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Abstract—Security of information transmitted through the
Internet, against passive or active attacks is an international
concern. The use of a chaos-based pseudo-random bit sequence
to make it unrecognizable by an intruder, is a field of research in
full expansion. This mask of useful information by modulation or
encryption is a fundamental part of the TLS Internet exchange
protocol. In this paper, a new method using discrete chaotic
iterations to generate pseudo-random numbers is presented. This
pseudo-random number generator has successfully passed the
NIST statistical test suite (NIST SP800-22). Security analysis
shows its good characteristics. The application for secureimage
transmission through the Internet is proposed at the end of the
paper.

Keywords-Chaotic sequences; Topological chaos; Pseudo-
random number generator; Statistical tests; Internet security;
Discrete chaotic iterations.

I. I NTRODUCTION

Nowadays, the world is highly computerized and inter-
connected, this leads to a growing interest in the use of
digital chaotic1 systems offering the possibility to reinforce
the security of cryptographic algorithms, like those present
in the Transport Layer Security protocol (TLS is an Internet
exchange protocol). The advantage of the use of chaotic
dynamics for security problems lies in their unpredictability
character and in the mathematical theory of chaos. This
theory brings many qualitative and quantitative tools, namely
ergodicity, entropy, expansivity and sensitive dependence to
initial conditions, these tools allow the study of the random-
ness of the disorder generated by the considered system.

Most of these new applications use chaotic maps as pseudo-
random number generators to obtain a binary stream, for
example, for symmetric encryption. Random number gen-
erators are essential in several fields like statistical studies,
simulations (used for performance evaluations) or cryptog-
raphy. They may be based on physical noise sources or
on mathematical algorithms. However, in both cases, truly
random numbers are not obtained because of data acquisition
systems in the first case and machine precision in the sec-
ond one. Instead, any real implementation actually produces
a pseudo-random number generator (PRNG). Before using
those generators in cryptographic applications, some strong
requirements must be checked, for instance, they have to pass
the up-to-date National Institute of Standards and Technology
(NIST) statistical test suite [9], they should possess a long
cycle length and a good entropy,etc. At the same time,
the PRNG must also pass usual evaluations using traditional
digital signal processing tools (autocorrelation function, cross-
correlation function and fast Fourier transform).

1In this document, chaos means Devaney’s topological chaos [3] which
implies a deterministic but unpredictable system very sensitive to its initial
conditions.

The behaviors of chaotic dynamical systems are very sim-
ilar to those of physical noise sources [12]. Their sensitivity
to initial conditions and their broadband spectrum make
them good candidates to generate cryptographically secure
PRNGs. Particularly, they have several basic properties that
any good PRNG must possess: a long cycle length, strong
randomness and entropy, speed, reproducibility,etc. However,
chaotic dynamical systems are usually continuous and hence
defined on the real numbers domain. The transformation
from real numbers to integers may lead to the loss of the
chaotic behavior. The conversion to integers needs a rigorous
theoretical foundation.

In this paper, a new chaotic pseudo-random bit generator
is presented, which can also be used to obtain numbers
uniformly distributed between 0 and 1. Indeed, these bits can
be groupedn by n, to obtain the floating part ofx ∈ [0, 1]
represented in binary numeral system. This generator is based
on discrete chaotic iterations which satisfy Devaney’s defini-
tion of chaos [2]. A rigorous framework is introduced, where
topological chaotic properties of the generator are shown.This
generator successfully passes the whole NIST statistical tests.
Moreover, because of its topological chaotic properties, this
generator can be used for cryptographic applications.

The rest of this paper is organized in the following way. In
Section II, some basic definitions concerning chaotic iterations
and PRNGs are recalled. Section III is devoted to the new
generator which is based on discrete chaotic iterations, all the
design steps of this PRNG are described. In Section IV the
results of some experiments and statistical tests are given.
In Section V, some application examples are proposed in
the field of Internet secure exchanges. Some conclusions and
future work end the paper.

II. BASIC RECALLS

This section is devoted to basic notations and terminologies
in the fields of chaotic iterations, Devaney’s chaos and pseudo-
random number generators.

A. Chaotic iterations

In the sequelJ1; NK means{1, 2, . . . , N}, sn denotes the
nth term of a sequences = (s1, s2, . . .), Vi denotes theith

component of a vectorV = (V1, V2, . . .) andfk denotes the
kth composition of a functionf ,

fk = f ◦ ... ◦ f
︸ ︷︷ ︸

k times
(1)

Let us consider asystem of a finite numberN of cells, so
that each cell has a booleanstate. Then a sequence of length
N of boolean states of the cells corresponds to a particular



state of the system. A sequence which elements belong in
J1; NK is called astrategy. The set of all strategies is denoted
by S.

