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Abstract—Security of information transmitted through the The behaviors of chaotic dynamical systems are very sim-
Internet, against passive or active attacks is an internatinal ilar to those of physical noise sources [12]. Their sengjtiv
concern. The use of a chaos-based pseudo-random bit sequenc , initial conditions and their broadband spectrum make

to make it unrecognizable by an intruder, is a field of researb in th d didates t t t hicall
full expansion. This mask of useful information by modulation or em good candidates to generate cryptographically secure

encryption is a fundamental part of the TLS Internet exchangg ~ PRNGs. Particularly, they have several basic propertias th
protocol. In this paper, a new method using discrete chaotic any good PRNG must possess: a long cycle length, strong
iterations to generate pseudo-random numbers is presentedhis randomness and entropy, speed, reproducibéity,However,
pseudo-random number generator has successfully passedeth  .pqqtic dynamical systems are usually continuous and hence

NIST statistical test suite (NIST SP800-22). Security angbis . : .
shows its good characteristics. The application for securanage defined on the real numbers domain. The transformation

transmission through the Internet is proposed at the end ofte  from real numbers to integers may lead to the loss of the
paper. chaotic behavior. The conversion to integers needs a niggoro
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Discrete chaofic iterations. In this paper, a new chaotic pseudo-random bit generator

is presented, which can also be used to obtain numbers
uniformly distributed between 0 and 1. Indeed, these bits ca
be groupedr by n, to obtain the floating part of € [0, 1]
Nowadays, the world is highly computerized and inter-represented in binary numeral system. This generator edbas
connected, this leads to a growing interest in the use oén discrete chaotic iterations which satisfy Devaney'snilefi
digital chaoti¢ systems offering the possibility to reinforce tion of chaos [2]. A rigorous framework is introduced, where
the security of cryptographic algorithms, like those pntése topological chaotic properties of the generator are shdluis
in the Transport Layer Security protocol (TLS is an Internetgenerator successfully passes the whole NIST statiststd.t
exchange protocol). The advantage of the use of chaotiMoreover, because of its topological chaotic propertibis t
dynamics for security problems lies in their unpredictiapil generator can be used for cryptographic applications.
character and in the mathematical theory of chaos. This
theory brings many qualitative and quantitative tools, agm The rest of this paper is organized in the following way. In
ergodicity, entropy, expansivity and sensitive dependeioc ~ Section I, some basic definitions concerning chaotic iiens
initial conditions, these tools allow the study of the ramdo and PRNGs are recalled. Section Il is devoted to the new
ness of the disorder generated by the considered system. generator which is based on discrete chaotic iteratiohfal
Most of these new applications use chaotic maps as pseuddesign steps of this PRNG are described. In Section IV the
random number generators to obtain a binary stream, foresults of some experiments and statistical tests are given
example, for symmetric encryption. Random number genin Section V, some application examples are proposed in
erators are essential in several fields like statisticadliey the field of Internet secure exchanges. Some conclusions and
simulations (used for performance evaluations) or cryptogfuture work end the paper.
raphy. They may be based on physical noise sources or
on mathematical algorithms. However, in both cases, truly
random numbers are not obtained because of data acquisitionThis section is devoted to basic notations and terminofogie
systems in the first case and machine precision in the sedn the fields of chaotic iterations, Devaney’s chaos and gseu
ond one. Instead, any real implementation actually proslucerandom number generators.
a pseudo-random number generator (PRNG). Before using
those generators in cryptographic applications, somengtro
requirements must be checked, for instance, they have o pas In the sequel[l; N] means{1,2,..., N}, s™ denotes the
the up-to-date National Institute of Standards and Tedmyo! n»'" term of a sequence = (s',s?,...), V; denotes the""
(NIST) statistical test suite [9], they should possess alon component of a vectoV’ = (Vi,Va,...) and f* denotes the
cycle length and a good entropgic. At the same time, k" composition of a functiory,

I. INTRODUCTION

Il. BASIC RECALLS

Chaotic iterations

the PRNG must also pass usual evaluations using traditional fh=fo..of
digital signal processing tools (autocorrelation funetioross- H,_/ (1)
correlation function and fast Fourier transform). k times

P . ) Let us consider aystem of a finite numbem of cells, so

In this document, chaos means Devaney’s topological chapsviiich h h lh bool Th £l h
implies a deterministic but unpredictable system very isigasto its initial that each cell has a booleatate. en a sequence o e”gt
conditions. N of boolean states of the cells corresponds to a particular



state of the system. A sequence which elements belong in one [5][13][7][8]. With respect to this requirement, a new
[1;N] is called astrategy. The set of all strategies is denoted method based on discrete chaotic iterations is proposétkin t

by S. next section.

