achieve significant recoverable local strain during

loading, soft materials with high elastic strain are commonly employed as the base

material in most NSMM designs. However, the utilization of soft materials poses a

challenge to the energy absorption performance of NSMMs due to their low strength and

stiffness. Wang et al. [108] theoretically demonstrated that even introducing a stronger

base material like stainless steel narrows down the design space available, thereby further

limiting the performance of NSMMs. Using traditional metal materials as the base

material will actually lower the performance under the premise of ensuring reusability.

As a result, enhancing the performance of NSMMs has become a crucial issue in their

development process [212].

Recent studies have offered some solutions to enhance the energy absorption

capabilities of NSMMs. Pasini et al. [107] utilized rigid materials to design a multistable

metamaterial and demonstrated its durability through cyclic testing. The metamaterials

presented, composed of sturdy base materials, exhibit both bistability and durability

even after enduring 10,000 cycles. As illustrated in Fig. 9(e), Zhu et al. [99]

introduced a sleeve-type multistable structure founded on the ’friction-compression’
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Figure 11: (a) Negative stiffness mechanical metamaterial made of fiber-reinforced resin-

based composites [213] (Copyright 2022, Elsevier), (b) experiment setups of high-speed

impact on NSMMs [214] (Copyright 2023, Elsevier).

(mutual compression) instability mechanism. This innovation achieves remarkably high

energy absorption performance by leveraging friction between the inner and outer sleeves

during the loading process.

Addressing the demanding prerequisites of the ’twinkling’ mechanism, which

necessitates a specific number of serial units, and the energy trapping mechanism, which

relies on materials with multistable characteristics, various studies have explored the

integration of ’composite materials’ to enhance the energy absorption capabilities of

NSMMs. For instance, Cortes et al. [106] introduced a composite NSMM configuration

by interconnecting curved beam units with viscoelastic polymers in parallel, all while

preserving negative stiffness behavior. Meanwhile, Tan et al. [70] proposed a strategy

that involves incorporating fillers to enhance the mechanical performance of NSMMs.

Furthermore, techniques such as structural topology optimization [215–218], machine

learning [118], and the introduction of fiber-reinforced resin-based composites [213,219],

as illustrated in Fig. 11(a), have been employed to optimize the performance of such

structures.”

Beyond the aforementioned investigations, a substantial body of research [110,150,

220–224] has delved into the response characteristics of NSMMs subjected to dynamic

impact at low speeds. These studies have yielded promising results, highlighting

NSMMs’ ability to effectively dampen acceleration response amplitudes. Multistable

metamaterials, in particular, exhibit intriguing traits, including the absence of rebound

and the prevention of secondary damage [110]. Li et al. [214] conducted dynamic

mechanical assessments of NSMMs subjected to high-speed impacts. The findings

underscored NSMMs’ capacity to maintain a layer-by-layer collapse mode even when

subjected to high-speed impacts. Furthermore, to adapt NSMMs to complex impact

environments, researchers have introduced various structural enhancements. These

innovations include the proposal of multi-directional NSMMs [76, 102, 225–228] and

cylindrical NSMMs [229–231].
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Apart from NSMMs, there are also some new structural materials that have

reusability. These mainly include soft structural materials [232], aerogel materials [38],

and metal micro-lattice materials [233], among others. From the current state of

research, NSMMs have greater advantages in buffering and energy absorption over these

other materials.

3.2. Actuators

Compared to traditional soft actuators, bistable and multistable soft actuators have

at least following advantages [234]: fast movement and amplified force owing to the

snap-through behavior, no additional energy consumption to maintain the deformed

shape, rich available deformed configurations. Moreover, these actuators can be driven

by various forms of physical excitation, including magnetic fields [235], pneumatic

pressurization [236], temperature [237], moisture [238], light [239], and electricity [240].

