

Negative Stiffness Mechanical Metamaterials: A Review

Xiaojun Tan^{1,*}, Bo Cao¹, Xin Liu², Shaowei Zhu³, Shuai Chen²,
Muamer Kadic^{4,*}, Bing Wang^{2,*}

¹School of Civil Aviation, Northwestern Polytechnical University, Xi'an 710072, PR China

²National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, P.R. China

³College of Aerospace Engineering, Chongqing University, Chongqing 400030, China

⁴Université de Franche-Comté, Institut FEMTO-ST, CNRS, 25000 Besançon, France

E-mail: xiaojun_tan1@163.com, muamer.kadic@univ-fcomte.fr,
wangbing86@hit.edu.cn

September 2023

Abstract. Metamaterials have thrived in recent years, with negative stiffness mechanical metamaterials emerging as an essential branch. Extensive research in the past decade has yielded fruitful results in this field. This work encompasses an in-depth exploration of the origin of negative stiffness behavior, along with detailed demonstrations of the implementation mechanism and construction methods used in negative stiffness mechanical metamaterials. Furthermore, the paper highlights the diverse range of applications for these metamaterials, including energy absorption, advanced actuators, deployable and morphing structures, vibration control, and more. Lastly, a brief glimpse into the future development direction of this metamaterial is proposed.

Contents

1	Introduction	2
2	Construction/Concept of negative stiffness mechanical metamaterials	4
2.1	Negative stiffness mechanical metamaterials based on beam elements	5
2.2	Negative stiffness mechanical metamaterials based on perforated plate	6
2.3	Negative stiffness mechanical metamaterials based on shell structures	7
2.4	Negative stiffness mechanical metamaterials based on multiple magnets system	8
2.5	Negative stiffness mechanical metamaterials based on origami	10
2.6	Other novel structural forms	11

<i>CONTENTS</i>	2
3 Application of negative stiffness mechanical metamaterials	12
3.1 Energy absorption	13
3.2 Actuators	16
3.3 Deployable structures	17
3.4 Morphing structures	18
3.5 Vibration control	20
3.6 Other applications	21
4 Conclusion	22
5 Acknowledgement	23
6 Reference	23

1. Introduction

The concept of metamaterials originated in the field of electromagnetic materials [1–6] but has since been extended to various domains, encompassing optical [7–9], thermal [10–14], acoustic [15–19], and mechanical metamaterials [20–28]. Mechanical metamaterials are a type of structural materials that achieve unique mechanical properties through microstructure design rather than altering chemical composition [29–31]. In the present day, mechanical metamaterials mainly include [27] pentamode metamaterials [32], compression-twist coupling metamaterials [33–37], ultra-property metamaterials [38–40], and metamaterials with negative constant such as negative compressibility [41–43], negative stiffness [44–46], negative thermal expansion coefficient [47], and negative Poisson’s ratio [48–58]. Additionally, drivable [59], adaptive [60–62], programmable [63] metamaterials, as well as origami and kirigami materials [64–69], also fall within the realm of mechanical metamaterials.

Negative stiffness mechanical metamaterials (NSMMs) have gained significant attention in recent years as a critical area of metamaterial research. They are known for their unconventional mechanical properties and vast potential applications. NSMMs exhibit traits such as elastic buckling, multistability, and negative stiffness, which make them suitable for various purposes, as depicted in Fig. 1. These applications include energy absorption [76], actuators [78], deployable structures [79], morphing structures [80], vibration control [77], and more [81, 83].

Research on negative stiffness behavior has a historical foundation dating back to the 1930s [84]. Negative stiffness behavior is characterized by an increase in deformation of a structure or material resulting in a decrease in load [85, 86], or by a region on the load-displacement curve with a negative tangent slope. It’s important to note that the study of negative stiffness structures typically excludes behavior caused by structural fracture or failure. Some literature also refers to this behavior as negative incremental stiffness [87, 88]. The occurrence of negative stiffness behavior is often accompanied by a snap-through phenomenon, depicted by the red line in Fig. 2.

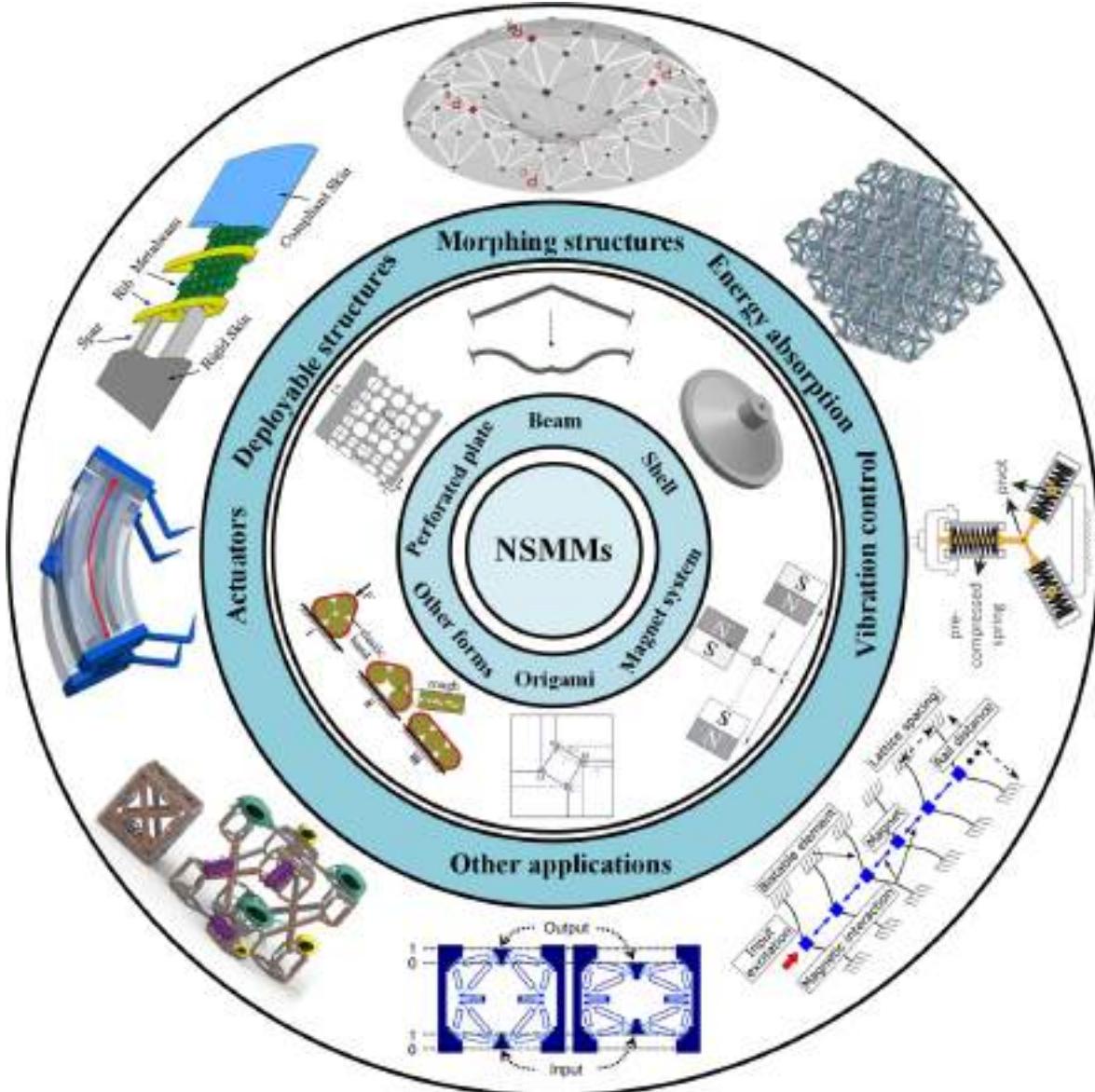


Figure 1: Overview of negative stiffness mechanical metamaterials' construction concept [70–75] (Copyright 2019, Elsevier. Copyright 2020, Elsevier. Copyright 2021, Elsevier. Copyright 2022, Elsevier. Copyright 2019, Jhon Wiley and Sons. Copyright 2016, Royal Society of Chemistry) and possible application field, including energy absorption [76] (Copyright 2019, Elsevier), vibration control [77] (Copyright 2017, Elsevier), actuator [78] (CC BY 4.0), deployable structures [79] (Copyright 2022, Elsevier), morphing structures [80] (Copyright 2021, Elsevier), and etc [80–83] (CC BY 4.0).

Snap-through refers to the dynamic transition of an elastic system's equilibrium from a critical point to a stable equilibrium point that is not adjacent [74]. Previously, structural instability was strictly avoided due to the catastrophic consequences it could entail, such as building collapses [89]. However, in the 21st century, there has been a shift in academic understanding towards skillfully utilizing unstable phenomena rather

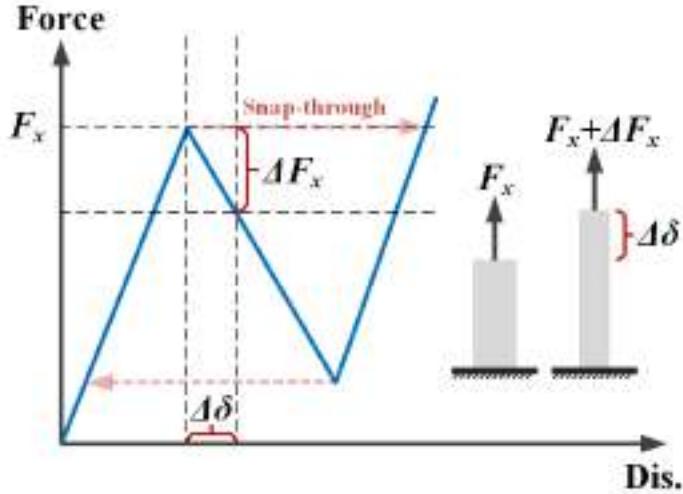


Figure 2: Diagram of negative stiffness response: increase of deformation results in a decrease in load, $\Delta F_x < 0$.

than solely avoiding them. NSMMs are a result of harnessing structural instability for practical applications [89].

Negative stiffness mechanisms have found widespread use in industries, particularly in the field of micro-electromechanical systems (MEMS) [90–92]. This is due to their advantages of simple structures, low cost, fast response, and the absence of a power supply requirement. Furthermore, emerging applications like microfluidics [93] have demonstrated significant potential. In contrast, the development of NSMMs started relatively late, and research in this area is primarily focused on structural design. Several mechanical issues pertaining to NSMMs remain unresolved, and there is limited exploration of their applications. The objective of this review is to introduce the construction methods of NSMMs and highlight their potential applications. It is intended to serve as a valuable reference for scholars working in related fields.

2. Construction/Concept of negative stiffness mechanical metamaterials

Negative stiffness mechanical metamaterials (NSMMs) are typically comprised of an array of negative stiffness elements, displaying periodic negative stiffness responses when subjected to loading [94]. The literature [95] demonstrates early examples of NSMMs exhibiting periodic characteristics. NSMMs can be further categorized as monostable or multistable. Multistable NSMMs can maintain deformed shapes, while achieving this effect with monostable NSMMs is challenging. Structures such as curved beams (cosine beams) and inclined beams (V-shaped beams) have gained popularity in NSMM design due to their simplicity and extensive research on their nonlinear responses. These structures have accumulated substantial early work [96–98] in the field. In addition to these, multi-magnet systems [72], perforated plate structures [63], rotating shell

structures [84], origami [73], and other structural forms [99,100] are commonly employed in NSMMs design, as depicted in Fig. 1.

2.1. Negative stiffness mechanical metamaterials based on beam elements

Curved beams (cosine beams) and inclined beams (V-shaped beams) are commonly used in the design of NSMMs [45, 101–105] due to their simplicity. Early designs involving curved beam elements include two-dimensional NSMMs [101] (Fig. 3(a)) and micro-scale NSMMs [45], both of which exhibit negative stiffness characteristics under compressive loads. Curved beam elements can also be employed to create NSMMs with negative stiffness under tensile loads [88]. These structures achieve negative stiffness and multistable behavior through the buckling instability of the beams. Typically, these beam structures are made of soft materials, although some research has explored their implementation with metal substrates [106–109].

NSMMs [110–112] can also be constructed using inclined beam elements (Fig. 3(b)). Both curved and inclined beam elements can be designed as a double-layer configuration [113] (Fig. 3(c)), which effectively prevents local asymmetrical buckling and maintains structural performance [114, 115]. Comparative studies [116] between inclined and curved beam elements reveal that curved beam elements offer slight advantages in mechanical performance and designability, while inclined beam elements are simpler in terms of structure.

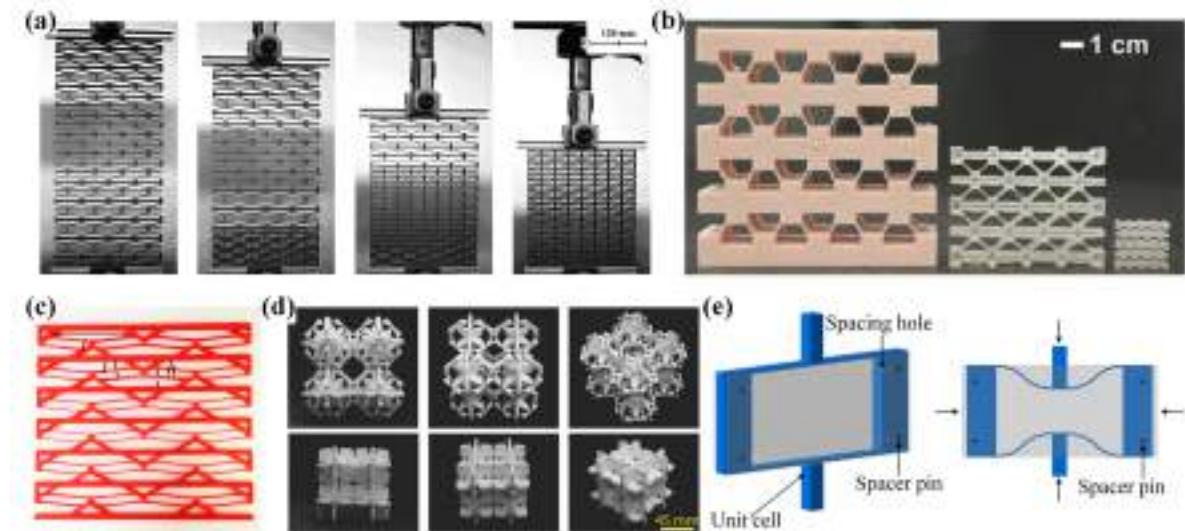


Figure 3: (a) NSMM with curved beam elements [101] (Copyright 2015, Elsevier), (b) NSMM with inclined beam elements [110] (Copyright 2015, John Wiley and Sons), (c) NSMM with double-layer beam elements [113] (CC BY 4.0), (d) NSMM with variable cross-section beams [111] (Copyright 2016, John Wiley and Sons), (e) pre-compressed beam element [117] (Copyright 2020, Elsevier).

In addition to curved and inclined beam elements, NSMMs can also be designed

using other beam structures, such as pre-compressed beams [117] and variable cross-section beams [118–120]. Variable cross-section beams [111] are characterized by varying thicknesses along the axial direction. Careful design of the beam’s thickness and width in the axial direction allows for specific performance requirements to be achieved. Fig. 3(d) [111] showcases multi-stable reconfigurable metamaterials constructed using variable cross-section beams. These materials offer significant shape and volume changes, and the incorporation of variable cross-section beams notably enhances their energy absorption capacity. Pre-compressed beam structures refer to beams that have been compressed and buckled along their axial direction [117], as depicted in Fig. 3(e). Furthermore, porous beam elements generated through topological optimization [121–123] have been utilized in NSMM construction. Research results [121] have demonstrated that porous beam structures exhibit approximately twice the energy dissipation of solid beams, leading to improved performance in terms of energy absorption.

2.2. Negative stiffness mechanical metamaterials based on perforated plate

Perforated plate structures, featuring periodically distributed holes with regular shapes (such as circles, squares, and rhombuses) on an elastic plate (Fig. 4(a)), can exhibit negative stiffness and multistable properties [124]. These structures, commonly known as phase transition metamaterials, undergo structural transformations through instability. Topological design allows these materials to achieve negative stiffness or negative Poisson’s ratio effects under compression or tension loading [125]. Current research on these materials primarily focuses on phase transition paths, phase transition morphologies, and the regulation of various functions before and after phase transition, such as acoustic [126] and optical [127] regulation, as well as energy absorption [63].

From a developmental perspective, perforated plate structures are derived forms of beam-type NSMMs. In theoretical studies, these structures are often approximated as periodic structures composed of variable cross-section beams. Similarly, previous research [128–130] has also explored phase transition structures constructed using periodic beam structures. Although the emphasis may not primarily be on the negative stiffness effect in these structural materials, due to their reliance on the instability principle and significant similarities, they are also classified within the scope of NSMMs.