Definition 1 Let S € S. The shift function is defined by : I1l. THE NOVEL GENERATOR BASED ON DISCRETE
(S")pew € S — (S™"),enw € S and theinitial function CHAOTIC ITERATIONS

z: is the map which a})ssociates to a sequence, its first term: The design of the new pseudo-random number generator
i:(S")new €S — S° € [1;N]. based on discrete chaotic iterations, satisfying Devaney’

Definition 2 The setB denoting{0, 1}, let f : BN — BN chaos, is proposed and discussed. Detail operations of this
be an iteration function anfl € S be a chaotic strategy. Then, @Pproach are described in this section, while their peréorre

the so-callecthaotic iterations are defined by [10] will be presented in the next section.
A. Chaotic iterations as pseudo-random generator
2? e BN, . The novel generator is designed by the following process.
Wn € IN* Vi € [1;N], 2 { apTh ST £ () Let N € IN*,N > 2. Some chaotic iterations are done,
’ o f(a™)sn if 5™ =i which generate a sequence™), . € (BY)" of boolean

vectors: the successive states of the iterated system. 8bme
those vectors are chaotically extracted and their compsnen
constitute our pseudo-random bit flow.

Chaotic iterations are realized as follows: initial state
2% € BN is a boolean vector taken as a seed, explained in
Subsection 11I-D and chaotic strateg$™),, . € [1,N]™ is
constructed from a logistic map(eq. 4 in Subsection IlI-B).
cf_ast, iterate functiory is the vectorial boolean negation

In other words, at thex!” iteration, only theS™—th cell
is “iterated”. Note that in a more general formulatiost;
can be a subset of components gf{d™)s~» can be replaced
by f(z*)s», wherek < n, describing for example delays
transmission (see.g. [1]). For the general definition of such
chaotic iterations, see, e.g. [10].

Chaotic iterations generate a set of vectors (boolean vect
in this paper), they are defined by an initial statg, an

iteration functionf and a chaotic strategy. fo:(z1,...,2n) € BN — (77, ..., 7N) € BN,

B. Devaney's chaotic dynamical systems To sum up, at each iteration, onf§/-th component of state
Consider a metric spadet, d) and a continuous function X™ is updated, as follows

f: X — X. f is said to betopologically transitive, if for I A

any pair of open set§/,V C X, there existsk > 0 such = ! ’ 3)

that f*(U) NV # @. (X, f) is said to beregular if the set ’ g AP

of periodic points is dense i&'. f hassensitive dependence

on initial conditions if there existss > 0, such that, for any Finally, let M be a finite subset olN*. Somea" are

x € X and any neighborhood of z, there existy) € V and  selected by a sequeng€"’ as the pseudo-random bit sequence

n > 0 such thaf f™(z) — f™(y)| > 6. d is called theconstant ~ of our generator, where a sequenge™),cx € M" is

of sensitivity of f. computed withy (eq. 6 in Subsection 11I-C). So, the generator
Quoting Devaney in [3], a functiori : ¥ — X is said to  returns the following values:

be chaotic on X if (X, f) is regular, topologically transitive « the components af ™’

and has sensitive dependence on initial conditions. . following by the components of™’+m",
When f is chaotic, then the systefd’, f) is chaotic and « following by the components of™’+m'+m*

quoting Devaney it is unpredictable because of the sessitiv « €tc.

dependence on initial conditions. It cannot be broken down |n other words, the generator returns the following bits:

or decomposed into two subsystems which do not interactro o mo  gmogmotmigmotmpmotmy g motma

because of topological transitivity. And in the midst of jmotmitma motmitms motmitms

this random behavior, we nevertheless have an element of gnd itskt* bit is

regularity: fundamentally different behaviors are thesgible

and occurs with an unpredictably way. ) )
The appendix gives the outline proof that chaotic iteration "€ basic design steps of the novel generator are also

satisfy Devaney'’s topological chaos property. They cam the presented in flow chart form in Figure N(- L is the length

be used to construct a new pseudo-random bit generator. N bits of obtained sequence). _ _
N = 5 and M = {4,5} are adopted in the following

C. Low-dimensional chaotic systems subsections for easy understanding.

The dynamics of low dimension systems can be preg  Chagtic strategy

[ ing return m nalysis or for ing. M
dicted using retu ap analysis or forecasting. Messages Let 4° €]0; 1] be a real number deduced as a seed too
can thus be extracted from the chaos [11]. In addition, its . " o

: . - L gsee Subsection 11I-D) angd = (y")»en € [0,1] the logistic

randomness nature is deteriorated when a finite precisio :

. g : . sequence defined as bellow
arithmetic is used. The chaotic properties are reducedesoni
severe problems such as short cycle length, non-ideal
distribution and high-correlation have been observed [4].