Many of the negative stiffness (bistable) elements mentioned above find practical

applications in the development of advanced soft actuators. For instance, Chi et al. [241]

constructed pre-curved 2D beam-like bending actuators and 3D doming actuators by

bonding stress-free active layer with embedded pneumatic channels to a uniaxially or

biaxially pre-stretched elastomeric strip or disk (Fig 12(a)). Faber et al. [242] employed

multistable patterned dome-shaped sheets to design a pneumatic driven soft gripper,

where the gripping and releasing actions are achieved through the transformation of

the domes’ multistable states (see Fig. 12(b)). Additionally, Kaufmann et al. [243]

assembled a robotic arm using bistable origami modules, as depicted in Fig. 12(c).

These origami modules offer versatility, allowing for low bending stiffness or behaving

like a stiff link with the capability to switch between their two stable states. Further

pertinent research on this subject can be found in the literature [243–245].

The innovative actuators mentioned above have paved the way for the creation of

a wide range of novel soft robots. For instance, Yang et al. [134] have designed a series

of soft robots by integrating pneumatic driving devices with a sealed perforated plate

structure. These soft robots are capable of performing multiple functions, including

gripping, underwater propulsion, and crawling. Researchers believe that these soft

robots address the limitations of traditional ’hard’ robots, such as their heavy weight and

low efficiency. Additionally, soft robots are more cost-effective. Chen et al. [247] have

developed a fish-shaped robot that achieves directional propulsion through the bistable

mechanism of a curved beam. This robot is powered by shape memory material, which

undergoes deformation upon temperature stimulation in water, causing the curved beam

structure to snap and enabling directional swimming. Yin et al. [78, 246] have applied

the bistable mechanism to design soft robots with enhanced mobility efficiency, such as

the butterfly stroke-like soft swimmer (see Fig. 13(a)) and spine-inspired soft robots

(see Fig. 13(b)). The snap-through behavior inherent in negative stiffness (bistable)

structures allows for small-scale driving to trigger a large-scale response, resulting in

improved response efficiency [78,248–250].
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Figure 12: (a) 2D beam-like bending actuators and 3D doming actuators [241]

(Copyright 2020, Jhon Wiley and Sons), (b) pneumatic driven soft gripper based on

multistable patterned dome-shaped sheets [242] (CC BY 4.0), (c) robotic arm via

assembling bistable origami modules [243] (Copyright 2014, Mary Ann Liebert Inc.

) .

Figure 13: (a) Butterfly stroke–like soft swimmer [246] (CC BY 4.0), (b) spine-inspired

soft robots [78] (CC BY 4.0).

3.3. Deployable structures

Deployable structures hold significant promise across various industrial sectors

due to their ability to undergo predictable transformations and assume multiple

predetermined configurations while following specified paths [251]. In recent years,

multistable mechanical metamaterials have gained prominence in the design of

deployable structures. These materials offer the advantage of maintaining structural

stability in various states, including the initial state, under loading, and in a deformed

state. They also enable high stretch ratios and volume changes before and after achieving

a steady-state transition [111].
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Friedman et al. [252] proposed a periodic cylindrical truss deployable structure,

as shown in Fig. 14(a). The structure consists of a relatively soft elastic truss and

a relatively hard transverse fixed frame, exhibiting a snap-back phenomenon during

loading. Haghpanah et al. [111] and Chen et al. [253] independently designed a series

of reconfigurable metamaterials using beam structures, which can achieve large volume

and shape changes before and after deformation. Inspired by origami art, Melancon et

al. [171] designed rigid-walled deployable structures that are multistable and inflatable.

These structures can be deployed through a single fluidic pressure input and can form

metre-scale arches and emergency shelters. Bobbert et al. [254] used bi-stable elements

to design deployable meta-implants, which are compact in retracted state, allowing them

to be brought to the surgical site with minimum invasiveness, and deployed to take their

full-size load-bearing shape after in place (Fig. 14(b)).

Compared to the traditional deployable structures, many novel drive methods have

been taken to transform the multistable deployable structures. For example, Zareei

et al. [255] realized structure with a bistable linkage as a robust mechanism quickly

deployed via transition waves. Che et al. [256] demonstrated that the pseudo-bistability

of the printed viscoelastic metastructures can be tuned by adjusting the temperature,

and the multistbale structure can be deployed by triggering the pseudo-bistability

transformation. These easily driveable deployable structures will greatly facilitate the

application of NSMMs.