In recent years, significant progress has been made in the development of perforated plate structures, leading to numerous notable research studies. For instance, Jie et al. [131] and Jiang et al. [132] explored the use of membrane structures with periodically distributed pores, combined with shape memory materials, to achieve optical regulation. Bastiaan et al. [75] designed a tunable, multi-stable, negative stiffness metamaterial utilizing a plate structure with periodically distributed pores (Fig. 4(b)). This study demonstrated the ability to regulate negative stiffness behavior and damping performance by adjusting the transverse pre-strain of the structure. Extensive research on perforated plate structures has been carried out by Bertoldi et al [124, 126, 133–135]. They investigated the influence of pore shape on structural buckling modes, proposed

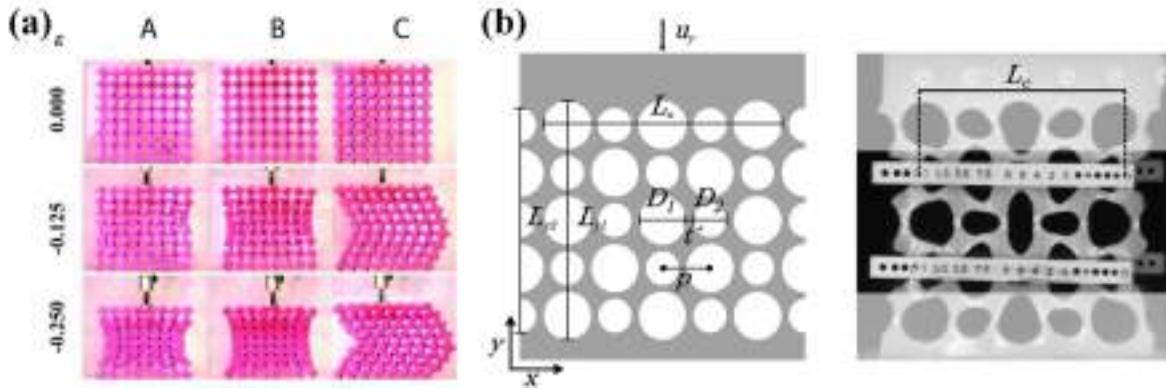


Figure 4: (a) Typical perforated plate structures [124] (Copyright 2012, Jhon Wiley and Sons), (b) tunable and multi-stable NSMMs based on perforated plate structures [75] (Copyright 2005, Royal Society of Chemistry).

a porous phase transition structure in the form of a cylindrical shell [136], utilized the phase transition behavior of perforated plate structures for structural bandgap regulation [133], and designed new types of actuators [134] using such structural materials. Furthermore, the development of microscale perforated plate structures [137] and tunable perforated plate structures [138] has also greatly expanded the potential application scenarios for these structural materials.

Indeed, many perforated plate structures have inherent monostable characteristics, meaning that their deformed states require external forces to be maintained. To achieve specific functionalities, these structures often rely on the coordination of external physical fields [139, 140]. Various methods are employed for state transformation and stability maintenance in such materials, including temperature fields [141], magnetic fields [142], shape memory materials [132], pneumatic drive [143], and more. These external influences facilitate the implementation of desired functions in the perforated plate structures.

2.3. Negative stiffness mechanical metamaterials based on shell structures

Shell structures, such as spherical and conical shells (Fig. 5(a-b)), can exhibit negative stiffness and multi-stable behavior when subjected to loading [144–148]. Compared to other negative stiffness elements, shell structures are advantageous in terms of tuning due to their cavity property [149]. Additionally, shell structures often possess pseudo-bistable characteristics, meaning that after maintaining a deformed steady state for a period of time, the structure gradually returns to its initial state, as shown in Fig. 5(c). These pseudo-bistable characteristics [149] hold great promise in the field of deployable structures, as the structure can automatically revert from the deformed state to the initial state without external force intervention. Given these unique properties, spherical and conical shells are commonly employed in the design of NSMMs.

The common telescopic straw we often use for beverages is actually composed

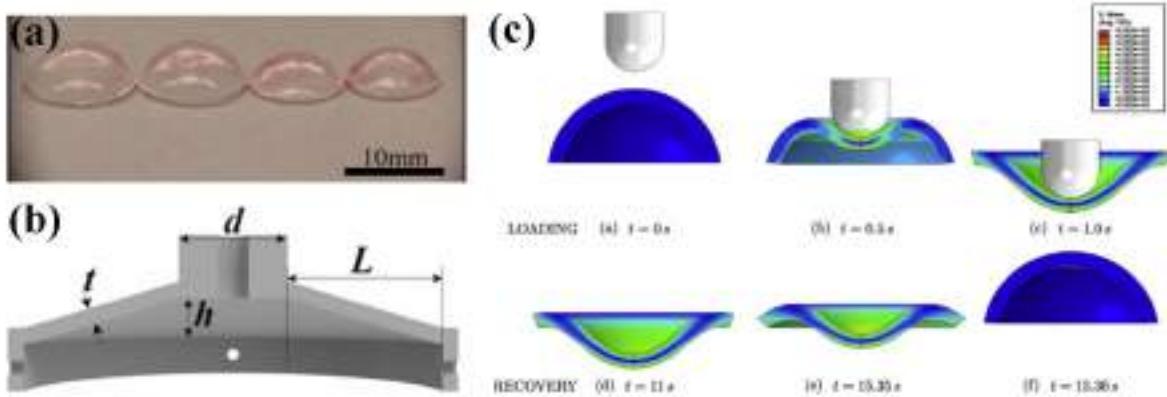


Figure 5: (a) Spherical shell structure [145] (Copyright 2014, Elsevier), (b) conical shell structure [147] (CC BY 4.0), (c) pseudo-bistable characteristics of shell structures [146] (Copyright 2012, Elsevier).

of multiple conical shells arranged in series. The ability of the straw to stretch and shrink reflects the presence of a multi-stable phenomenon. Drawing inspiration from this design, a 3D pixel mechanical metamaterial [150] with negative stiffness and multistable properties has been developed (Fig. 6(a)). These metamaterials exhibit remarkable mechanical programmability. Tan et al. have also designed NSMMs utilizing conical shells, including the tridirectional NSMM [71, 149] and the bio-inspired NSMM [147]. Research results have shown that the bio-inspired NSMM (Fig. 6(b)) outperforms certain commercial packaging materials, such as air bubble film and foams, in terms of mechanical properties.

Spherical shells are widely utilized in the construction of NSMMs [152] as well. Udani et al. [144] introduced a programmable metamaterial with highly tunable stiffness by utilizing locally bistable spherical shells, as depicted in Fig. 6(c). Meanwhile, Jia et al. [153] presented a mechanical metamaterial employing thin spherical shells that exhibits negative stiffness, negative bulk modulus, and negative Poisson's ratio simultaneously. Apart from spherical and conical shells, curved shell structures [151, 154–156] also possess negative stiffness and bistable characteristics. Fig. 6(d) displays a typical NSMM [151] constructed using curved shell elements. Currently, mainstream shell structures [157–159] are generated by rotating and sweeping beam elements, while diverse design options are available with certain special shell forms [160].

2.4. Negative stiffness mechanical metamaterials based on multiple magnets system

The interaction between magnets can be characterized by repulsion and attraction, which is determined by the relative positions of the magnets. By harnessing this magnetic interaction, it is possible to achieve negative stiffness and develop bi-stable systems [72]. The advantage of magnet-based interaction lies in its non-contact nature, which eliminates concerns related to structural fatigue and offers the potential for extended service life. Previous studies [161] have shown that the strength of

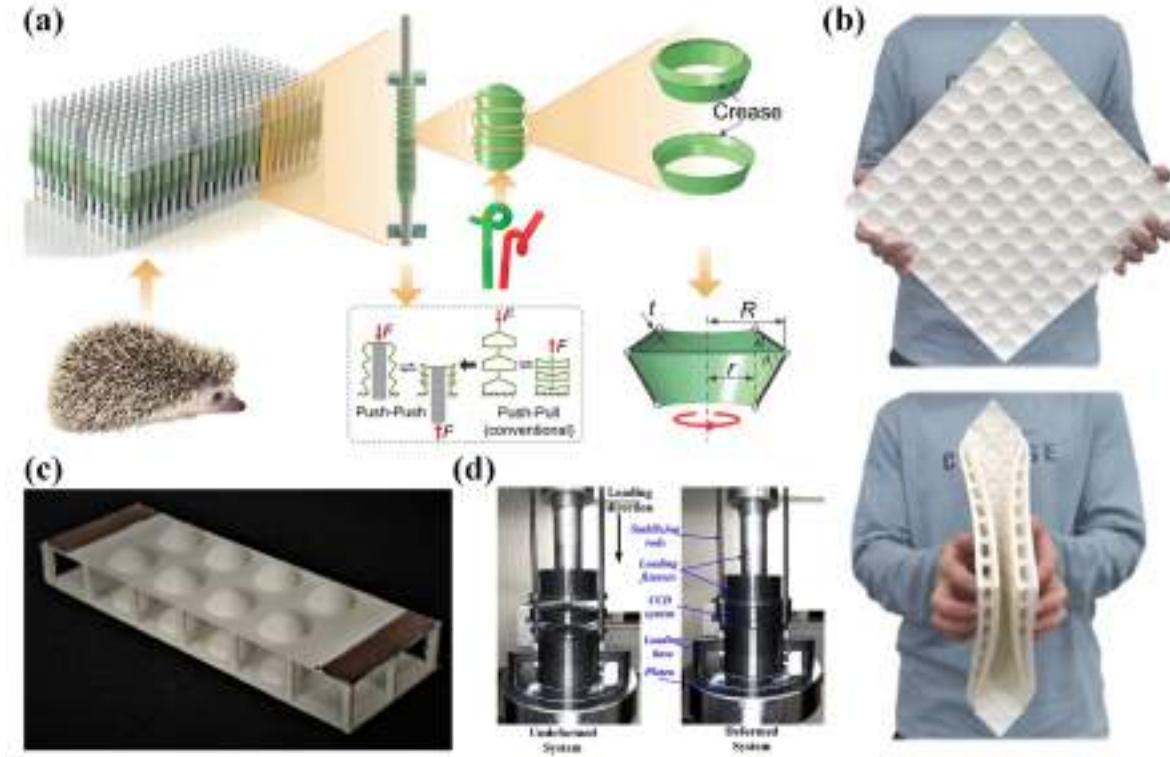


Figure 6: (a) An 3D pixel mechanical metamaterial [150] based on conical shells (Copyright 2019, Jhon Wiley and Sons), (b) bio-inspired NSMMs [147] based on conical shells (CC BY 4.0), (c) programmable metamaterials with highly tunable stiffness [144] based on spherical shells (Copyright 2021, Elsevier), (d) typical NSMMs constructed with curved shell element [151] (Copyright 2019, Elsevier).

the magnetic force is directly proportional to the square of the magnetic induction intensity. Therefore, introducing magnets with high magnetic induction intensity, such as superconducting magnets [162], has the potential to enhance the mechanical performance of metamaterials.

In recent years, numerous studies [72, 163–169] have focused on harnessing the potential of magnets to construct NSMMs. Alderson et al. [163] and Dudek et al. [164] designed double-negative mechanical metamaterials that exhibit negative stiffness and negative Poisson’s ratio simultaneously (Fig. 7(a-b)). Tan et al. [72] conducted theoretical analyses to determine the key parameters that influence the mechanical performance of magnet systems and identified the optimal system layout for energy trapping. Additionally, Tan et al. [165] introduced a shear-induced NSMM capable of effectively cushioning glancing mechanical impacts (Fig. 7(c)). Seyedkanani et al. [166] developed a mechanical metamaterial with negative incremental torsional stiffness by arranging permanent magnets in a circular pattern. This design was then utilized to create a tunable fluid-free rotary metadamper that dissipates energy through repeated snap-back instabilities (Fig. 7(d)).

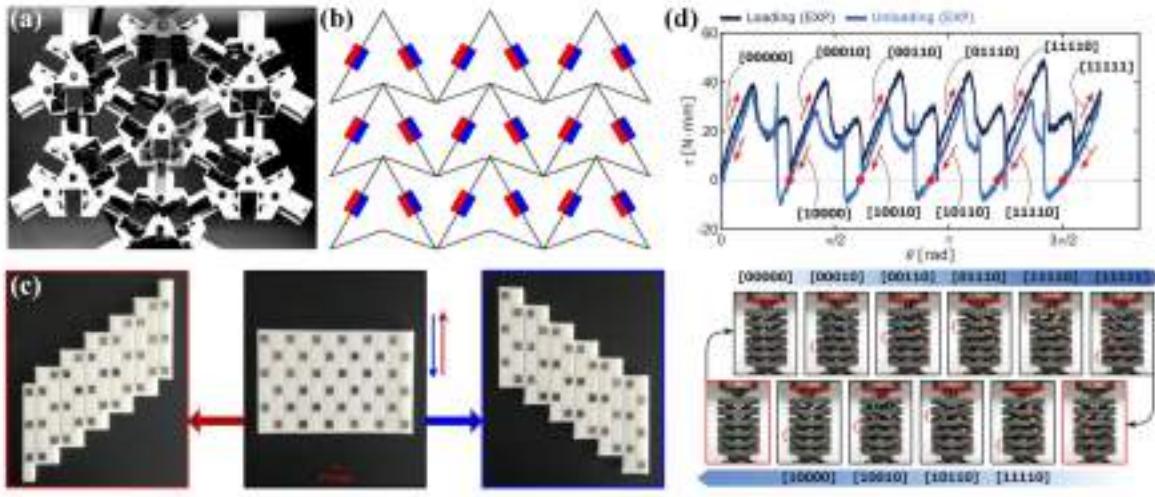


Figure 7: (a-b) Double-negative mechanical metamaterials [163,164] based on multiple magnets system (Copyright 2016, Jhon Wiley and Sons. Copyright 2018, The Royal Society(U.K.)), (c) shear-induced NSMM [165] based on multiple magnets system (Copyright 2019, Elsevier), (d) negative incremental torsional stiffness mechanical metamaterial [166] based on multiple magnets system (Copyright 2022, John Wiley and Sons).

2.5. Negative stiffness mechanical metamaterials based on origami

Origami [170–180] and kirigami [181–183], the art of paper folding and cutting, also exhibit negative stiffness and multistable behavior. Origami has evolved into a design framework applicable to various engineering fields [175]. Multistable origami/kirigami structures have garnered significant attention [174] due to their potential to enhance controlling stability and improve energy utilization efficiency during shape-reconfiguration processes. Fang et al. [175, 184], through extensive research, have made notable contributions to this field. Their work includes proposing folding multi-stable stacked-origami [175], programmable self-locking origami mechanical metamaterials [184], and multistable origami metamaterials (Fig. 8(a)) with reprogrammable mechanical properties [177]. They have also studied the nonlinear dynamical characteristics of multi-stable series origami structures [185]. Furthermore, Chen et al. [174] presented a novel class of multistable origami honeycombs that are lightweight, scalable in three-dimensional space, and offer flexible and easy designability (Fig. 8(b)). Filipov et al. [170] explored the mechanical behavior of origami hyperbolic paraboloids and constructed a bistable thin sheet structure (Fig. 8(c)).

Indeed, kirigami, the art of paper cutting, can be applied to construct NSMMs as well. Pasini et al. [186] perforated various cut motifs into a rubber sheet, introducing a class of architected materials that exhibit both auxeticity (negative Poisson's ratio) and structural bistability. Many multistable kirigami metamaterials [183, 187–189] have been developed based on similar strategies. Furthermore, certain kirigami structures

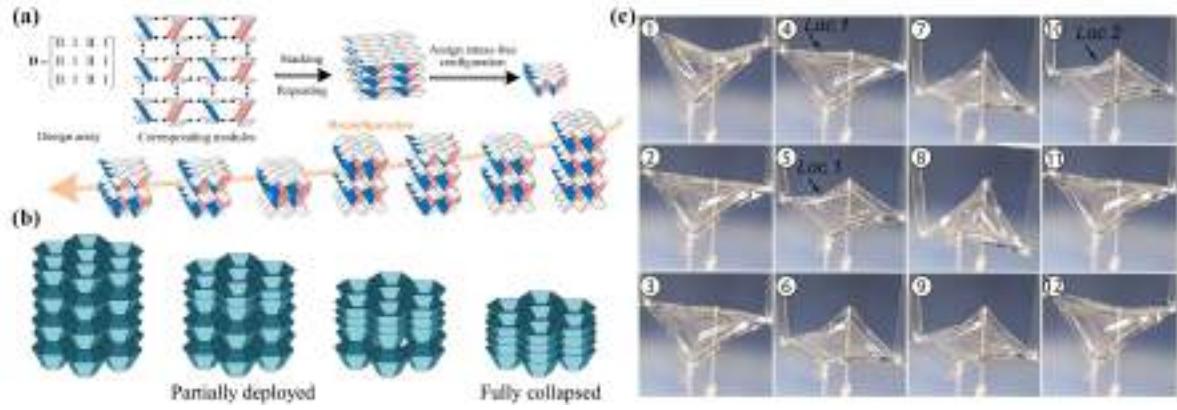


Figure 8: (a) Multistable origami metamaterials with reprogrammable mechanical property [177] (Copyright 2023, Elsevier), (b) Multistable origami honeycombs [174] (Copyright 2023, Elsevier), (c) bistable thin sheet structure [170] (Copyright 2018, Elsevier).

can exhibit negative stiffness or multistability under out-of-plane loading. For instance, Yang et al. [181] demonstrated that by adjusting the geometric configuration of a kirigami structure, bistable behavior can be achieved, and the mechanical properties can be controlled through locally reversible steady-state transformations. Virk et al. [182] proposed a kirigami structure that exhibits a negative stiffness effect under flat compression.

2.6. Other novel structural forms

Column buckling is indeed a common form of structural instability, and elastic rod structures are frequently employed in the construction of NSMMs [190–196] (Fig. 9(a-b)). Research studies [193] have indicated that energy-absorbing materials utilizing elastic rod structures exhibit significant potential for high-strain impact applications. One advantage is that their performance is minimally affected by loading rate, making them effective in absorbing and dissipating energy under dynamic loading conditions.