Therefore, it is required to merge two or more Chaotic strategy is then the sequeri&®),en € [1;5]N

low-dimensional chaotic systems, to form a compositeequal to

St
k41 (mod N)*

Vn € N,y" ™ = 4y™(1 — y") (4)



BEGIN
Q{D IV. STATISTICAL TESTS AND EXPERIMENTS

[Get initial state +"=(x{.... x7) | The security of the new scheme is evaluated via both
! theoretical analysis and experiments.

A. NIST statistical test suite

1) Presentation: Among the numerous standard tests for
pseudo-randomness, a convincing way to show the random-

Y T ness of the produced sequences is to confront them to

‘ Cateulate sur= 3, o the NIST (National Institute of Standards and Technology)

Statistical Test: an up-to-d&teéest suite by the Information

Technology Laboratory (ITL).

[ sub-iteration, i=itl | The NIST test suite, SP 800-22, is a statistical package

consisting of 15 tests. They were developed to test the

randomness of (arbitrarily long) binary sequences produce

by either hardware or software based cryptographic random

or pseudo-random number generators. These tests focus on a

variety of different types of non-randomness that coulduocc

in a sequence.

: 2) Interpretation of empirical results: P is the tail proba-

RE NPT ORI o xf bility that the chosen test statistic will assume values &na

equal to or worse than the observed test statistic value when

cosidering the null hypothesis. For each statistical @stet

of Ps is produced from a set of sequences obtained by our

generator (i.e., 100 sequences are generated and tested, he

100 Ps are produced). The interpretation of empirical results

can be conducted in any number of ways. In this paper, the

‘ Choose suitable sequence m and chaotic strategy S ‘

Iteration, n=0

‘ Update the Sith component of x by fo‘

Figure 1. Flow chart of chaotic strategy

Vn e IN. S™ — (L107y"J) mod 5 + 1 (5) examination of the distribution dfs to check for uniformity
’ (Pr) is used.
C. Sequence m of returned states The distribution ofPs is examined to ensure uniformity.

Let us recall thatn™ is the number of iterations between If Pz > 0.0001, then the sequences can be considered to be
the n'" return of 5 pseudo-random bits and the following uniformly distributed.
n + 1** return. To defingm™),cn, the chaotic sequence of  In our experiments, 100 sequences (s = 100), each with
equation 4 is used another time: 1,000,000-bit long, are generated and tested. Ifftheof any
test is smaller than 0.0001, the sequences are considebed to

Vn e N.m" = { 4 ?f yz <0.5 (6) hot good enough and the generating algorithm is not suitable
5 if y" >0.5 for usage.
D. Parameters of the generator Table Il showsPr of the sequences based on discrete

chaotic iterations using different schemes. If there aleast
Ofgvo statistical values in a test, the test is marked with an
asterisk and the average value is computed to charactbgaze t
statistical values. Different schemes are using diffelemgths
N of the iterated system and different set$ (range ofm?
which gives the states to return).

We can conclude from Table Il that the worst situation is
Scheme 1: it just can be observed that 3 out of 15 of the tests

The initial state of the system” and the first term,° of
the logistic map are seeded by the current time in secon
since the Epoch, or a number that the user inputs.

Different ways are possible. For example, let us denote by
the decimal part of the current time. $8 can bet (mod 32)
written in binary digits 25 = 32 and the system is constituted
by 5 bits) andy® = t.

E. lllustration example are failed. However, if we find a right combination Nfand
In this example, the current time in seconds since/ (Scheme 6) a noticeable improvementis observed, and all
the Epoch is 1237632934.484076. So, — 484076, the tests are passed.
:c(o) =t (mod 32) in binary digitsj.e. z° = (1,0,1,0,0) and B, Experiment results
y = 0.484076. The PRNG adopted in this section is Scheme 6 of Table II.
Then The auto-correlation and cross-correlation of the synaboli
o y = 0.484076, 0.998985..., 0.004053..., 0.016146...Sequence are also given in Figure 2. It can be seen that this
0.063543.., 0.238022..., 0.725470..., 0.796651... sequence haé-like auto-correlation which is required for a
e m=4,54,4,4,4,5,5,5,5,4,5, 4,.. good PRNG. The sequences generated with different initial
e« §=2,4,2,2,5,1,1,5,5,3, 2,3, 3,.. values will have zero cross-correlation due to the semsitiv

dependence on initial conditions.
The FFT of the sequence (Figure 3) is performed and the
corresponding power spectrum is computed. A complete flat

Chaotic iterations are made with initial stat, vectorial
logical negation and strategy, as shown in Table |, antch
gives the states™ to return:z?, z4+> 4+5+4 .