Figure 14: (a) Deployable truss structure [252] (Copyright 2013, Elsevier), (b)

deployable meta-implants [254] (CC BY 3.0).

3.4. Morphing structures

The definitions of deployable and morphing structures can be somewhat nebulous,

and their characteristics often exhibit significant overlap. To distinguish between the

two structural forms, authors have summarized their differences as follows: Deployable

structures, sometimes referred to as foldable structures, primarily emphasize the rate of

volume change or stretch ratio before and after structural deformation. These structures

typically exhibit periodic patterns. In contrast, morphing structures are more commonly

employed to achieve self-functional changes through structural deformation [257].

Morphing structures, harnessing the advantages of multi-stable behavior, have

found extensive applications in our daily lives [259], exemplified by commonplace items
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Figure 15: (a) Morphing structure with three stable states: plane, concave, and convex

[204] (Copyright 2012, Elsevier), (b) morphing meta-surfaces [258] (CC BY 4.0).

like hair clips and glasses cases. These everyday objects incorporate clever designs that

leverage multi-stable behavior to achieve structural deformation. Moreover, research

and applications involving multi-stable structures extend to various domains [260,261].

Daynes et al. [262] devised a flap device boasting two equilibrium states, capable of

deflecting downward by 10 degrees and maintaining robust load-bearing capacity in this

configuration without spontaneous rebound. Schults et al. [263] introduced a bistable

convex rectangular wing structure, capable of undergoing steady-state transformation

under torsional forces. Furthermore, multi-stable structures have been explored in the

realm of scalable wings [79]. Dai et al. [204] designed a morphing structure with three

stable states—plane, concave, and convex—by combining four identical bistable plates,

as illustrated in Fig. 15(a). Another significant category of multi-stable morphing

structures includes reconfigurable meta-surfaces [80, 257, 258] (see Fig. 15(b)), which

hold great importance in aeronautical systems and building applications.”

The morphing structures discussed earlier rely on external stimuli to initiate state

transitions but can maintain their stable states without the need for ongoing external

forces once deformation occurs. In contrast, there exists another category of morphing

structures that lack inherent multi-stable behavior but can change and sustain their

stable states through external stimuli. These structures primarily utilize shape memory

materials, fluid-flexible composite materials, mechanical driving mechanisms, and other

approaches to achieve deformation [264]. Compared to these alternative structures,

multi-stable morphing structures offer distinct advantages, such as simpler designs

and lower power consumption. This makes them particularly advantageous in various
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applications.

3.5. Vibration control

The application of NSMMs in the field of vibration control is mainly divided into

three categories: one category utilizes the nonlinear mechanical response of NSMMs to

improve the damping performance; another category utilizes the multi-stable property

of NSMMs to adjust the bandgap of the structure and achieve the effect of vibration

isolation [265]; the third category is to introduce positive stiffness structures into

NSMMs to construct quasi-zero stiffness metamaterials [266–268].

Figure 16: (a) Improving structure’s damping through negative stiffness elements [77]

(Copyright 2017, Elsevier); (b) vibration isolator based on negative stiffness mechanical

metamaterials [148] (Copyright 2020, Elsevier); (c) quasi-zero stiffness mechanical

metamaterial [268] (Copyright 2020, Elsevier).

Haghpanah et al. [77] introduced an innovative damper design that involves

connecting positive stiffness springs in series with a negative stiffness structure, as

depicted in Fig. 16(a). This design exploits the snap-through behavior of the negative

stiffness element induced by the series spring to achieve damping performance that

surpasses the limits of conventional structural materials. The fundamental principle

of inducing snap-through behavior in the negative stiffness element through a series

spring can be found in the referenced literature [269]. Leveraging this principle, Sefi

et al. [148] devised a novel type of isolator, as illustrated in Fig. 16(b). The study

demonstrates that, regardless of variations in vibration amplitude or frequency, the
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force transmitted from the environment through the isolator remains filtered below the

designated threshold.