The phenomenon of instability caused by mutual compression of substructures is another promising mechanism for achieving negative stiffness. One example of this is the 'snap-fit' structures [197], which are typical mechanical metamaterials that utilize mutual compression to obtain negative stiffness properties (Fig. 9(c)). Bertoldi et al. [198] designed a phase transition metamaterial by alternating soft crystals of different sizes. Under loading, the compression of the crystals causes a change in the relative positions of smaller soft crystals, resulting in a phase transition effect. Jin et al. [74] employed a similar concept to design an energy-absorbing multi-stable metamaterial that combines rigid components and stretchable components (Fig. 9(d)). The stretchable component maintains the structure's integrity and controls the mode of phase transition. Friction between the rigid components dissipates energy when the structure is subjected to a load. The sleeved structure is another example that

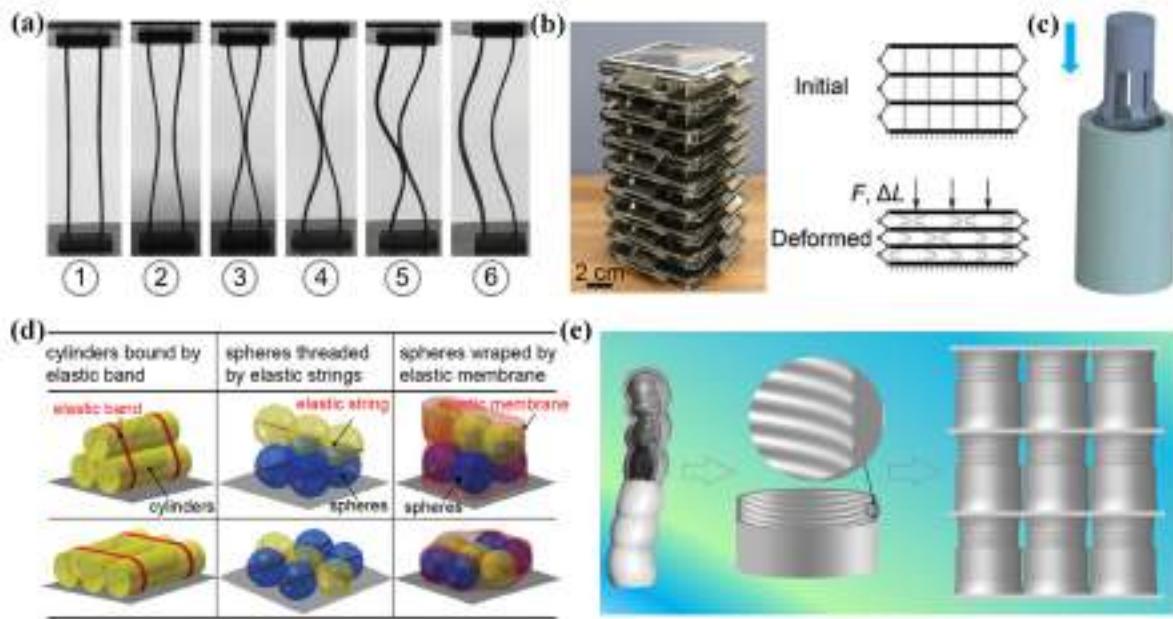


Figure 9: (a-b) NSMMs based on elastic rod structures [190, 193] (Copyright 2020, Elsevier. Copyright 2021, Jhon Wiley and Sons), (c) NSMMs based on snap-fit behavior [197] (Copyright 2023, Elsevier), (d) multi-stable metamaterial combining rigid components and stretchable components [74] (Copyright 2019, Jhon Wiley and Sons), (e) sleeve-typed NSMMs [99] (Copyright 2019, Elsevier).

utilizes the compression-instability mechanism to achieve negative stiffness and multi-stable effects. Zhu et al. [99] designed a sleeve-typed NSMM with toothed structures on cylinder walls. The friction-compression and instability between the inner and outer sleeves not only achieved negative stiffness and multi-stable effects but also exhibited high energy absorption performance (Fig. 9(e)). Other NSMMs designed based on this mechanism can also be found in the literature [199–201].

In addition, there are some less popular schemes for achieving negative stiffness behavior, such as the design of omnidirectional NSMMs based on spring (elastic wire) [202], and the block negative stiffness structures [203]. The laminates [204] can be equipped with multistable property, but are rarely used to construct mechanical metamaterials.

3. Application of negative stiffness mechanical metamaterials

The application exploration of NSMMs is still in the laboratory stage. Potential application fields mainly include [205] energy absorption, actuators, deployable structures, morphing structures, vibration control, etc. The following are the details:

3.1. Energy absorption

NSMMs exhibit remarkable potential in the field of energy absorption, with applications found across various sectors including transportation vehicle collisions, athlete protection, and safeguarding precision instruments and valuable items. While traditional energy-absorbing materials rely on mechanisms such as plastic deformation of metals, fragmentation of brittle materials, and velocity-related viscoelastic processes, these methods typically suffer from repeatability and velocity-related effects. In contrast, NSMMs offer effective solutions to these challenges, providing advantages such as the ability to accommodate large deformations, absence of rebound after impact, and adjustable impact response amplitudes [206]. In terms of development, early NSMMs [207] relied on the damping properties of base materials for energy absorption, but recent advancements have introduced two innovative mechanisms: the energy trapping mechanism [110, 150, 160] and the twinkling mechanism [45, 46, 101, 104, 208, 209], which enable efficient energy absorption.

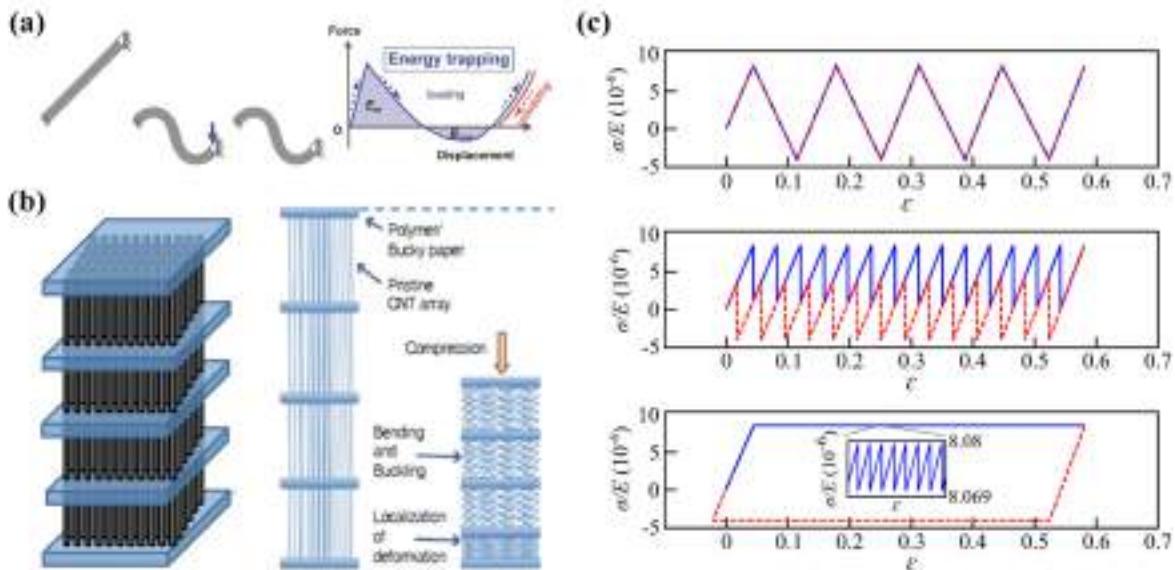


Figure 10: (a) Energy trapping mechanism of multistable metamaterials [110] (Copyright 2015, Jhon Wiley and Sons), (b) micro-scale multilayer metamaterials [210] (Copyright 2011, American Chemical Society), (c) twinkling mechanism [101] (Copyright 2015, Elsevier).

Shan et al. [110] firstly demonstrated the energy trapping mechanism with a beam typed NSMM. This metamaterial has the capability to capture mechanical energy from external sources and convert it into strain energy stored within the structure itself, as depicted in Fig. 10(a). To prevent structure recovery and the release of strain energy, it is essential for this type of metamaterial to possess multi-stable properties. The energy trapping mechanism offers several advantages, including reusability, effective suppression of shock acceleration response, and minimal velocity effects. Building upon this concept,

Pan et al. [150] designed a pixel metamaterial that not only captures energy but also exhibits self-adaptive characteristics, thereby ensuring stable protection of impacted objects and preventing secondary damage.

The "twinkling" mechanism represents an intriguing and significant energy absorption strategy in NSMMs. Daraio et al. [210,211] first discovered this phenomenon in micro-scale multilayer metamaterials, as illustrated in Fig. 10(b), and conducted experimental verifications. The crux [101] of this mechanism lies in the relationship between the energy absorption efficiency and the number of cells connected in series. When only a small number of cells (e.g., 1, 2, 3, etc.) are connected, the loading and unloading response curves exhibit extensive overlap, indicating minimal dissipated energy. However, as the number of connected cells increases, the energy absorption efficiency progressively improves. At a certain point, the rate of change in energy absorption and dissipation efficiency starts to diminish, eventually reaching a plateau, as depicted in Fig. 10(c). The "twinkling" mechanism suggests that the energy absorption and dissipation efficiency of NSMMs is independent of velocity effects, and the viscoelasticity of the base material has minimal influence on the structure's energy absorption efficiency. The "twinkling" mechanism has been experimentally and theoretically verified by Frenzel et al. [45] and Liu et al [104]. Frenzel et al. [45] designed a micro-scale negative stiffness energy absorption device using curved beams and provided a physical explanation for the "twinkling" phenomenon. They posited that the "twinkling" behavior is akin to the hysteresis observed in the loading and unloading process of metal materials. When a single metal crystal acts as a nonlinear spring unit for tension and compression, hysteresis does not occur. However, the mechanical model of numerous gathered metal crystals resembles countless springs in series. Under loading and unloading conditions, this configuration manifests the hysteresis phenomenon.

The reusability of NSMMs is attributed to the fact that their structural deformation remains within the elastic range. To achieve significant recoverable local strain during loading, soft materials with high elastic strain are commonly employed as the base material in most NSMM designs. However, the utilization of soft materials poses a challenge to the energy absorption performance of NSMMs due to their low strength and stiffness. Wang et al. [108] theoretically demonstrated that even introducing a stronger base material like stainless steel narrows down the design space available, thereby further limiting the performance of NSMMs. Using traditional metal materials as the base material will actually lower the performance under the premise of ensuring reusability. As a result, enhancing the performance of NSMMs has become a crucial issue in their development process [212].

Recent studies have offered some solutions to enhance the energy absorption capabilities of NSMMs. Pasini et al. [107] utilized rigid materials to design a multistable metamaterial and demonstrated its durability through cyclic testing. The metamaterials presented, composed of sturdy base materials, exhibit both bistability and durability even after enduring 10,000 cycles. As illustrated in Fig. 9(e), Zhu et al. [99] introduced a sleeve-type multistable structure founded on the 'friction-compression'



Figure 11: (a) Negative stiffness mechanical metamaterial made of fiber-reinforced resin-based composites [213] (Copyright 2022, Elsevier), (b) experiment setups of high-speed impact on NSMMs [214] (Copyright 2023, Elsevier).

(mutual compression) instability mechanism. This innovation achieves remarkably high energy absorption performance by leveraging friction between the inner and outer sleeves during the loading process.

Addressing the demanding prerequisites of the 'twinkling' mechanism, which necessitates a specific number of serial units, and the energy trapping mechanism, which relies on materials with multistable characteristics, various studies have explored the integration of 'composite materials' to enhance the energy absorption capabilities of NSMMs. For instance, Cortes et al. [106] introduced a composite NSMM configuration by interconnecting curved beam units with viscoelastic polymers in parallel, all while preserving negative stiffness behavior. Meanwhile, Tan et al. [70] proposed a strategy that involves incorporating fillers to enhance the mechanical performance of NSMMs. Furthermore, techniques such as structural topology optimization [215–218], machine learning [118], and the introduction of fiber-reinforced resin-based composites [213, 219], as illustrated in Fig. 11(a), have been employed to optimize the performance of such structures."

Beyond the aforementioned investigations, a substantial body of research [110, 150, 220–224] has delved into the response characteristics of NSMMs subjected to dynamic impact at low speeds. These studies have yielded promising results, highlighting NSMMs' ability to effectively dampen acceleration response amplitudes. Multistable metamaterials, in particular, exhibit intriguing traits, including the absence of rebound and the prevention of secondary damage [110]. Li et al. [214] conducted dynamic mechanical assessments of NSMMs subjected to high-speed impacts. The findings underscored NSMMs' capacity to maintain a layer-by-layer collapse mode even when subjected to high-speed impacts. Furthermore, to adapt NSMMs to complex impact environments, researchers have introduced various structural enhancements. These innovations include the proposal of multi-directional NSMMs [76, 102, 225–228] and cylindrical NSMMs [229–231].

Apart from NSMMs, there are also some new structural materials that have reusability. These mainly include soft structural materials [232], aerogel materials [38], and metal micro-lattice materials [233], among others. From the current state of research, NSMMs have greater advantages in buffering and energy absorption over these other materials.

3.2. *Actuators*

Compared to traditional soft actuators, bistable and multistable soft actuators have at least following advantages [234]: fast movement and amplified force owing to the snap-through behavior, no additional energy consumption to maintain the deformed shape, rich available deformed configurations. Moreover, these actuators can be driven by various forms of physical excitation, including magnetic fields [235], pneumatic pressurization [236], temperature [237], moisture [238], light [239], and electricity [240].

Many of the negative stiffness (bistable) elements mentioned above find practical applications in the development of advanced soft actuators. For instance, Chi et al. [241] constructed pre-curved 2D beam-like bending actuators and 3D doming actuators by bonding stress-free active layer with embedded pneumatic channels to a uniaxially or biaxially pre-stretched elastomeric strip or disk (Fig 12(a)). Faber et al. [242] employed multistable patterned dome-shaped sheets to design a pneumatic driven soft gripper, where the gripping and releasing actions are achieved through the transformation of the domes' multistable states (see Fig. 12(b)). Additionally, Kaufmann et al. [243] assembled a robotic arm using bistable origami modules, as depicted in Fig. 12(c). These origami modules offer versatility, allowing for low bending stiffness or behaving like a stiff link with the capability to switch between their two stable states. Further pertinent research on this subject can be found in the literature [243–245].

The innovative actuators mentioned above have paved the way for the creation of a wide range of novel soft robots. For instance, Yang et al. [134] have designed a series of soft robots by integrating pneumatic driving devices with a sealed perforated plate structure. These soft robots are capable of performing multiple functions, including gripping, underwater propulsion, and crawling. Researchers believe that these soft robots address the limitations of traditional 'hard' robots, such as their heavy weight and low efficiency. Additionally, soft robots are more cost-effective. Chen et al. [247] have developed a fish-shaped robot that achieves directional propulsion through the bistable mechanism of a curved beam. This robot is powered by shape memory material, which undergoes deformation upon temperature stimulation in water, causing the curved beam structure to snap and enabling directional swimming. Yin et al. [78, 246] have applied the bistable mechanism to design soft robots with enhanced mobility efficiency, such as the butterfly stroke-like soft swimmer (see Fig. 13(a)) and spine-inspired soft robots (see Fig. 13(b)). The snap-through behavior inherent in negative stiffness (bistable) structures allows for small-scale driving to trigger a large-scale response, resulting in improved response efficiency [78, 248–250].

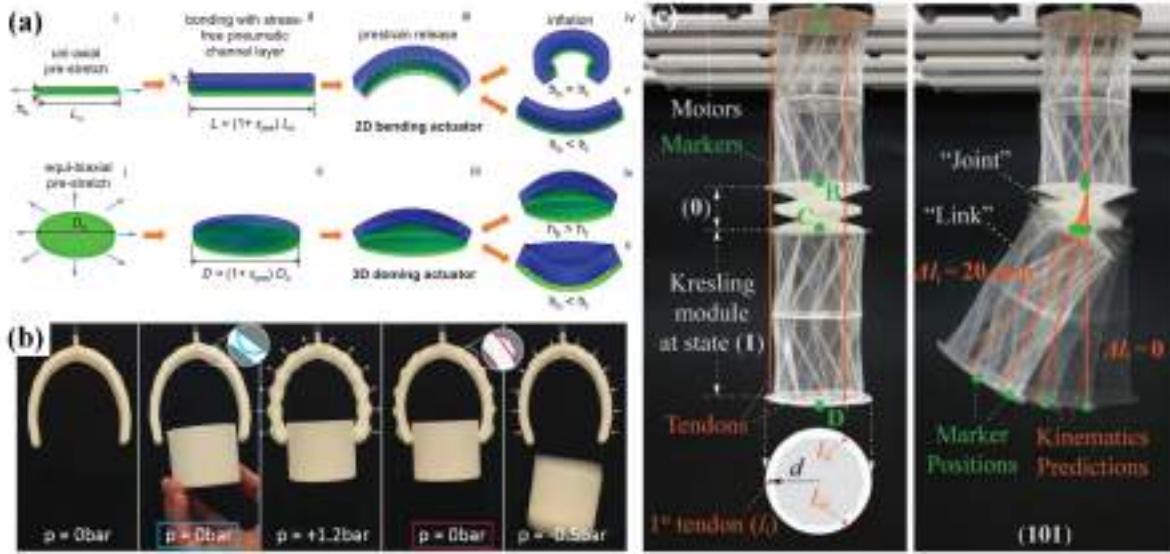


Figure 12: (a) 2D beam-like bending actuators and 3D doming actuators [241] (Copyright 2020, Jhon Wiley and Sons), (b) pneumatic driven soft gripper based on multistable patterned dome-shaped sheets [242] (CC BY 4.0), (c) robotic arm via assembling bistable origami modules [243] (Copyright 2014, Mary Ann Liebert Inc.).