In this situation, the output of the generator is: 24 pew version of the Statistical Test Suite (Version 2.0) been released
10100111101111110011... in August 25, 2008.



Table |
APPLICATION EXAMPLE

m 4 4
S 2 4 2 2 5 1 5 5 3 2 3 3
20 =t i JRE
1 1 Lo L 1 1
o | 31 2o X1 1 1 20 0
1 1 1] 20 21 20 o
0 ENS] 1 1 1
0 0| 21 20 21 01 1
Output: J:(l)azga:gxgxgx%m%mgxixéx?xgmgmz mgm%?’x%“xé“mf’xé“ = 10100111101111110011...
Table 1l
SP 800-22rEST RESULTS(Pr)
Scheme 1 2 3 4 5
N (size of the system) 8 8 8 5 5 5
M {1} {8} {t,..8y | {45} | {9,10} | {14,15}
Frequency (Monobit) Test 0 0.289667 0 0.108791 | 0.026948 | 0.851383
Frequency Test within a Block (M=20000) 0 0 0 0.699313 | 0.262249 | 0.383827
Runs Test 0 0.955835| 0.816537 | 0.739918| 0.419021 | 0.319084
Test for the Longest Run of Ones in a Block 0 0 0 0.834308 | 0.616305| 0.137282
Binary Matrix Rank Test 0 0 0.699313 | 0.935716| 0.153763 | 0.699313
Discrete Fourier Transform (Spectral) Test 0 0 0 0.162606 | 0.798139 | 0.129620
Non-overlapping Template Matching Test* (m=9 0 0 0 0.482340| 0.410039 | 0.484733
Overlapping Template Matching Test (m=9) 0 0 0 0.401199 | 0.678686 | 0.474986
Maurers Universal Statistical Test (L=7,0=1280 0 0.075719| 0.080519| 0.102526 | 0.455937 | 0.096578
Linear Complexity Test (M=500) 0.955835 | 0.474986 | 0.051942 | 0.023545| 0.637119| 0.419021
Serial Test* (m=10) 0 0 0 0.308152 | 0.369959 | 0.534272
Approximate Entropy Test (m=10) 0 0 0 0 0 0.991468
Cumulative Sums (Cusum) Test* 0 0.553415 0 0.661814 | 0.840655| 0.755309
Random Excursions Test* 0.015102 | 0.45675 | 0.194299 | 0.293228| 0.335133| 0.654062
Random Excursions Variant Test* 0.045440 | 0.49615 | 0.145418 | 0.330716| 0.574089 | 0.553885
Success 3/15 7/15 6/15 14/15 14/15 15/15
autorcorrelation intercorrelation
0.8f 08
0.6 0.6
04+ 0.4
0.2 0.2
0 —— 0 -

(a) The auto-correlation

Figure 2.

power spectrum, with almost equal frequency contributimn f
all frequencies, is indicative of a total random serie.

C. On the periodicity of chaotic orbit

Suppose the system is realized Anbit finite precision
(under fixed-point arithmetic) and then digital chaotiaate
tions are constrained in a discrete space withelements,

(b) The cross-correlation

The auto-correlation and cross-correlation efpgheudo-random sequence

periodic [6], i.e., finally go to a cycle with limited length
not greater thar2®.

The schematic view of a typical orbit of a digital chaotic
system is shown in Figure 4. Generally, each digital chaotic
orbit includes two connected parts,z!,...,2!~! and
b 2t which are respectively called transient
(branch) and cycle in this paper. Accordinglyandn + 1

it is obvious that every chaotic orbit will eventually be are respectively called transient length and cycle peiandi,
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(a) The original image (b) The histogram of original image

Figure 3. The FFT of the pseudo-random sequence Figure 5. Distribution of original image

Pixels Distribution

Figure 4. A pseudo orbit of a digital chaotic system
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[+ n+1is called orbit length.