The multi-stable metamaterials can be used to achieve vibration isolation by

controlling the bandgap. Bertoldi et al. [126] studied the influence of deformation and

steady-state transition of perforated plate structures under axial compression on the

bandgap. The research results show that the bandgap of the structure changes slowly

before the plate structure reaches the buckling critical value. Once the structure becomes

unstable, the bandgap will undergo a sudden change. The researchers believe that this

completely reversible steady-state transition process can be applied to the design of

acoustic switches. Shan et al. [133] improved the tunable properties of material dynamic

response by controlling the loading direction to trigger different mode transition paths

of elastic perforated plate structures consisting of triangular and circular hole arrays.

Chronopoulos et al. [270] added negative stiffness units to periodic honeycomb materials

and studied the sound insulation performance of this integrated material by theoretical

methods. The research shows that this combined design has excellent sound insulation

performance over a wide frequency range. The essence of this research is also to use the

local resonance of negative stiffness units to achieve the change of the bandgap. Similar

work with the above research ideas can be seen in references [271,272].

In addition to the above perforated plate metamaterials, a small amount of research

has utilized NSMMs with beam elements to realize wave control. For example, Meaud et

al. [273,274] designed an elastic wave propagation control system that can be used as an

acoustic switch, using a multi-stable structure composed of curved beams. Goldsbeery et

al. [275] designed an acoustic metamaterial using curved beams, with unique properties

of certain five-mode metamaterials. There are also cases where vibration reduction has

been achieved through phase transition characteristics of other structural forms. For

instance, Babaee et al. [139] designed a tunable bandgap metamaterial using an elastic

spiral structure.

Zhou et al. [268] have conducted extensive research in the field of quasi-zero stiffness

metamaterials, such as proposing a quasi-zero stiffness metamaterial consisting of folding

beams and buckling beams, as shown in the Fig. 16(c). The material can open an elastic

wave band gap in the low-frequency region while ensuring load-bearing performance.

Considering the great demand for low-frequency vibration reduction and isolation,

the quasi-zero stiffness isolation mechanism based on NSMMs has great application

potential.

3.6. Other applications

Apart from the applications mentioned above, NSMMs also have a wide range

of potential applications in other fields. For example, NSMMs have good application

prospects in areas such as packaging processes [276], medical implants [83, 163, 186],

customized mechanical responses [150,277–285], vibration energy harvesting [286], logic

gates [81, 183, 187, 287, 288], non-reciprocal materials [289, 290], mechanical storage
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devices [159,291] (Fig. 17), and etc.

Figure 17: Application of NSMMs in (a) medical implants [83] (CC BY 4.0), (b)

customized mechanical responses [277] (Copyright 2021, Jhon Wiley and Sons), (c)

logic gates [183] (Copyright 2021, Elsevier).

4. Conclusion

This paper offers an in-depth review and introduction to the evolving landscape

of NSMMs and their current applications. Recent strides in additive manufacturing

technology have propelled NSMMs to the forefront, unveiling vast potential across

various domains, including energy absorption, vibration and noise mitigation, deployable

structures, and medical implants. While NSMMs have shown remarkable promise, they

remain in a developmental phase, with considerable ground to cover before reaching

widespread commercial maturity. In the realm of energy absorption, NSMMs face the

challenge of bridging the performance gap compared to other materials. Addressing this

hurdle can be achieved through topological optimization and the incorporation of high-

performance base materials. In the field of vibration and noise reduction, NSMMs must

harness the capabilities of smart materials to deliver superior performance across broader

frequency ranges. Deployable structures and medical implants emerge as promising

areas for immediate NSMM applications, but further optimization is imperative to

align performance with practical use cases. The future holds the potential for NSMMs

to revolutionize various industries, but it requires ongoing research, development, and

strategic application to fully unlock their capabilities.
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