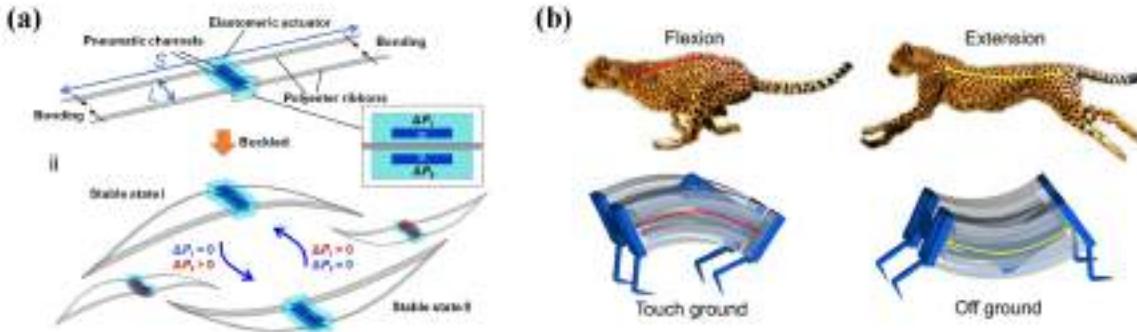


Figure 13: (a) Butterfly stroke-like soft swimmer [246] (CC BY 4.0), (b) spine-inspired soft robots [78] (CC BY 4.0).

3.3. Deployable structures

Deployable structures hold significant promise across various industrial sectors due to their ability to undergo predictable transformations and assume multiple predetermined configurations while following specified paths [251]. In recent years, multistable mechanical metamaterials have gained prominence in the design of deployable structures. These materials offer the advantage of maintaining structural stability in various states, including the initial state, under loading, and in a deformed state. They also enable high stretch ratios and volume changes before and after achieving a steady-state transition [111].

Friedman et al. [252] proposed a periodic cylindrical truss deployable structure, as shown in Fig. 14(a). The structure consists of a relatively soft elastic truss and a relatively hard transverse fixed frame, exhibiting a snap-back phenomenon during loading. Haghpanah et al. [111] and Chen et al. [253] independently designed a series of reconfigurable metamaterials using beam structures, which can achieve large volume and shape changes before and after deformation. Inspired by origami art, Melancon et al. [171] designed rigid-walled deployable structures that are multistable and inflatable. These structures can be deployed through a single fluidic pressure input and can form metre-scale arches and emergency shelters. Bobbert et al. [254] used bi-stable elements to design deployable meta-implants, which are compact in retracted state, allowing them to be brought to the surgical site with minimum invasiveness, and deployed to take their full-size load-bearing shape after in place (Fig. 14(b)).

Compared to the traditional deployable structures, many novel drive methods have been taken to transform the multistable deployable structures. For example, Zareei et al. [255] realized structure with a bistable linkage as a robust mechanism quickly deployed via transition waves. Che et al. [256] demonstrated that the pseudo-bistability of the printed viscoelastic metastructures can be tuned by adjusting the temperature, and the multistable structure can be deployed by triggering the pseudo-bistability transformation. These easily driveable deployable structures will greatly facilitate the application of NSMMs.

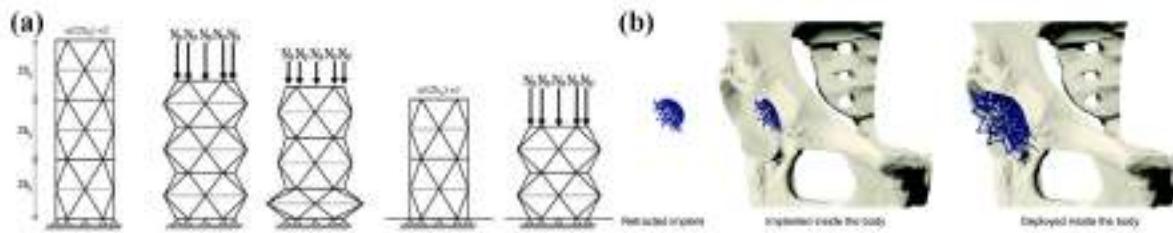


Figure 14: (a) Deployable truss structure [252] (Copyright 2013, Elsevier), (b) deployable meta-implants [254] (CC BY 3.0).

3.4. Morphing structures

The definitions of deployable and morphing structures can be somewhat nebulous, and their characteristics often exhibit significant overlap. To distinguish between the two structural forms, authors have summarized their differences as follows: Deployable structures, sometimes referred to as foldable structures, primarily emphasize the rate of volume change or stretch ratio before and after structural deformation. These structures typically exhibit periodic patterns. In contrast, morphing structures are more commonly employed to achieve self-functional changes through structural deformation [257].

Morphing structures, harnessing the advantages of multi-stable behavior, have found extensive applications in our daily lives [259], exemplified by commonplace items

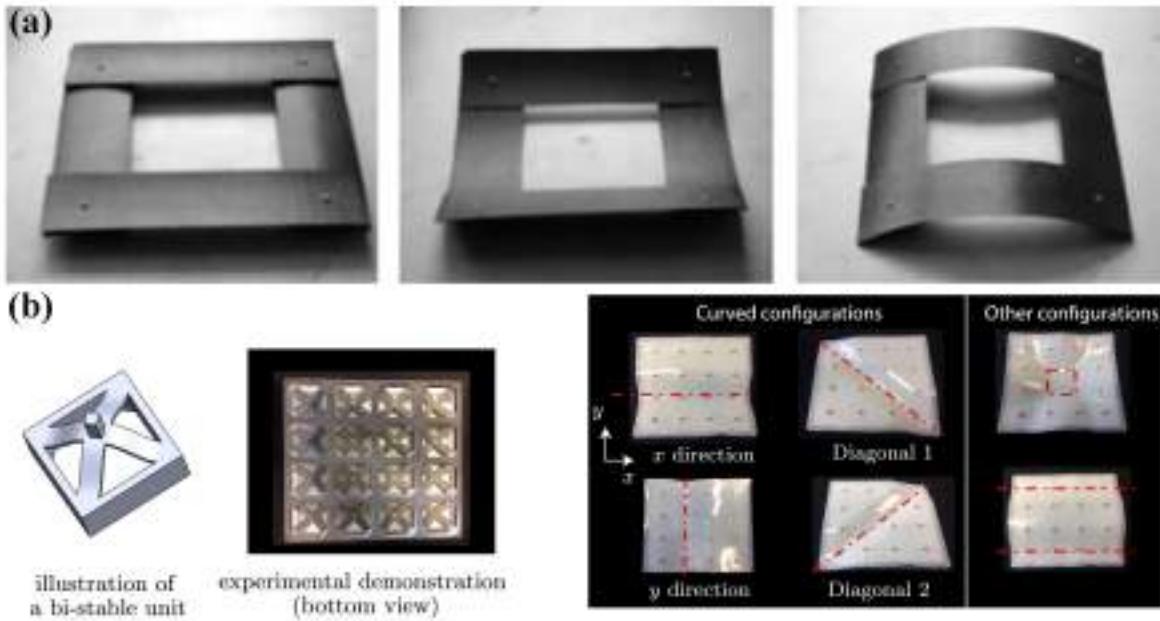


Figure 15: (a) Morphing structure with three stable states: plane, concave, and convex [204] (Copyright 2012, Elsevier), (b) morphing meta-surfaces [258] (CC BY 4.0).

like hair clips and glasses cases. These everyday objects incorporate clever designs that leverage multi-stable behavior to achieve structural deformation. Moreover, research and applications involving multi-stable structures extend to various domains [260, 261]. Daynes et al. [262] devised a flap device boasting two equilibrium states, capable of deflecting downward by 10 degrees and maintaining robust load-bearing capacity in this configuration without spontaneous rebound. Schults et al. [263] introduced a bistable convex rectangular wing structure, capable of undergoing steady-state transformation under torsional forces. Furthermore, multi-stable structures have been explored in the realm of scalable wings [79]. Dai et al. [204] designed a morphing structure with three stable states—plane, concave, and convex—by combining four identical bistable plates, as illustrated in Fig. 15(a). Another significant category of multi-stable morphing structures includes reconfigurable meta-surfaces [80, 257, 258] (see Fig. 15(b)), which hold great importance in aeronautical systems and building applications.”

The morphing structures discussed earlier rely on external stimuli to initiate state transitions but can maintain their stable states without the need for ongoing external forces once deformation occurs. In contrast, there exists another category of morphing structures that lack inherent multi-stable behavior but can change and sustain their stable states through external stimuli. These structures primarily utilize shape memory materials, fluid-flexible composite materials, mechanical driving mechanisms, and other approaches to achieve deformation [264]. Compared to these alternative structures, multi-stable morphing structures offer distinct advantages, such as simpler designs and lower power consumption. This makes them particularly advantageous in various

applications.

3.5. Vibration control

The application of NSMMs in the field of vibration control is mainly divided into three categories: one category utilizes the nonlinear mechanical response of NSMMs to improve the damping performance; another category utilizes the multi-stable property of NSMMs to adjust the bandgap of the structure and achieve the effect of vibration isolation [265]; the third category is to introduce positive stiffness structures into NSMMs to construct quasi-zero stiffness metamaterials [266–268].

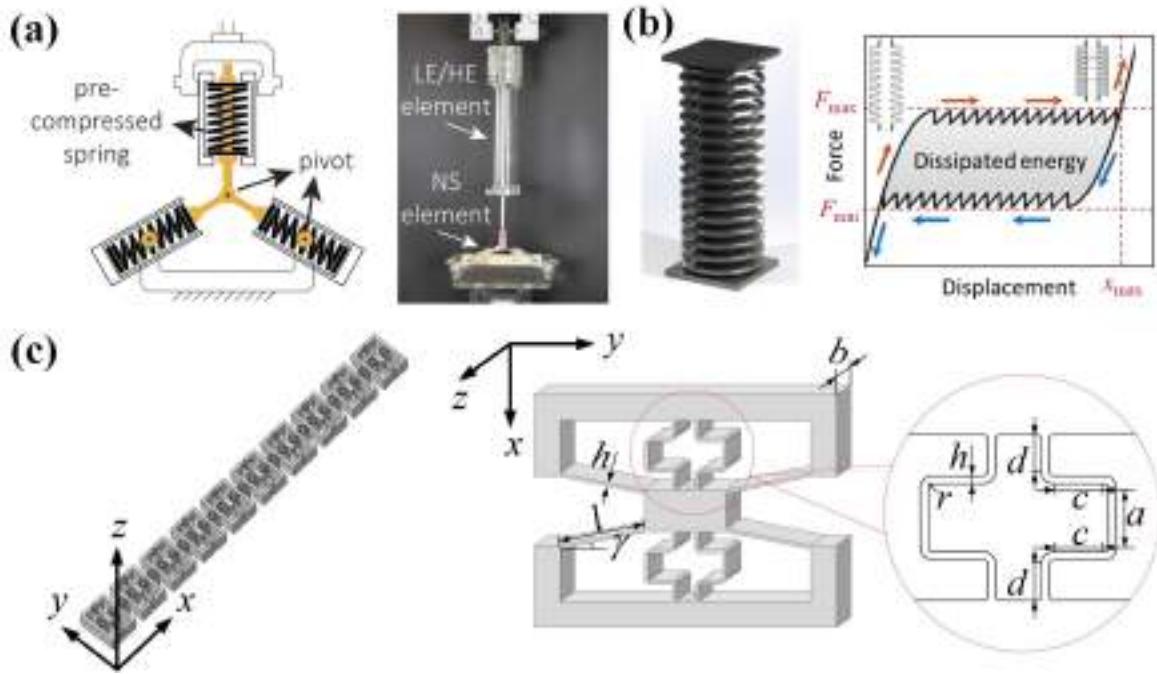


Figure 16: (a) Improving structure's damping through negative stiffness elements [77] (Copyright 2017, Elsevier); (b) vibration isolator based on negative stiffness mechanical metamaterials [148] (Copyright 2020, Elsevier); (c) quasi-zero stiffness mechanical metamaterial [268] (Copyright 2020, Elsevier).

Haghpanah et al. [77] introduced an innovative damper design that involves connecting positive stiffness springs in series with a negative stiffness structure, as depicted in Fig. 16(a). This design exploits the snap-through behavior of the negative stiffness element induced by the series spring to achieve damping performance that surpasses the limits of conventional structural materials. The fundamental principle of inducing snap-through behavior in the negative stiffness element through a series spring can be found in the referenced literature [269]. Leveraging this principle, Sefi et al. [148] devised a novel type of isolator, as illustrated in Fig. 16(b). The study demonstrates that, regardless of variations in vibration amplitude or frequency, the

force transmitted from the environment through the isolator remains filtered below the designated threshold.

The multi-stable metamaterials can be used to achieve vibration isolation by controlling the bandgap. Bertoldi et al. [126] studied the influence of deformation and steady-state transition of perforated plate structures under axial compression on the bandgap. The research results show that the bandgap of the structure changes slowly before the plate structure reaches the buckling critical value. Once the structure becomes unstable, the bandgap will undergo a sudden change. The researchers believe that this completely reversible steady-state transition process can be applied to the design of acoustic switches. Shan et al. [133] improved the tunable properties of material dynamic response by controlling the loading direction to trigger different mode transition paths of elastic perforated plate structures consisting of triangular and circular hole arrays. Chronopoulos et al. [270] added negative stiffness units to periodic honeycomb materials and studied the sound insulation performance of this integrated material by theoretical methods. The research shows that this combined design has excellent sound insulation performance over a wide frequency range. The essence of this research is also to use the local resonance of negative stiffness units to achieve the change of the bandgap. Similar work with the above research ideas can be seen in references [271, 272].

In addition to the above perforated plate metamaterials, a small amount of research has utilized NSMMs with beam elements to realize wave control. For example, Meaud et al. [273, 274] designed an elastic wave propagation control system that can be used as an acoustic switch, using a multi-stable structure composed of curved beams. Goldsberry et al. [275] designed an acoustic metamaterial using curved beams, with unique properties of certain five-mode metamaterials. There are also cases where vibration reduction has been achieved through phase transition characteristics of other structural forms. For instance, Babaee et al. [139] designed a tunable bandgap metamaterial using an elastic spiral structure.

Zhou et al. [268] have conducted extensive research in the field of quasi-zero stiffness metamaterials, such as proposing a quasi-zero stiffness metamaterial consisting of folding beams and buckling beams, as shown in the Fig. 16(c). The material can open an elastic wave band gap in the low-frequency region while ensuring load-bearing performance. Considering the great demand for low-frequency vibration reduction and isolation, the quasi-zero stiffness isolation mechanism based on NSMMs has great application potential.

3.6. Other applications

Apart from the applications mentioned above, NSMMs also have a wide range of potential applications in other fields. For example, NSMMs have good application prospects in areas such as packaging processes [276], medical implants [83, 163, 186], customized mechanical responses [150, 277–285], vibration energy harvesting [286], logic gates [81, 183, 187, 287, 288], non-reciprocal materials [289, 290], mechanical storage

devices [159, 291] (Fig. 17), and etc.

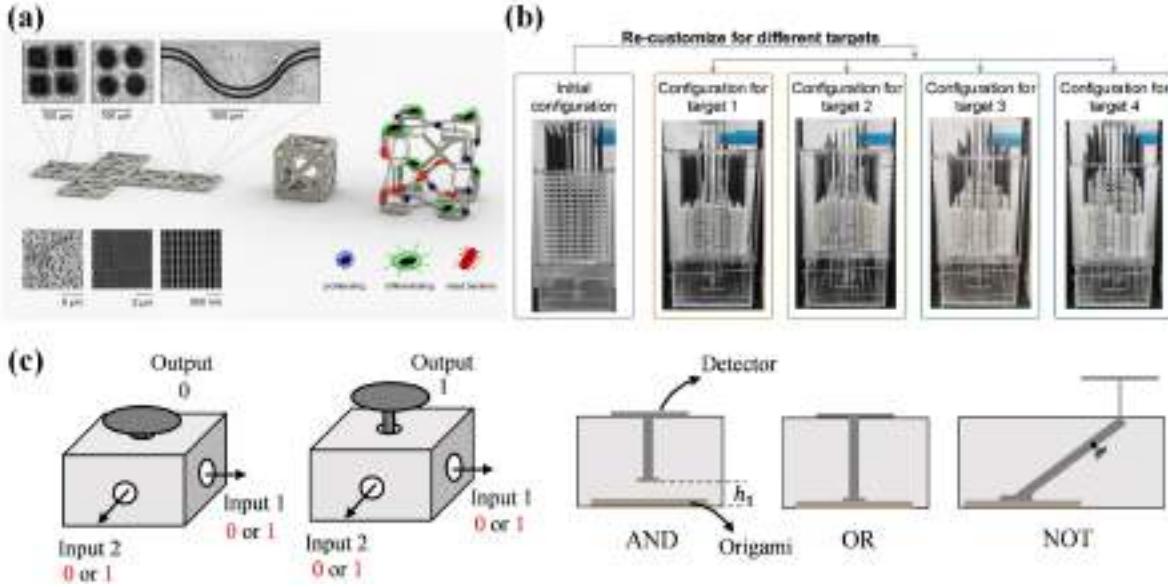


Figure 17: Application of NSMMs in (a) medical implants [83] (CC BY 4.0), (b) customized mechanical responses [277] (Copyright 2021, Jhon Wiley and Sons), (c) logic gates [183] (Copyright 2021, Elsevier).