0 50 100

Definition 3 A sequenceX = (z!,...,z") is said cyclic if  (a) The encrypted image  (b) The histogram of encrypted image
a subset of successive terms is repeated from a given rank, Figure 6. Distribution of encrypted image
until the end ofX.

This novel generator based on discrete chaotic iterations
generated by two pseudo-random sequengearfd .S) has a
long cycle length. If the cycle period of. and S is n,, and
ng, in an ideal situation, the cycle period of the new sequenc
is ., -ng - 2 (becauser = x).

The generator presented in this paper has passed the whole
NIST800-22 statistical test suite, so it can reasonably be
gonsidered as a possibly usable PRNG. We believe that this
generator can also be used for cryptographic applications,
because of its topological chaos quality. Indeed, it is pcon
Example 1 m (n,, = 2): 12121212121212121212121212... [2] that Devaney’s chaos property is satisfied by the discret

S(ng=4):1234123412341234123412341 chaotic iterations: they are regular, transitive and $mesto
23 4. initial conditions.

X(nx = 2-4-2 = 16): 0000(0) 1000(8) 1110(14) Because of transitivity, the discrete dynamical system can
1111(15) 0011(3) 0001(1) 1000(8) 1100(12) 1111(15)not be decomposed: the behavior of the system cannot be
0111(7) 0001(1) 0000(0) 1100(12) 1110(14) 0111(7) 0011(3yeduced to the study of one of its parts. As a consequence,
0000(0) 1000(8) 1110(14) 1111(15) 0011(3) 0001(1) 1000(8}he knowledge of a part of the private key (or the encrypted
1100(12) 1111(15) 0111(7) 0001(1) 0000(0) 1100(12)image) cannot help an hypothetical attacker to guess théewho
1110(14) 0111(7) 0011(3)... key (image). Moreover, the sensitiveness conducts to ttte fa

that, even if the attacker tries anyway to decrypt the cypher
V. AN APPLICATION EXAMPLE OF THE PROPOSEIPRNG  message by attempting to complete the part in his possession

Cryptographically secure PRNGs are fundamental tools t§'€ cannot succeed. _
communicate securely through the Internet. Last the regularity participates to an increase of the remdo

For example, in order to guarantee security of image€SS of our g_enerator and cqnducts to the impossibility@f th
transmission, the previous pseudo-random sequence can BEgdiction of its future evolution. Two very similar seqees
used to encrypt the digital image (one-time pad encryption)can have completely dlffe_rent behaviors after some itenati
The original image and the encrypted image are shown ithe first can quu_:kly enter m_to a cycle whereas t_he second can
Figures 5(a) and 6(a). Figures 5(b) and 6(b) depict thdollow a more d|verger!t trajectory. Thus, two different dee
histograms. It can be seen that the distribution of the griedy ~ 9€nerate completely different keys.
image is very close to the uniform distribution, which can
well protect the information of the image to withstand the
statistical attack. In this paper, a novel pseudo-random generator based on

TLS protocol is another example in which cryptograph-discrete chaotic iterations is proposed. Different scleme
ically secure PRNGs are needed, during the generation afre used to generate this chaotic sequence. A particular
private key for symmetric cypher. This generation requaes scheme (Scheme 6) offers a sufficiently secure randomness
high quality of the randomness for the PRNG. for cryptographic applications. The proposed PRNG is based

V1. CONCLUSIONS AND FUTURE WORK



on a rigorous framework. In addition, a detailed statisticawhere + and . are the boolean addition and product operations

analysis concerning the numbers produced by this method is Consider the phase spack:= [1; N]N x BN and the map

given. These experimental results lead us to conclude tirat o )

generator is a very good and reliable PRNG and that chaotic Gy (8, B) = (o(5), Fy (i(S), ),

iterations can be used in computer science security field[2] then the chaotic iterations defined in (1I-A) can be desctibe
In future work, different random sequences will be usedpy the following iterations

in place of logistic map, the influence & and the range %0 ¢ ¥

M of m? for the output sequence will be explored and { k+€1 - i

other iteration functions will be studied. New applicason X = Gr(XP).

in computer science field will be proposed, specially in the Let us define a new distance between two points

security and cryptography domains. (S,E),(S,FE) € X by
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APPENDIX
In this appendix we give outline proofs of the properties
on which our pseudo-random number generator is based.
Denote by § the discrete boolean  metric,
o(xz,y) = 0 & o = y. Given a functionf, define the
function £ : [1;N] x BN — BN such that
Fy(k, B) = (Ej.8(k,5) + F(E).8(F, 7))

je[ing’