4. Conclusion

This paper offers an in-depth review and introduction to the evolving landscape of NSMMs and their current applications. Recent strides in additive manufacturing technology have propelled NSMMs to the forefront, unveiling vast potential across various domains, including energy absorption, vibration and noise mitigation, deployable structures, and medical implants. While NSMMs have shown remarkable promise, they remain in a developmental phase, with considerable ground to cover before reaching widespread commercial maturity. In the realm of energy absorption, NSMMs face the challenge of bridging the performance gap compared to other materials. Addressing this hurdle can be achieved through topological optimization and the incorporation of high-performance base materials. In the field of vibration and noise reduction, NSMMs must harness the capabilities of smart materials to deliver superior performance across broader frequency ranges. Deployable structures and medical implants emerge as promising areas for immediate NSMM applications, but further optimization is imperative to align performance with practical use cases. The future holds the potential for NSMMs to revolutionize various industries, but it requires ongoing research, development, and strategic application to fully unlock their capabilities.

5. Acknowledgement

This work was supported by National Natural Science Foundation of China (No. 12302190, 12202084), the Fundamental Research Funds for the Central Universities (No. G2022WD01028), and the Science Foundation of the National Key Laboratory of Science and Technology on Advanced Composites in Special Environments (No. JCKYS2023603C018).

6. Reference

- [1] D. R. Smith, Willie J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz. Composite medium with simultaneously negative permeability and permittivity. *Physical Review Letters*, 84(18):4184, 2000.
- [2] Alexander Münchinger, Li-Yun Hsu, Franziska Fürniss, Eva Blasco, and Martin Wegener. 3d optomechanical metamaterials. *Materials Today*, 59:9–17, 2022.
- [3] Vincent Hahn, Tobias Messer, N Maximilian Bojanowski, Ernest Ronald Curticean, Irene Wacker, Rasmus R Schröder, Eva Blasco, and Martin Wegener. Two-step absorption instead of two-photon absorption in 3d nanoprinting. *Nature Photonics*, 15(12):932–938, 2021.
- [4] KM Ho, Che Ting Chan, and Costas M Soukoulis. Existence of a photonic gap in periodic dielectric structures. *Physical Review Letters*, 65(25):3152, 1990.
- [5] Nikolay I Zheludev and Yuri S Kivshar. From metamaterials to metadevices. *Nature materials*, 11(11):917–924, 2012.
- [6] Thibaut Decoopman, Gérard Tayeb, Stefan Enoch, Daniel Maystre, and Boris Gralak. Photonic crystal lens: from negative refraction and negative index to negative permittivity and permeability. *Physical review letters*, 97(7):073905, 2006.
- [7] M. Shalaev N M Litchinitser. Photonic metamaterials. *Laser Physics Letters*, 5(6):411–420, 2010.
- [8] Lingling Huang, Xianzhong Chen, Holger Mühlenbernd, Hao Zhang, Shumei Chen, Benfeng Bai, Qiaofeng Tan, Guofan Jin, Kok-Wai Cheah, Cheng-Wei Qiu, et al. Three-dimensional optical holography using a plasmonic metasurface. *Nature communications*, 4(1):2808, 2013.
- [9] Pei-Nan Ni, Pan Fu, Pei-Pei Chen, Chen Xu, Yi-Yang Xie, and Patrice Genevet. Spin-decoupling of vertical cavity surface-emitting lasers with complete phase modulation using on-chip integrated jones matrix metasurfaces. *Nature Communications*, 13(1):7795, 2022.
- [10] Qingxiang Ji, Yunchao Qi, Chenwei Liu, Songhe Meng, Jun Liang, Muamer Kadic, and Guodong Fang. Design of thermal cloaks with isotropic materials based on machine learning. *International Journal of Heat and Mass Transfer*, 189, 2022.
- [11] Seok Kim, Sang-Hoon Nam, Seokho Kim, Young Tae Cho, and Nicholas X Fang. Low heat capacity 3d hollow microarchitected reactors for thermal and fluid applications. *Energies*, 15(11):4073, 2022.
- [12] Guoqiang Xu, Xue Zhou, Shuihua Yang, Jing Wu, and Cheng-Wei Qiu. Observation of bulk quadrupole in topological heat transport. *Nature Communications*, 14(1):3252, 2023.
- [13] Liujun Xu, Guoqiang Xu, Jiaxin Li, Ying Li, Jiping Huang, and Cheng-Wei Qiu. Thermal willis coupling in spatiotemporal diffusive metamaterials. *Physical Review Letters*, 129(15):155901, 2022.
- [14] Jun Guo, Guoqiang Xu, Di Tian, Zhiguo Qu, and Cheng-Wei Qiu. A real-time self-adaptive thermal metasurface. *Advanced Materials*, 34(24):2201093, 2022.
- [15] Steven A Cummer, Johan Christensen, and Andrea Alù. Controlling sound with acoustic metamaterials. *Nature Reviews Materials*, 1(3):1–13, 2016.
- [16] Zhiwang Zhang, Ye Tian, Ying Cheng, Qi Wei, Xiaojun Liu, and Johan Christensen. Topological acoustic delay line. *Physical Review Applied*, 9(3):034032, 2018.

- [17] Ming Hui Lu, Liang Feng, and Yan Feng Chen. Phononic crystals and acoustic metamaterials. *Materials Today*, 12(12):34–42, 2009.
- [18] Aleksi Bossart and Romain Fleury. Extreme spatial dispersion in nonlocally resonant elastic metamaterials. *Physical Review Letters*, 130(20):207201, 2023.
- [19] Zhe Zhang, Pierre Delplace, and Romain Fleury. Anomalous topological waves in strongly amorphous scattering networks. *Science Advances*, 9(12):eadg3186, 2023.
- [20] Zhou Hu, Zhibo Wei, Kun Wang, Yan Chen, Rui Zhu, Guoliang Huang, and Gengkai Hu. Engineering zero modes in transformable mechanical metamaterials. *Nature Communications*, 14(1):1266, 2023.
- [21] Quan Zhang, Dengke Guo, and Gengkai Hu. Tailored mechanical metamaterials with programmable quasi-zero-stiffness features for full-band vibration isolation. *Advanced Functional Materials*, 31(33):2101428, 2021.
- [22] Hui Chen, Shaoyun Wang, Xiaopeng Li, and Guoliang Huang. Two-dimensional microtwist modeling of topological polarization in hinged kagome lattices and its experimental validation. *International Journal of Solids and Structures*, 254:111891, 2022.
- [23] Yi Chen, Mahmoud AA Abouelatta, Ke Wang, Muamer Kadic, and Martin Wegener. Nonlocal cable-network metamaterials. *Advanced Materials*, 35(15):2209988, 2023.
- [24] Yi Chen, Jonathan LG Schneider, Michael F Groß, Ke Wang, Sebastian Kalt, Philip Scott, Muamer Kadic, and Martin Wegener. Observation of chirality-induced roton-like dispersion in a 3d micropolar elastic metamaterial. *Advanced Functional Materials*, page 2302699, 2023.
- [25] Xiaofei Guo, Marcelo Guzmán, David Carpentier, Denis Bartolo, and Corentin Coulais. Non-orientable order and non-commutative response in frustrated metamaterials. *Nature*, 618(7965):506–512, 2023.
- [26] David MJ Dykstra, Coen Lenting, Alexandre Masurier, and Corentin Coulais. Buckling metamaterials for extreme vibration damping. *Advanced Materials*, page 2301747, 2023.
- [27] Amir A Zadpoor. Mechanical meta-materials. *Materials Horizons*, 3(5):371–381, 2016.
- [28] Katia Bertoldi, Vincenzo Vitelli, Johan Christensen, and Martin Van Hecke. Flexible mechanical metamaterials. *Nature Reviews Materials*, 2(11):1–11, 2017.
- [29] Graeme W Milton. *The theory of composites*. SIAM, 2022.
- [30] Graeme W Milton. Composite materials with poisson’s ratios close to—1. *Journal of the Mechanics and Physics of Solids*, 40(5):1105–1137, 1992.
- [31] J. H. Lee, J. P. Singer, and E. L. Thomas. Micro-/nanostructured mechanical metamaterials. *Advanced Materials*, 24(36):4782–810, 2012.
- [32] T. Buckmann, M. Thiel, M. Kadic, R. Schittny, and M. Wegener. An elasto-mechanical unfeelability cloak made of pentamode metamaterials. *Nature Communication*, 5:4130, 2014.
- [33] I. Fernandez-Corbaton, C. Rockstuhl, P. Ziemke, P. Gumbsch, A. Albiez, R. Schwaiger, T. Frenzel, M. Kadic, and M. Wegener. New twists of 3d chiral metamaterials. *Advanced Materials*, 31(26):1807742, 2019.
- [34] X. Tan, J. A. I. Martinez, G. Ulliac, B. Wang, L. Wu, J. Moughames, M. Raschetti, V. Laude, and M. Kadic. Single-step-lithography micro-stepper based on frictional contact and chiral metamaterial. *Small*, 18(28):e2202128, 2022.
- [35] Chuanqi Yang, Kuijian Yang, Yunpeng Tian, Minghui Fu, and Lingling Hu. Theoretical analysis on the stiffness of compression–torsion coupling metamaterials. *Extreme Mechanics Letters*, 46, 2021.
- [36] Bin-Bin Zheng, Rong-Chang Zhong, Xuan Chen, Ming-Hui Fu, and Ling-Ling Hu. A novel metamaterial with tension-torsion coupling effect. *Materials and Design*, 171, 2019.
- [37] Dexing Qi, Peng Zhang, Wenwang Wu, Kehao Xin, Haitao Liao, Ying Li, Dengbao Xiao, and Re Xia. Innovative 3d chiral metamaterials under large deformation: Theoretical and experimental analysis. *International Journal of Solids and Structures*, 202:787–797, 2020.
- [38] L. R. Meza, S. Das, and J. R. Greer. Strong, lightweight, and recoverable three-dimensional ceramic nanolattices. *Science*, 345(6202):1322–6, 2014.

- [39] Shaowei Zhu, Jiqiang Hu, Xiaojun Tan, Bing Wang, Shuai Chen, and Li Ma. Mechanics of sandwich panels with a buckling-dominated lattice core: The effects of the initial rod curvatures. *Composite Structures*, 251:112669, 2020.
- [40] Xueyan Chen, Qingxiang Ji, Jianzheng Wei, Hufeng Tan, Jianxin Yu, Pengfei Zhang, Vincent Laude, and Muamer Kadic. Light-weight shell-lattice metamaterials for mechanical shock absorption. *International Journal of Mechanical Sciences*, page 105288, 2019.
- [41] D. L. Barnes, W. Miller, K. E. Evans, and A. Marmier. Modelling negative linear compressibility in tetragonal beam structures. *Mechanics of Materials*, 46:123–128, 2012.
- [42] Jingyuan Qu, Muamer Kadic, and Martin Wegener. Three-dimensional poroelastic metamaterials with extremely negative or positive effective static volume compressibility. *Extreme Mechanics Letters*, 22:165–171, 2018.
- [43] Jingyuan Qu, Alexander Gerber, Frederik Mayer, Muamer Kadic, and Martin Wegener. Experiments on metamaterials with negative effective static compressibility. *Physical Review X*, 7(4), 2017.
- [44] Y. C Wang and R. S Lakes. Extreme thermal expansion, piezoelectricity, and other coupled field properties in composites with a negative stiffness phase. *Journal of Applied Physics*, 90(12):6458–6465, 2001.
- [45] T Frenzel, C Findeisen, M Kadic, P Gumbsch, and M Wegener. Tailored buckling microlattices as reusable light-weight shock absorbers. *Advanced Materials*, 28(28):5865–5870, 2016.
- [46] Claudio Findeisen, Jörg Hohe, Muamer Kadic, and Peter Gumbsch. Characteristics of mechanical metamaterials based on buckling elements. *Journal of the Mechanics and Physics of Solids*, 102:151–164, 2017.
- [47] Q. Wang, J. A. Jackson, Q. Ge, J. B. Hopkins, C. M. Spadaccini, and N. X. Fang. Lightweight mechanical metamaterials with tunable negative thermal expansion. *Physical Review Letters*, 117(17):175901, 2016.
- [48] Krzysztof K Dudek, Julio A Iglesias Martínez, Gwenn Ulliac, and Muamer Kadic. Micro-scale auxetic hierarchical mechanical metamaterials for shape morphing. *Advanced Materials*, 34(14):2110115, 2022.
- [49] Krzysztof K Dudek, Julio A Iglesias Martínez, Gwenn Ulliac, Laurent Hirsinger, Lianchao Wang, Vincent Laude, and Muamer Kadic. Micro-scale mechanical metamaterial with a controllable transition in the poisson’s ratio and band gap formation. *Advanced Materials*, page 2210993, 2023.
- [50] Joseph N Grima, Luke Mizzi, Keith M Azzopardi, and Ruben Gatt. Auxetic perforated mechanical metamaterials with randomly oriented cuts. *Advanced materials*, 28(2):385–389, 2016.
- [51] Joseph N Grima, Rosie Jackson, Andrew Alderson, and Kenneth E Evans. Do zeolites have negative poisson’s ratios? *Advanced Materials*, 12(24):1912–1918, 2000.
- [52] Kenneth E Evans and Andrew Alderson. Auxetic materials: functional materials and structures from lateral thinking! *Advanced materials*, 12(9):617–628, 2000.
- [53] R. Lakes. Foam structures with a negative poisson’s ratio. *Science*, 235(4792):1038–1040, 1987.
- [54] Dengbao Xiao, Xia Kang, Ying Li, Wenwang Wu, Jiangren Lu, Guiping Zhao, and Daining Fang. Insight into the negative poisson’s ratio effect of metallic auxetic reentrant honeycomb under dynamic compression. *Materials Science and Engineering: A*, 763:138151, 2019.
- [55] Dengbao Xiao, Zhichao Dong, Ying Li, Wenwang Wu, and Daining Fang. Compression behavior of the graded metallic auxetic reentrant honeycomb: Experiment and finite element analysis. *Materials Science and Engineering: A*, 758:163–171, 2019.
- [56] Lianchao Wang, Shaowei Zhu, Bing Wang, Xiaojun Tan, Yajun Zou, Shuai Chen, and Shuai Li. Latitude-and-longitude-inspired three-dimensional auxetic metamaterials. *Extreme Mechanics Letters*, 42, 2021.
- [57] Amer Alomarah, Dong Ruan, Syed Masood, and Zhanyuan Gao. Compressive properties of a novel additively manufactured 3d auxetic structure. *Smart Materials and Structures*,

28(8):085019, 2019.

- [58] Ferdinando Auricchio, Andrea Bacigalupo, Luigi Gambarotta, Marco Lepidi, Simone Morganti, and Francesca Vadalà. A novel layered topology of auxetic materials based on the tetrachiral honeycomb microstructure. *Materials and Design*, 179:107883, 2019.
- [59] Arnaud Lazarus and Pedro M Reis. Soft actuation of structured cylinders through auxetic behavior. *Advanced Engineering Materials*, 17(6):815–820, 2015.
- [60] Corentin Coulais, Eial Teomy, Koen De Reus, Yair Shokef, and Martin Van Hecke. Combinatorial design of textured mechanical metamaterials. *Nature*, 535(7613):529–532, 2016.
- [61] Sahab Babaee, Pai Wang, and Katia Bertoldi. Three-dimensional adaptive soft phononic crystals. *Journal of Applied Physics*, 117(24):244903, 2015.
- [62] L. Jin, A. E. Forte, B. Deng, A. Rafsanjani, and K. Bertoldi. Kirigami-inspired inflatables with programmable shapes. *Advanced Materials*, 32(33):e2001863, 2020.
- [63] B. Florijn, C. Coulais, and M. van Hecke. Programmable mechanical metamaterials. *Physical Review Letters*, 113(17):175503, 2014.
- [64] Jesse L Silverberg, Arthur A Evans, Lauren McLeod, Ryan C Hayward, Thomas Hull, Christian D Santangelo, and Itai Cohen. Using origami design principles to fold reprogrammable mechanical metamaterials. *science*, 345(6197):647–650, 2014.
- [65] Jesse L Silverberg, Jun-Hee Na, Arthur A Evans, Bin Liu, Thomas C Hull, Christian D Santangelo, Robert J Lang, Ryan C Hayward, and Itai Cohen. Origami structures with a critical transition to bistability arising from hidden degrees of freedom. *Nature materials*, 14(4):389–393, 2015.
- [66] Shahram Janbaz and Corentin Coulais. Slow kinks in dissipative kirigami. *arXiv preprint arXiv:2211.11600*, 2022.
- [67] S. Felton, M. Tolley, E. Demaine, D. Rus, and R. Wood. Applied origami. a method for building self-folding machines. *Science*, 345(6197):644–6, 2014.
- [68] Elisa Boatti, Nikolaos Vasilios, and Katia Bertoldi. Origami metamaterials for tunable thermal expansion. *Advanced Materials*, 29(26):1700360, 2017.
- [69] Marc Z Miskin, Kyle J Dorsey, Baris Bircan, Yimo Han, David A Muller, Paul L McEuen, and Itai Cohen. Graphene-based bimorphs for micron-sized, autonomous origami machines. *Proceedings of the National Academy of Sciences*, 115(3):466–470, 2018.
- [70] Xiaojun Tan, Lianchao Wang, Shaowei Zhu, Shuai Chen, Bing Wang, and Muamer Kadic. A general strategy for performance enhancement of negative stiffness mechanical metamaterials. *European Journal of Mechanics - A/Solids*, 96, 2022.
- [71] Xiaojun Tan, Shaowei Zhu, Bing Wang, Kaili Yao, Shuai Chen, Peifei Xu, Lianchao Wang, and Yuguo Sun. Mechanical response of negative stiffness truncated-conical shell systems: experiment, numerical simulation and empirical model. *Composites Part B: Engineering*, 188:107898, 2020.
- [72] X. J. Tan, S. Chen, B. Wang, S. W. Zhu, L. Z. Wu, and Y. G. Sun. Design, fabrication, and characterization of multistable mechanical metamaterials for trapping energy. *Extreme Mechanics Letters*, 28:8–21, 2019.
- [73] Jiayao Ma, Shixi Zang, Huijuan Feng, Yan Chen, and Zhong You. Theoretical characterization of a non-rigid-foldable square-twist origami for property programmability. *International Journal of Mechanical Sciences*, 189:105981, 2021.
- [74] K. J. Fu, Z. H. Zhao, and L. H. Jin. Programmable granular metamaterials for reusable energy absorption. *Advanced Functional Materials*, 29(32):1901258, 2019.
- [75] Bastiaan Florijn, Corentin Coulais, and Martin van Hecke. Programmable mechanical metamaterials: the role of geometry. *Soft matter*, 12(42):8736–8743, 2016.
- [76] Chan Soo Ha, Roderic S. Lakes, and Michael E. Plesha. Cubic negative stiffness lattice structure for energy absorption: Numerical and experimental studies. *International Journal of Solids and Structures*, 178-179:127–135, 2019.
- [77] Babak Haghpanah, Ahmad Shirazi, Ladan Salari-Sharif, Anna Guell Izard, and Lorenzo Valdevit.

Elastic architected materials with extreme damping capacity. *Extreme Mechanics Letters*, 17:56–61, 2017.

[78] Y. Tang, Y. Chi, J. Sun, T. H. Huang, O. H. Maghsoudi, A. Spence, J. Zhao, H. Su, and J. Yin. Leveraging elastic instabilities for amplified performance: Spine-inspired high-speed and high-force soft robots. *Science Advances*, 6(19):eaaz6912, 2020.

[79] D. Matthew Boston, Francis R. Phillips, Todd C. Henry, and Andres F. Arrieta. Spanwise wing morphing using multistable cellular metastructures. *Extreme Mechanics Letters*, 53, 2022.

[80] Tian Chen and Kristina Shea. Computational design of multi-stable, reconfigurable surfaces. *Materials and Design*, 205, 2021.

[81] Y. Song, R. M. Panas, S. Chizari, L. A. Shaw, J. A. Jackson, J. B. Hopkins, and A. J. Pascall. Additively manufacturable micro-mechanical logic gates. *Nature Communications*, 10(1):882, 2019.

[82] Myungwon Hwang and Andres F Arrieta. Input-independent energy harvesting in bistable lattices from transition waves. *Scientific reports*, 8(1):3630, 2018.

[83] F. S. L. Bobbert, S. Janbaz, T. van Manen, Y. Li, and A. A. Zadpoor. Russian doll deployable meta-implants: Fusion of kirigami, origami, and multi-stability. *Materials and Design*, 191:108624, 2020.

[84] J. O Almen. The uniform-section disk spring. *Transactions of the American Society of Mechanical Engineers*, 58:305–314, 1936.

[85] M. Esin, E. Pasternak, and A. V. Dyskin. Stability of chains of oscillators with negative stiffness normal, shear and rotational springs. *International Journal of Engineering Science*, 108:16–33, 2016.

[86] Li Yuan Zhang and Guang Kui Xu. Negative stiffness behaviors emerging in elastic instabilities of prismatic tensegrities under torsional loading. *International Journal of Mechanical Sciences*, 103(1):189–198, 2015.

[87] B. Moore, T. Jaglinski, D. S. Stone, and R. S. Lakes. Negative incremental bulk modulus in foams. *Philosophical Magazine Letters*, 86(10):651–659, 2006.

[88] A Rafsanjani, A Akbarzadeh, and D Pasini. Snapping mechanical metamaterials under tension. *Advanced Materials*, 27(39):5931, 2015.

[89] D. M. Kochmann and K. Bertoldi. Exploiting microstructural instabilities in solids and structures: From metamaterials to structural transitions. *Applied Mechanics Reviews*, 69(5), 2017.

[90] Troy Gomm, Larry L Howell, and Richard H Selfridge. In-plane linear displacement bistable microrelay. *Journal of Micromechanics and Microengineering*, 12(3):257–264, 2002.

[91] Guoquan Luo, Liping Shi, Honglie Song, Mingwei Li, Yesheng Zhong, Xiaodong He, and Haoran Fu. Microfluidic switches driven by mechanically guided multistable buckling. *Extreme Mechanics Letters*, 54, 2022.

[92] Matthew R. Brake, Michael S. Baker, Nathan W. Moore, Douglas A. Crowson, John A. Mitchell, and Jack E. Houston. Modeling and measurement of a bistable beam in a microelectromechanical system. *Journal of Microelectromechanical Systems*, 19(6):1503–1514, 2010.

[93] B Tavakol, M Bozlar, C Punckt, G Froehlicher, H. A. Stone, I. A. Aksay, and D. P. Holmes. Buckling of dielectric elastomeric plates for soft, electrically active microfluidic pumps. *Soft Matter*, 10(27):4789–4794, 2014.

[94] M Esin, E Pasternak, and A. V Dyskin. Stability of 2d discrete mass-spring systems with negative stiffness springs. *Physica Status Solidi B-Basic Solid State Physics*, 253(7):1395–1409, 2016.

[95] J. Prasad and A. R. Diaz. Synthesis of bistable periodic structures using topology optimization and a genetic algorithm. *Journal of Mechanical Design*, 128(6):1298, 2006.

[96] KIM BLAIR, CHARLES KROUSGRILL, and THOMAS FARRIS. Nonlinear dynamic response of shallow arches. In *33rd Structures, Structural Dynamics and Materials Conference*, page 2548, 1992.

- [97] Jin Qiu, Jeffrey H Lang, and Alexander H Slocum. A curved-beam bistable mechanism. *Journal of Microelectromechanical Systems*, 13(2):137–146, 2004.
- [98] Raymond H. Plaut. Snap-through of arches and buckled beams under unilateral displacement control. *International Journal of Solids and Structures*, 63:109–113, 2015.
- [99] Shaowei Zhu, Xiaojun Tan, Bing Wang, Shuai Chen, Jiqiang Hu, Li Ma, and Linzhi Wu. Bio-inspired multistable metamaterials with reusable large deformation and ultra-high mechanical performance. *Extreme Mechanics Letters*, 32:100548, 2019.
- [100] R. S. Lakes. Extreme damping in compliant composites with a negative-stiffness phase. *Philosophical Magazine Letters*, 81(2):95–100, 2001.
- [101] David Restrepo, Nilesh D. Mankame, and Pablo D. Zavattieri. Phase transforming cellular materials. *Extreme Mechanics Letters*, 4:52–60, 2015.
- [102] Jingran Liu, Huasong Qin, and Yilun Liu. Dynamic behaviors of phase transforming cellular structures. *Composite Structures*, 184:536–544, 2018.
- [103] Kaikai Che, Chao Yuan, Jiangtao Wu, H. Jerry Qi, and Julien Meaud. Three-dimensional-printed multistable mechanical metamaterials with a deterministic deformation sequence. *Journal of Applied Mechanics*, 84(1), 2017.
- [104] Suihan Liu, Ali Imani Azad, and Rigoberto Burgueño. Architected materials for tailororable shear behavior with energy dissipation. *Extreme Mechanics Letters*, 28:1–7, 2019.
- [105] H. Y. Jeong, S. C. An, I. C. Seo, E. Lee, S. Ha, N. Kim, and Y. C. Jun. 3d printing of twisting and rotational bistable structures with tuning elements. *Scientific Reports*, 9(1):1–9, 2019.
- [106] S. Cortes, J. Allison, C. Morris, M. R. Haberman, C. C. Seepersad, and D. Kovar. Design, manufacture, and quasi-static testing of metallic negative stiffness structures within a polymer matrix. *Experimental Mechanics*, 57(4):1–9, 2017.
- [107] Xiao Shang, Lu Liu, Ahmad Rafsanjani, and Damiano Pasini. Durable bistable auxetics made of rigid solids. *Journal of Materials Research*, 33(3):300–308, 2017.
- [108] Xiaojun Tan, Shuai Chen, Shaowei Zhu, Bing Wang, Peifei Xu, Kaili Yao, and Yuguo Sun. Reusable metamaterial via inelastic instability for energy absorption. *International Journal of Mechanical Sciences*, 155:509–517, 2019.
- [109] Xianhua Yao, Man Chen, Junxian Zhao, Yunlan Zhang, and Nan Hu. Tailoring plastic deformation of metallic architected materials toward multi-stage energy dissipations. *Materials and Design*, 223, 2022.
- [110] S. Shan, S. H. Kang, J. R. Raney, P. Wang, L. Fang, F. Candido, J. A. Lewis, and K. Bertoldi. Multistable architected materials for trapping elastic strain energy. *Advanced Materials*, 27(29):4296–4301, 2015.
- [111] Babak Haghpanah, Ladan Salari-Sharif, Peyman Pourrajab, Jonathan Hopkins, and Lorenzo Valdevit. Multistable shape-reconfigurable architected materials. *Advanced Materials*, 28(36):7915–7920, 2016.
- [112] Zhiqiang Meng, Mingchao Liu, Yafei Zhang, and Chang Qing Chen. Multi-step deformation mechanical metamaterials. *Journal of the Mechanics and Physics of Solids*, 144:104095, 2020.
- [113] Chenhui Ren, Deqing Yang, and Haoxing Qin. Mechanical performance of multidirectional buckling-based negative stiffness metamaterials: An analytical and numerical study. *Materials*, 11(7):1078, 2018.
- [114] Zhongwen Zhang and Zhao-Dong Xu. Cylindrical metastructure simulating yielding with elastic deformation: Theoretical and experimental studies. *Materials Today Communications*, 33, 2022.
- [115] Y. Zhang, D. Restrepo, M. Velay-Lizancos, N. D. Mankame, and P. D. Zavattieri. Energy dissipation in functionally two-dimensional phase transforming cellular materials. *Scientific Reports*, 9(1):12581, 2019.
- [116] Xiaojun Tan, Bing Wang, Lianchao Wang, Shaowei Zhu, Shuai Chen, Kaili Yao, and Peifei Xu. Effect of beam configuration on its multistable and negative stiffness properties. *Composite Structures*, 286, 2022.

- [117] Xiaojun Tan, Bing Wang, Yongtao Yao, Kaili Yao, Yuying Kang, Shaowei Zhu, Shuai Chen, and Peifei Xu. Programmable buckling-based negative stiffness metamaterial. *Materials Letters*, 262:127072, 2020.
- [118] Fan Liu, Xihang Jiang, Xintao Wang, and Lifeng Wang. Machine learning-based design and optimization of curved beams for multistable structures and metamaterials. *Extreme Mechanics Letters*, 41:101002, 2020.
- [119] Zhongwen Zhang, Li-Wei Chen, and Zhao-Dong Xu. Snap-through behavior of bistable beam with variable sections: mechanical model and experimental study. *Smart Materials and Structures*, 31(10), 2022.
- [120] Zhenfeng Wu, Benliang Zhu, Rixin Wang, and Xianmin Zhang. Design of mechanical metamaterial for energy absorption using a beam with a variable cross-section. *Mechanism and Machine Theory*, 176:105027, 2022.
- [121] Yong Zhang, Marcel Tichem, and Fred van Keulen. A novel design of multi-stable metastructures for energy dissipation. *Materials and Design*, 212, 2021.
- [122] W. Li, F. Wang, O. Sigmund, and X. S. Zhang. Digital synthesis of free-form multimaterial structures for realization of arbitrary programmed mechanical responses. *Proceedings of the National Academy of Sciences*, 119(10):e2120563119, 2022.
- [123] Kuan Liang, Yaguang Wang, Yangjun Luo, Akihiro Takezawa, Xiaopeng Zhang, and Zhan Kang. Programmable and multistable metamaterials made of precisely tailored bistable cells. *Materials and Design*, 227:111810, 2023.
- [124] J. T. Overvelde, S. Shan, and K. Bertoldi. Compaction through buckling in 2d periodic, soft and porous structures: effect of pore shape. *Advanced Materials*, 24(17):2337, 2012.
- [125] K. Bertoldi, P. M. Reis, S. Willshaw, and T. Mullin. Negative poisson's ratio behavior induced by an elastic instability. *Advanced Materials*, 22(3):361–366, 2010.
- [126] K. Bertoldi and M. C. Boyce. Mechanically triggered transformations of phononic band gaps in periodic elastomeric structures. *Physical Review B*, 77(5):439–446, 2008.
- [127] Y. Zhang, E. A. Matsumoto, A. Peter, P. C. Lin, R. D. Kamien, and S. Yang. One-step nanoscale assembly of complex structures via harnessing of an elastic instability. *Nano Letters*, 8(4):1192, 2008.
- [128] Jia Liu, Tianyu Gu, Sicong Shan, Sung H Kang, James C Weaver, and Katia Bertoldi. Harnessing buckling to design architected materials that exhibit effective negative swelling. *Advanced Materials*, 28(31):6619–6624, 2016.
- [129] S. H. Kang, S. Shan, W. L. Noorduin, M. Khan, J. Aizenberg, and K. Bertoldi. Buckling-induced reversible symmetry breaking and amplification of chirality using supported cellular structures. *Advanced Materials*, 25(24):3380–3385, 2013.
- [130] Sung Hoon Kang, Sicong Shan, Andrej Košmrlj, Wim L. Noorduin, Samuel Shian, James C. Weaver, David R. Clarke, and Katia Bertoldi. Complex ordered patterns in mechanical instability induced geometrically frustrated triangular cellular structures. *Physical Review Letters*, 112(9):098701, 2014.
- [131] Jie Li, Jongmin Shim, Justin Deng, Johannes T. B. Overvelde, Xuelian Zhu, Katia Bertoldi, and Shu Yang. Switching periodic membranes via pattern transformation and shape memory effect. *Soft Matter*, 8(40):10322–10328, 2012.
- [132] J. H. Jang, C. Y. Koh, K. Bertoldi, M. C. Boyce, and E. L. Thomas. Combining pattern instability and shape-memory hysteresis for phononic switching. *Nano Letters*, 9(5):2113–2119, 2009.
- [133] Sicong Shan, Sung H Kang, Pai Wang, Cangyu Qu, Samuel Shian, Elizabeth R. Chen, and Katia Bertoldi. Harnessing multiple folding mechanisms in soft periodic structures for tunable control of elastic waves. *Advanced Functional Materials*, 24(31):4935–4942, 2015.
- [134] D. Yang, B. Mosadegh, A. Ainla, B. Lee, F. Khashai, Z. Suo, K. Bertoldi, and G. M. Whitesides. Buckling of elastomeric beams enables actuation of soft machines. *Advanced Materials*, 27(41):6323–7, 2015.
- [135] K. Bertoldi, M. C. Boyce, S. Deschanel, S. M. Prange, and T. Mullin. Mechanics of deformation-

triggered pattern transformations and superelastic behavior in periodic elastomeric structures. *Journal of the Mechanics Physics of Solids*, 56(8):2642–2668, 2008.

[136] Farhad Javid, Jia Liu, Jongmin Shim, James C Weaver, Ali Shanian, and Katia Bertoldi. Mechanics of instability-induced pattern transformations in elastomeric porous cylinders. *Journal of the Mechanics and Physics of Solids*, 96:1–17, 2016.

[137] Bo Cao, Gaoxiang Wu, Yu Xia, and Shu Yang. Buckling into single-handed chiral structures from ph-sensitive hydrogel membranes. *Extreme Mechanics Letters*, 7:49–54, 2016.

[138] Hongcheng Tao and James Gibert. Multifunctional mechanical metamaterials with embedded triboelectric nanogenerators. *Advanced Functional Materials*, 30(23):2001720, 2020.

[139] S. Babaee, N. Viard, P. Wang, N. X. Fang, and K. Bertoldi. Harnessing deformation to switch on and off the propagation of sound. *Advanced Materials*, 28(8):1631–5, 2016.

[140] Dian Yang, Lihua Jin, Ramses V. Martinez, Katia Bertoldi, George M. Whitesides, and Zhigang Suo. Phase-transforming and switchable metamaterials. *Extreme Mechanics Letters*, 6:1–9, 2016.

[141] Chao Yuan, Xiaoming Mu, Conner K. Dunn, Jamal Haidar, Tiejun Wang, and H. Jerry Qi. Thermomechanically triggered two-stage pattern switching of 2d lattices for adaptive structures. *Advanced Functional Materials*, 28(18):1705727, 2018.

[142] C. R Tipton, E Han, and T Mullin. Magneto-elastic buckling of a soft cellular solid. *Soft Matter*, 8(26):6880–6883, 2012.

[143] Yuzhen Chen and Lihua Jin. Geometric role in designing pneumatically actuated pattern-transforming metamaterials. *Extreme Mechanics Letters*, 23:55–66, 2018.

[144] J. P. Udani and A. F. Arrieta. Programmable mechanical metastructures from locally bistable domes - sciencedirect. *Extreme Mechanics Letters*, 42:101081, 2021.

[145] Amit Madhukar, Daniel Perlitz, Michael Grigola, Donghai Gai, and K. Jimmy Hsia. Bistable characteristics of thick-walled axisymmetric domes. *International Journal of Solids and Structures*, 51(14):2590–2597, 2014.

[146] A. Brinkmeyer, M. Santer, A. Pirrera, and P. M. Weaver. Pseudo-bistable self-actuated domes for morphing applications. *International Journal of Solids and Structures*, 49(9):1077–1087, 2012.

[147] Xiaojun Tan, Yifeng Li, Lianchao Wang, Kaili Yao, Qingxiang Ji, Bing Wang, Vincent Laude, and Muamer Kadic. Bioinspired flexible and programmable negative stiffness mechanical metamaterials. *Advanced Intelligent Systems*, page 2200400, 2023.

[148] Itamar Benichou and Sefi Givli. Force-sensitive metamaterials for vibration mitigation and mechanical protection. *Extreme Mechanics Letters*, 40:100932, 2020.

[149] Xiaojun Tan, Bing Wang, Shaowei Zhu, Shuai Chen, Kaili Yao, Peifei Xu, Linzhi Wu, and Yuguo Sun. Novel multidirectional negative stiffness mechanical metamaterials. *Smart Materials and Structures*, 29(1):015037, 2020.

[150] F. Pan, Y. Li, Z. Li, J. Yang, B. Liu, and Y. Chen. 3d pixel mechanical metamaterials. *Advanced Materials*, page e1900548, 2019.

[151] Mansour Alturki and Rigoberto Burgueño. Response characterization of multistable shallow domes with cosine-curved profile. *Thin-Walled Structures*, 140:74–84, 2019.

[152] Xiaoyuan Ma and Peng Yan. Reprogrammable mechanical metamaterials with heterogeneous assembly of soft shell-based voxels. *Advanced Engineering Materials*, 25(6):2201323, 2023.

[153] Zian Jia and Lifeng Wang. Instability-triggered triply negative mechanical metamaterial. *Physical Review Applied*, 12(2):024040, 2019.

[154] Jingze Wang, Martinson Addo Nartey, Yang Luo, Huan Wang, Fabrizio Scarpa, and Hua-Xin Peng. Designing multi-stable structures with enhanced designability and deformability by introducing transition elements. *Composite Structures*, 233:111580, 2020.

[155] Mansour Alturki and Rigoberto Burgueño. Multistable cosine-curved dome system for elastic energy dissipation. *Journal of Applied Mechanics*, 86(9):091002, 2019.

[156] Yangyang Dong, Tong Yu, and Zijian Zhang. Design and mechanical analysis of 3d negative-

stiffness curved domes with bessel-functional profile. *Composite Structures*, 304, 2023.

[157] Baocai Chen, Liming Chen, Bing Du, Houchang Liu, Weiguo Li, and Daining Fang. Novel multifunctional negative stiffness mechanical metamaterial structure: Tailored functions of multi-stable and compressive mono-stable. *Composites Part B: Engineering*, 204:108501, 2021.

[158] Qiqi Li, Liuyu Zhan, Lin Hu, Xiujuan Miao, Tiefang Zou, and Xin Liu. A negative stiffness structure with multi-stable characteristic. *Composite Structures*, page 116715, 2023.

[159] T. Chen, M. Pauly, and P. M. Reis. A reprogrammable mechanical metamaterial with stable memory. *Nature*, 589(7842):386–390, 2021.

[160] Jiahao Shi, Hossein Mofatteh, Armin Mirabolghasemi, Gilles Desharnais, and Abdolhamid Akbarzadeh. Programmable multistable perforated shellular. *Advanced Materials*, 33(42):2102423, 2021.

[161] Hicham Allag and Jean-Paul Yonnet. 3-d analytical calculation of the torque and force exerted between two cuboidal magnets. *IEEE Transactions on Magnetics*, 45(10):3969–3972, 2009.

[162] Masaru Tomita and Masato Murakami. High-temperature superconductor bulk magnets that can trap magnetic fields of over 17 tesla at 29 k. *Nature*, 421(6922):517–520, 2003.

[163] T. A. Hewage, K. L. Alderson, A. Alderson, and F. Scarpa. Double-negative mechanical metamaterials displaying simultaneous negative stiffness and negative poisson’s ratio properties. *Advanced Materials*, 28(46):10323–10332, 2016.

[164] K. K. Dudek, R. Gatt, M. R. Dudek, and J. N. Grima. Negative and positive stiffness in auxetic magneto-mechanical metamaterials. *Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences*, 474(2215):20180003, 2018.

[165] Xiaojun Tan, Bing Wang, Kaili Yao, Shaowei Zhu, Shuai Chen, Peifei Xu, Lianchao Wang, and Yuguo Sun. Novel multi-stable mechanical metamaterials for trapping energy through shear deformation. *International Journal of Mechanical Sciences*, 164:105168, 2019.

[166] Alireza Seyedkanani and Abdolhamid Akbarzadeh. Magnetically assisted rotationally multistable metamaterials for tunable energy trapping–dissipation. *Advanced Functional Materials*, 32(52), 2022.

[167] Tiegang Chen, Xiaoyong Zhang, Xiaojun Yan, Bin Zhang, Jun Jiang, Dawei Huang, Mingjing Qi, and Ruijie Sun. Harnessing magnets to design tunable architected bistable material. *Advanced Engineering Materials*, 21(3):1801255, 2019.

[168] Jack E Pechac and Michael J Frazier. Metamaterial design strategy for mechanical energy absorption under general loading. *Extreme Mechanics Letters*, 51:101580, 2022.

[169] Krzysztof K Dudek, Ruben Gatt, and Joseph N Grima. 3d composite metamaterial with magnetic inclusions exhibiting negative stiffness and auxetic behaviour. *Materials and Design*, 187:108403, 2020.

[170] E. T. Filipov and M. Redoutey. Mechanical characteristics of the bistable origami hypar. *Extreme Mechanics Letters*, 25:16–26, 2018.

[171] D. Melancon, B. Gorissen, C. J. Garcia-Mora, C. Hoberman, and K. Bertoldi. Multistable inflatable origami structures at the metre scale. *Nature*, 592(7855):545–550, 2021.

[172] Scott Waitukaitis, Rémi Menaut, Bryan Gin-ge Chen, and Martin Van Hecke. Origami multistability: From single vertices to metasheets. *Physical review letters*, 114(5):055503, 2015.

[173] Ke Liu, Tomohiro Tachi, and Glaucio H Paulino. Invariant and smooth limit of discrete geometry folded from bistable origami leading to multistable metasurfaces. *Nature communications*, 10(1):4238, 2019.

[174] Yilun Li, Fei Pan, Xin Lin, Kuijian Yang, Yongkun Ren, Weichao Yang, and Yuli Chen. Multistable origami honeycomb. *International Journal of Mechanical Sciences*, 243:108044, 2023.

[175] Hongbin Fang, KW Wang, and Suyi Li. Asymmetric energy barrier and mechanical diode effect from folding multi-stable stacked-origami. *Extreme Mechanics Letters*, 17:7–15, 2017.

[176] Sattam Sengupta and Suyi Li. Harnessing the anisotropic multistability of stacked-origami mechanical metamaterials for effective modulus programming. *Journal of Intelligent Material*

Systems and Structures, 29(14):2933–2945, 2018.

- [177] Zuolin Liu, Hongbin Fang, Jian Xu, and KW Wang. Digitized design and mechanical property reprogrammability of multistable origami metamaterials. *Journal of the Mechanics and Physics of Solids*, 173:105237, 2023.
- [178] Zuolin Liu, Hongbin Fang, Jian Xu, and KW Wang. A novel origami mechanical metamaterial based on miura-variant designs: exceptional multistability and shape reconfigurability. *Smart Materials and Structures*, 30(8):085029, 2021.
- [179] J. T. Overvelde, T. A. de Jong, Y. Shevchenko, S. A. Becerra, G. M. Whitesides, J. C. Weaver, C. Hoberman, and K. Bertoldi. A three-dimensional actuated origami-inspired transformable metamaterial with multiple degrees of freedom. *Nature Communications*, 7:10929, 2016.
- [180] Priyanka Bhovad, Joshua Kaufmann, and Suyi Li. Peristaltic locomotion without digital controllers: Exploiting multi-stability in origami to coordinate robotic motion. *Extreme Mechanics Letters*, 32:100552, 2019.
- [181] Y. Yang, M. A. Dias, and D. P. Holmes. Multistable kirigami for tunable architected materials. *Physical Review Materials*, 2(11):110601, 2018.
- [182] K Virk, A Monti, T Trehard, M Marsh, K Hazra, K Boba, C. D. L Remillat, F Scarpa, and I. R Farrow. Silicomb peek kirigami cellular structures: mechanical response and energy dissipation through zero and negative stiffness. *Smart Materials and Structures*, 22(8):084014, 2013.
- [183] Zhiqiang Meng, Weitong Chen, Tie Mei, Yuchen Lai, Yixiao Li, and C. Q. Chen. Bistability-based foldable origami mechanical logic gates. *Extreme Mechanics Letters*, 43:101180, 2021.
- [184] H. Fang, S. A. Chu, Y. Xia, and K. W. Wang. Programmable self-locking origami mechanical metamaterials. *Advanced Materials*, 30(15):e1706311, 2018.
- [185] Qiu Hai, Fang Hongbin, and Xu Jian. Nonlinear dynamical characteristics of a multi-stable series origami structure. *Chinese Journal of Theoretical and Applied Mechanics*, 51(4):1110–1121, 2019.
- [186] Ahmad Rafsanjani and Damiano Pasini. Bistable auxetic mechanical metamaterials inspired by ancient geometric motifs. *Extreme Mechanics Letters*, 9:291–296, 2016.
- [187] Z. Meng, M. Liu, H. Yan, G. M. Genin, and C. Q. Chen. Deployable mechanical metamaterials with multistep programmable transformation. *Science Advances*, 8(23):eabn5460, 2022.
- [188] Zhiqiang Meng, Hujie Yan, Mingchao Liu, Wenkai Qin, Guy M Genin, and Chang Qing Chen. Encoding and storage of information in mechanical metamaterials. *Advanced Science*, page 2301581, 2023.
- [189] Hongye Ma, Ke Wang, Haifeng Zhao, Yilun Hong, Yanlin Zhou, Jing Xue, Qiushi Li, Gong Wang, and Bo Yan. Energy dissipation in multistable auxetic mechanical metamaterials. *Composite Structures*, 304:116410, 2023.
- [190] Zhiwei Zhang, Simon Pusateri, Binglin Xie, and Nan Hu. Tunable energy trapping through contact-induced snap-through buckling in strips with programmable imperfections. *Extreme Mechanics Letters*, 37:100732, 2020.
- [191] Yuzhen Chen and Lihua Jin. From continuous to snapping-back buckling: A post-buckling analysis for hyperelastic columns under axial compression. *International Journal of Non-Linear Mechanics*, 125:103532, 2020.
- [192] Yinghao Zhao, Amal Jerald Joseph Maria Joseph, Zhiwei Zhang, Chunping Ma, Davut Gul, Andrew Schellenberg, and Nan Hu. Deterministic snap-through buckling and energy trapping in axially-loaded notched strips for compliant building blocks. *Smart Materials and Structures*, 29(2):02LT03, 2020.
- [193] Y. Chen and L. Jin. Reusable energy-absorbing architected materials harnessing snapping-back buckling of wide hyperelastic columns. *Advanced Functional Materials*, 2021.
- [194] Pengcheng Jiao. Hierarchical metastructures with programmable stiffness and zero poisson's ratio. *APL Materials*, 8(5):051109, 2020.
- [195] Liang Dong and Roderic Lakes. Advanced damper with high stiffness and high hysteresis damping based on negative structural stiffness. *International Journal of Solids and Structures*, 50(14–15):3322–3332, 2013.

15):2416–2423, 2013.

[196] Peter Vuyk and Ryan L Harne. Collapse characterization and shock mitigation by elastomeric metastructures. *Extreme Mechanics Letters*, 37:100682, 2020.

[197] Rui Xu, Yulong He, Xin Li, Minghui Lu, and Yanfeng Chen. Snap-fit mechanical metamaterials. *Applied Materials Today*, 30:101714, 2023.

[198] F. Göncü, S. Willshaw, J. Shim, J. Cusack, S. Luding, T. Mullin, and K. Bertoldi. Deformation induced pattern transformation in a soft granular crystal. *Soft Matter*, 7(6):2321–2324, 2011.

[199] K. Kappe, J. P. Wahl, F. Gutmann, S. M. Boyadzhieva, K. Hoschke, and S. C. L. Fischer. Design and manufacturing of a metal-based mechanical metamaterial with tunable damping properties. *Materials*, 15(16), 2022.

[200] Anthony P. Garland, Katarina M. Adstedt, Zachary J. Casias, Benjamin C. White, William M. Mook, Bryan Kaehr, Bradley H. Jared, Brian T. Lester, Nicholas S. Leathe, Eric Schwaller, and Brad L. Boyce. Coulombic friction in metamaterials to dissipate mechanical energy. *Extreme Mechanics Letters*, 40:100847, 2020.

[201] Haigui Fan, Yuchen Tian, Lijuan Yang, Dapeng Hu, and Peiqi Liu. Multistable mechanical metamaterials with highly tunable strength and energy absorption performance. *Mechanics of Advanced Materials and Structures*, 29(11):1637–1649, 2020.

[202] Shaowei Zhu, Xiaojun Tan, Shuai Chen, Bing Wang, Li Ma, and Linzhi Wu. Quasi-all-directional negative stiffness metamaterials based on negative rotation stiffness elements. *Physica Status Solidi B-Basic Solid State Physics*, page 1900538, 2020.

[203] Jiayao Ma, Xiaoyi Jiang, and Yan Chen. A 3d modular meta-structure with continuous mechanism motion and bistability. *Extreme Mechanics Letters*, 51, 2022.

[204] Fuhong Dai, Hao Li, and Shanyi Du. Design and analysis of a tri-stable structure based on bi-stable laminates. *Composites Part A: Applied Science and Manufacturing*, 43(9):1497–1504, 2012.

[205] Yunteng Cao, Masoud Derakhshani, Yuhui Fang, Guoliang Huang, and Changyong Cao. Bistable structures for advanced functional systems. *Advanced Functional Materials*, 31(45):2106231, 2021.

[206] M. Corsi, S. Bagassi, M. C. Moruzzi, and F. Weigand. Additively manufactured negative stiffness structures for shock absorber applications. *Mechanics of Advanced Materials and Structures*, pages 1–12, 2020.

[207] Dixon M Correa, Timothy Klatt, Sergio Cortes, Michael Haberman, Desiderio Kovar, and Carolyn Seepersad. Negative stiffness honeycombs for recoverable shock isolation. *Rapid Prototyping Journal*, 21(2):193–200, 2015.

[208] Brian F. Feeny and Alejandro R. Diaz. Twinkling phenomena in snap-through oscillators. *Journal of Vibration and Acoustics*, 132(6):061013, 2010.

[209] Itamar Benichou and Sefi Givli. Structures undergoing discrete phase transformation. *Journal of the Mechanics Physics of Solids*, 61(1):94–113, 2013.

[210] Abha Misra, Jordan R Raney, Luigi De Nardo, Anna E Craig, and Chiara Daraio. Synthesis and characterization of carbon nanotube–polymer multilayer structures. *ACS nano*, 5(10):7713–7721, 2011.

[211] J. R. Raney, F. Fraternali, A. Amendola, and C. Daraio. Modeling and in situ identification of material parameters for layered structures based on carbon nanotube arrays. *Composite Structures*, 93(11):3013–3018, 2011.

[212] Katia Bertoldi. Harnessing instabilities to design tunable architected cellular materials. *Annual Review of Materials Research*, 47(1), 2017.

[213] Shuai Chen, Xiaojun Tan, Jiqiang Hu, Bing Wang, Lianchao Wang, Yajun Zou, and Linzhi Wu. Continuous carbon fiber reinforced composite negative stiffness mechanical metamaterial for recoverable energy absorption. *Composite Structures*, 288, 2022.

[214] Jiakang Gan, Fenglei Li, Keqiang Li, Eric Li, and Bing Li. Dynamic failure of 3d printed negative-stiffness meta-sandwich structures under repeated impact loadings. *Composites Science and*

Technology, 234, 2023.

- [215] Hao Deng, Lin Cheng, Xuan Liang, Devlin Hayduke, and Albert C. To. Topology optimization for energy dissipation design of lattice structures through snap-through behavior. *Computer Methods in Applied Mechanics and Engineering*, 358:112641, 2020.
- [216] Chenhui Ren, Deqing Yang, and Qing Li. Impact resistance performance and optimal design of a sandwich beam with a negative stiffness core. *Journal of Mechanical Science and Technology*, 33(7):3147–3159, 2019.
- [217] Anna Guell Izard, Ricardo Fabian Alfonso, Geoffrey McKnight, and Lorenzo Valdevit. Optimal design of a cellular material encompassing negative stiffness elements for unique combinations of stiffness and elastic hysteresis. *Materials and Design*, 135:37–50, 2017.
- [218] Mohaddeseh Gholikord, Ehsan Etemadi, Mohammad Imani, Mahboubeh Hosseinabadi, and Hong Hu. Design and analysis of novel negative stiffness structures with significant energy absorption. *Thin-Walled Structures*, 181, 2022.
- [219] Shanwen Sun, Ning An, Guoli Wang, Meie Li, and Jinxiong Zhou. Achieving selective snapping-back and enhanced hysteresis in soft mechanical metamaterials via fiber reinforcement. *Journal of Applied Physics*, 129(4), 2021.
- [220] David A Debeau, Carolyn C Seepersad, and Michael R Haberman. Impact behavior of negative stiffness honeycomb materials. *Journal of Materials Research*, 33(3):290–299, 2018.
- [221] Soo Ha Chan, Roderic S. Lakes, and Michael E. Plesha. Design, fabrication, and analysis of lattice exhibiting energy absorption via snap-through behavior. *Materials and Design*, 141(141):426–437, 2018.
- [222] B. Wang, X. J. Tan, S. W. Zhu, S. Chen, K. L. Yao, P. F. Xu, L. C. Wang, H. P. Wu, and Y. G. Sun. Cushion performance of cylindrical negative stiffness structures: Analysis and optimization. *Composite Structures*, 227:111276, 2019.
- [223] X. J. Tan, B. Wang, S. Chen, S. W. Zhu, and Y. G. Sun. A novel cylindrical negative stiffness structure for shock isolation. *Composite Structures*, 214:397–405, 2019.
- [224] Olga A Ganilova and J Low Jia. Application of smart honeycomb structures for automotive passive safety. *Proceedings of the Institution of Mechanical Engineers Part D Journal of Automobile Engineering*, 232(1):095440701770891, 2017.
- [225] Hongye Ma, Ke Wang, Haifeng Zhao, Ruinan Mu, and Bo Yan. A reusable metastructure for tri-directional energy dissipation. *International Journal of Mechanical Sciences*, 214, 2022.
- [226] Hongye Ma, Ke Wang, Haifeng Zhao, Yilun Hong, Yanlin Zhou, Jing Xue, Qiushi Li, Gong Wang, and Bo Yan. Energy dissipation in multistable auxetic mechanical metamaterials. *Composite Structures*, 304, 2023.
- [227] Qing Li, Deqing Yang, Chenhui Ren, and Xiang Mao. A systematic group of multidirectional buckling-based negative stiffness metamaterials. *International Journal of Mechanical Sciences*, 232, 2022.
- [228] Shuai Guo, Renjing Gao, Xiangyu Tian, and Shutian Liu. A 3d metamaterial with negative stiffness for six-directional energy absorption and cushioning. *Thin-Walled Structures*, 180, 2022.
- [229] Xiaojun Tan, Bing Wang, Shuai Chen, Shaowei Zhu, and Yuguo Sun. A novel cylindrical negative stiffness structure for shock isolation. *Composite Structures*, 214:397–405, 2019.
- [230] Bing Wang, Xiaojun Tan, Shaowei Zhu, Shuai Chen, Kaili Yao, Peifei Xu, Lianchao Wang, Huaping Wu, and Yuguo Sun. Cushion performance of cylindrical negative stiffness structures: Analysis and optimization. *Composite Structures*, 227:111276, 2019.
- [231] Jian Hua, Hongshuai Lei, Zhong Zhang, Cunfa Gao, and Daining Fang. Multistable cylindrical mechanical metastructures: Theoretical and experimental studies. *Journal of Applied Mechanics*, 86(7), 2019.
- [232] Y. Jiang and Q. Wang. Highly-stretchable 3d-architected mechanical metamaterials. *Scientific Reports*, 6:34147, 2016.
- [233] X. Zheng, H. Lee, T. H. Weisgraber, M. Shusteff, J. DeOtte, E. B. Duoss, J. D. Kuntz, M. M.

Biener, Q. Ge, J. A. Jackson, S. O. Kucheyev, N. X. Fang, and C. M. Spadaccini. Ultralight, ultrastiff mechanical metamaterials. *Science*, 344(6190):1373–7, 2014.

[234] Yinding Chi, Yanbin Li, Yao Zhao, Yaoye Hong, Yichao Tang, and Jie Yin. Bistable and multistable actuators for soft robots: Structures, materials, and functionalities. *Advanced Materials*, 34(19):2110384, 2022.

[235] Guo Zhan Lum, Zhou Ye, Xiaoguang Dong, Hamid Marvi, Onder Erin, Wenqi Hu, and Metin Sitti. Shape-programmable magnetic soft matter. *Proceedings of the National Academy of Sciences*, 113(41):E6007–E6015, 2016.

[236] Robert F Shepherd, Filip Ilievski, Wonjae Choi, Stephen A Morin, Adam A Stokes, Aaron D Mazzeo, Xin Chen, Michael Wang, and George M Whitesides. Multigait soft robot. *Proceedings of the national academy of sciences*, 108(51):20400–20403, 2011.

[237] Yichao Tang, Yanbin Li, Yaoye Hong, Shu Yang, and Jie Yin. Programmable active kirigami metasheets with more freedom of actuation. *Proceedings of the National Academy of Sciences*, 116(52):26407–26413, 2019.

[238] Jie Cao, Changlin Zhou, Gehong Su, Xinxing Zhang, Tao Zhou, Zehang Zhou, and Yibo Yang. Arbitrarily 3d configurable hygroscopic robots with a covalent–noncovalent interpenetrating network and self-healing ability. *Advanced Materials*, 31(18):1900042, 2019.

[239] Stefano Palagi, Andrew G Mark, Shang Yik Reigh, Kai Melde, Tian Qiu, Hao Zeng, Camilla Parmeggiani, Daniele Martella, Alberto Sanchez-Castillo, Nadia Kapernaum, et al. Structured light enables biomimetic swimming and versatile locomotion of photoresponsive soft microrobots. *Nature materials*, 15(6):647–653, 2016.

[240] Yoseph Bar-Cohen. Electroactive polymers as artificial muscles: a review. *Journal of Spacecraft and Rockets*, 39(6):822–827, 2002.

[241] Yinding Chi, Yichao Tang, Haijun Liu, and Jie Yin. Leveraging monostable and bistable pre-curved bilayer actuators for high-performance multitask soft robots. *Advanced Materials Technologies*, 5(9):2000370, 2020.

[242] Jakob A Faber, Janav P Udani, Katherine S Riley, André R Studart, and Andres F Arrieta. Dome-patterned metamaterial sheets. *Advanced Science*, 7(22):2001955, 2020.

[243] Joshua Kaufmann, Priyanka Bhovad, and Suyi Li. Harnessing the multistability of kresling origami for reconfigurable articulation in soft robotic arms. *Soft Robotics*, 9(2):212–223, 2022.

[244] Kim Gustafson, Oyuna Angatkina, and Aimy Wissa. Model-based design of a multistable origami-enabled crawling robot. *Smart Materials and Structures*, 29(1):015013, 2019.

[245] Evandro Bernardes and Stéphane Viollet. Design of an origami bendy straw for robotic multistable structures. *Journal of Mechanical Design*, 144(3), 2022.

[246] Y. Chi, Y. Hong, Y. Zhao, Y. Li, and J. Yin. Snapping for high-speed and high-efficient butterfly stroke-like soft swimmer. *Science Advances*, 8(46):eadd3788, 2022.

[247] Tian Chen, Osama R. Bilal, Kristina Shea, and Chiara Daraio. Harnessing bistability for directional propulsion of untethered, soft robots. *Proceedings of the National Academy of Sciences*, 115(22):5698–5702, 2017.

[248] J. T. Overvelde, T Kloek, J. J. D’Haen, and K Bertoldi. Amplifying the response of soft actuators by harnessing snap-through instabilities. *Proceedings of the National Academy of Sciences*, 112(35):10863–8, 2015.

[249] Yinding Chi, Yichao Tang, Haijun Liu, and Jie Yin. Leveraging monostable and bistable pre-curved bilayer actuators for high-performance multitask soft robots. *Advanced Materials Technologies*, 5(9):2000370, 2020.

[250] C. B. Churchill, D. W. Shahan, S. P. Smith, A. C. Keefe, and G. P. McKnight. Dynamically variable negative stiffness structures. *Science Advances*, 2(2):1500778, 2016.

[251] Giulia E Fenci and Neil GR Currie. Deployable structures classification: A review. *International Journal of Space Structures*, 32(2):112–130, 2017.

[252] Noémi Friedman, Mihály Weiner, György Farkas, István Hegedűs, and Adnan Ibrahimbegovic. On the snap-back behavior of a self-deploying antiprismatic column during packing.

Engineering Structures, 50:74–89, 2013.

- [253] T. Chen, J. Mueller, and K. Shea. Integrated design and simulation of tunable, multi-state structures fabricated monolithically with multi-material 3d printing. *Scientific Reports*, 7:45671, 2017.
- [254] FSL Bobbert, S. Janbaz, and AA Zadpoor. Towards deployable meta-implants. *Journal of Materials Chemistry B*, 6(21):3449–3455, 2018.
- [255] A. Zareei, B. Deng, and K. Bertoldi. Harnessing transition waves to realize deployable structures. *Proceedings of the National Academy of Sciences*, 117(8):4015–4020, 2020.
- [256] Kaikai Che, Michael Rouleau, and Julien Meaud. Temperature-tunable time-dependent snapping of viscoelastic metastructures with snap-through instabilities. *Extreme Mechanics Letters*, 32:100528, 2019.
- [257] Yong Zhang, Qi Wang, Marcel Tichem, and Fred van Keulen. Design and characterization of multi-stable mechanical metastructures with level and tilted stable configurations. *Extreme Mechanics Letters*, 34(34):100593, 2019.
- [258] Yong Zhang, Marcel Tichem, and Fred van Keulen. Concept and design of a metastructure-based multi-stable surface. *Extreme Mechanics Letters*, 51:101553, 2022.
- [259] Zheng Zhang, Yang Li, Xiaochen Yu, Xianghao Li, Helong Wu, Huaping Wu, Shaofei Jiang, and Guozhong Chai. Bistable morphing composite structures: A review. *Thin-Walled Structures*, 142:74–97, 2019.
- [260] Thiago de P. Sales, Domingos A. Rade, and Daniel J. Inman. A morphing metastructure concept combining shape memory alloy wires and permanent magnets for multistable behavior. *Journal of the Brazilian Society of Mechanical Sciences and Engineering*, 42(3), 2020.
- [261] Yang Li and Sergio Pellegrino. A theory for the design of multi-stable morphing structures. *Journal of the Mechanics and Physics of Solids*, 136:103772, 2020.
- [262] S. Daynes, P. M. Weaver, and K. D. Potter. Aeroelastic study of bistable composite airfoils. *Journal of Aircraft*, 46(6):2169–2174, 2009.
- [263] Marc R. Schultz. A concept for airfoil-like active bistable twisting structures. *Journal of Intelligent Material Systems and Structures*, 19(2):157–169, 2007.
- [264] Izabela K. Kuder, Andres F. Arrieta, Wolfram E. Raither, and Paolo Ermanni. Variable stiffness material and structural concepts for morphing applications. *Progress in Aerospace Sciences*, 63(6):33–55, 2013.
- [265] Chenhui Ren, Qing Li, and Deqing Yang. Quasi-static and sound insulation performance of a multifunctional cylindrical cellular shell with bidirectional negative-stiffness metamaterial cores. *International Journal of Mechanical Sciences*, 180:105662, 2020.
- [266] Zhongwen Zhang, Junming Tian, and Zhao-Dong Xu. Bistable inclined beam connected in series for quasi-zero stiffness. *Mechanics of Advanced Materials and Structures*, pages 1–14, 2022.
- [267] Quan Zhang, Dengke Guo, and Gengkai Hu. Tailored mechanical metamaterials with programmable quasi-zero-stiffness features for full-band vibration isolation. *Advanced Functional Materials*, 31(33), 2021.
- [268] Changqi Cai, Jiaxi Zhou, Linchao Wu, Kai Wang, Daolin Xu, and Huaijiang Ouyang. Design and numerical validation of quasi-zero-stiffness metamaterials for very low-frequency band gaps. *Composite Structures*, 236, 2020.
- [269] Shanwen Sun, Ning An, Guoli Wang, Meie Li, and Jinxiang Zhou. Snap-back induced hysteresis in an elastic mechanical metamaterial under tension. *Applied Physics Letters*, 115(9):091901, 2019.
- [270] D. Chronopoulos, I. Antoniadis, and T. Ampatzidis. Enhanced acoustic insulation properties of composite metamaterials having embedded negative stiffness inclusions. *Extreme Mechanics Letters*, 12:48–54, 2017.
- [271] Camilo Valencia, David Restrepo, Nilesh D. Mankame, Pablo D. Zavattieri, and Juan Gomez. Computational characterization of the wave propagation behavior of multi-stable periodic cellular materials. *Extreme Mechanics Letters*, 33:100565, 2019.

- [272] Vinod Ramakrishnan and M. J. Frazier. Multistable metamaterial on elastic foundation enables tunable morphology for elastic wave control. *Journal of Applied Physics*, 127(22), 2020.
- [273] Julien Meaud and Kaikai Che. Tuning elastic wave propagation in multistable architected materials. *International Journal of Solids and Structures*, 122-123:69–80, 2017.
- [274] Julien Meaud. Multistable two-dimensional spring-mass lattices with tunable band gaps and wave directionality. *Journal of Sound and Vibration*, 434:44–62, 2018.
- [275] Benjamin M. Goldsberry and Michael R. Haberman. Negative stiffness honeycombs as tunable elastic metamaterials. *Journal of Applied Physics*, 123(9):091711, 2018.
- [276] J Shim, C Perdigou, E. R. Chen, K Bertoldi, and P. M. Reis. Buckling-induced encapsulation of structured elastic shells under pressure. *Proceedings of the National Academy of Sciences*, 109(16):5978–5983, 2012.
- [277] Xin Lin, Fei Pan, Kang Yang, Juan Guan, Bin Ding, Yizhe Liu, Kuijian Yang, Bin Liu, and Yuli Chen. A stair-building strategy for tailoring mechanical behavior of re-customizable metamaterials. *Advanced Functional Materials*, 31(37), 2021.
- [278] Chao Yuan, Fangfang Wang, David W. Rosen, and Qi Ge. Voxel design of additively manufactured digital material with customized thermomechanical properties. *Materials and Design*, 197, 2021.
- [279] M. Bodaghi and W. H. Liao. 4d printed tunable mechanical metamaterials with shape memory operations. *Smart Materials and Structures*, 28(4):045019, 2019.
- [280] Xiaojun Tan, Shuai Chen, Bing Wang, Jie Tang, Lianchao Wang, Shaowei Zhu, Kaili Yao, and Peifei Xu. Real-time tunable negative stiffness mechanical metamaterial. *Extreme Mechanics Letters*, 41:100990, 2020.
- [281] Hamed Niknam, Abdolhamid Akbarzadeh, Daniel Therriault, and Sampada Bodkhe. Tunable thermally bistable multi-material structure. *Applied Materials Today*, 28, 2022.
- [282] L. M. Korpas, R. Yin, H. Yasuda, and J. R. Raney. Temperature-responsive multistable metamaterials. *ACS Appl Mater Interfaces*, 13(26):31163–31170, 2021.
- [283] K. Che, C. Yuan, H. J. Qi, and J. Meaud. Viscoelastic multistable architected materials with temperature-dependent snapping sequence. *Soft Matter*, 14(13):2492, 2018.
- [284] L. Jin, R. Khajehtourian, J. Mueller, A. Rafsanjani, V. Tournat, K. Bertoldi, and D. M. Kochmann. Guided transition waves in multistable mechanical metamaterials. *Proceedings of the National Academy of Sciences*, 117(5):2319–2325, 2020.
- [285] A. Iniguez-Rabago, Y. Li, and J. T. B. Overvelde. Exploring multistability in prismatic metamaterials through local actuation. *Nature communications*, 10(1):5577, 2019.
- [286] Donglin Zou, Gaoyu Liu, Zhushi Rao, Ting Tan, Wenming Zhang, and Wei-Hsin Liao. A device capable of customizing nonlinear forces for vibration energy harvesting, vibration isolation, and nonlinear energy sink. *Mechanical Systems and Signal Processing*, 147:107101, 2021.
- [287] Zhiwen Ren, Longtao Ji, Ran Tao, Mingji Chen, Zhishuai Wan, Zeang Zhao, and Daining Fang. Smp-based multi-stable mechanical metamaterials: From bandgap tuning to wave logic gates. *Extreme Mechanics Letters*, 42:101077, 2021.
- [288] Jia-Jia Mao, Shuai Wang, Wei Tan, and Mingchao Liu. Modular multistable metamaterials with reprogrammable mechanical properties. *Engineering Structures*, 272, 2022.
- [289] G. Librandi, E. Tubaldi, and K. Bertoldi. Programming nonreciprocity and reversibility in multistable mechanical metamaterials. *Nature Communications*, 12(1):3454, 2021.
- [290] N. Nadkarni, A. F. Arrieta, C. Chong, D. M. Kochmann, and C. Daraio. Unidirectional transition waves in bistable lattices. *Physical Review Letters*, 116(24):244501, 2016.
- [291] H. Mofatteh, B. Shahryari, A. Mirabolghasemi, A. Seyedkanani, R. Shirzadkhani, G. Desharnais, and A. Akbarzadeh. Programming multistable metamaterials to discover latent functionalities. *Advanced Science*, 9(33):e2202883, 2022.