Definition 1 Let S ∈ S. The shift function is defined byσ :
(Sn)n∈N ∈ S −→ (Sn+1)n∈N ∈ S and theinitial function
i is the map which associates to a sequence, its first term:
i : (Sn)n∈N ∈ S −→ S0 ∈ J1; NK.

Definition 2 The setB denoting{0, 1}, let f : BN −→ B
N

be an iteration function andS ∈ S be a chaotic strategy. Then,
the so-calledchaotic iterations are defined by [10]

x0 ∈ B
N,

∀n ∈ N
∗, ∀i ∈ J1; NK, xn

i =

{
xn−1

i if Sn 6= i

f(xn)Sn if Sn = i.

(2)

In other words, at thenth iteration, only theSn−th cell
is “iterated”. Note that in a more general formulation,Sn

can be a subset of components andf(xn)Sn can be replaced
by f(xk)Sn , wherek 6 n, describing for example delays
transmission (seee.g. [1]). For the general definition of such
chaotic iterations, see, e.g. [10].

Chaotic iterations generate a set of vectors (boolean vector
in this paper), they are defined by an initial statex0, an
iteration functionf and a chaotic strategyS.

B. Devaney’s chaotic dynamical systems

Consider a metric space(X , d) and a continuous function
f : X −→ X . f is said to betopologically transitive, if for
any pair of open setsU, V ⊂ X , there existsk > 0 such
that fk(U) ∩ V 6= ∅. (X , f) is said to beregular if the set
of periodic points is dense inX . f hassensitive dependence
on initial conditions if there existsδ > 0, such that, for any
x ∈ X and any neighborhoodV of x, there existsy ∈ V and
n > 0 such that|fn(x)− fn(y)| > δ. δ is called theconstant
of sensitivity of f .

Quoting Devaney in [3], a functionf : X −→ X is said to
be chaotic on X if (X , f) is regular, topologically transitive
and has sensitive dependence on initial conditions.

When f is chaotic, then the system(X , f) is chaotic and
quoting Devaney it is unpredictable because of the sensitive
dependence on initial conditions. It cannot be broken down
or decomposed into two subsystems which do not interact
because of topological transitivity. And in the midst of
this random behavior, we nevertheless have an element of
regularity: fundamentally different behaviors are then possible
and occurs with an unpredictably way.

The appendix gives the outline proof that chaotic iterations
satisfy Devaney’s topological chaos property. They can then
be used to construct a new pseudo-random bit generator.

C. Low-dimensional chaotic systems

The dynamics of low dimension systems can be pre-
dicted using return map analysis or forecasting. Messages
can thus be extracted from the chaos [11]. In addition, its
randomness nature is deteriorated when a finite precision
arithmetic is used. The chaotic properties are reduced: some
severe problems such as short cycle length, non-ideal
distribution and high-correlation have been observed [4].

Therefore, it is required to merge two or more
low-dimensional chaotic systems, to form a composite

one [5][13][7][8]. With respect to this requirement, a new
method based on discrete chaotic iterations is proposed in the
next section.

III. T HE NOVEL GENERATOR BASED ON DISCRETE

CHAOTIC ITERATIONS

The design of the new pseudo-random number generator
based on discrete chaotic iterations, satisfying Devaney’s
chaos, is proposed and discussed. Detail operations of this
approach are described in this section, while their performance
will be presented in the next section.

A. Chaotic iterations as pseudo-random generator

The novel generator is designed by the following process.
Let N ∈ N

∗, N > 2. Some chaotic iterations are done,
which generate a sequence(xn)n∈N

∈
(
B

N
)N

of boolean
vectors: the successive states of the iterated system. Someof
those vectors are chaotically extracted and their components
constitute our pseudo-random bit flow.

Chaotic iterations are realized as follows: initial state
x0 ∈ B

N is a boolean vector taken as a seed, explained in
Subsection III-D and chaotic strategy(Sn)n∈N

∈ J1, NKN is
constructed from a logistic mapy (eq. 4 in Subsection III-B).
Last, iterate functionf is the vectorial boolean negation

f0 : (x1, ..., xN) ∈ B
N 7−→ (x1, ..., xN) ∈ B

N.

To sum up, at each iteration, onlySi-th component of state
Xn is updated, as follows

xn
i =







xn−1
i if i 6= Si,

xn−1
i if i = Si.

(3)

Finally, let M be a finite subset ofN∗. Some xn are
selected by a sequencemn as the pseudo-random bit sequence
of our generator, where a sequence(mn)n∈N ∈ MN is
computed withy (eq. 6 in Subsection III-C). So, the generator
returns the following values:

• the components ofxm0

,
• following by the components ofxm0+m1

,
• following by the components ofxm0+m1+m2

,
• etc.
In other words, the generator returns the following bits:

x
m0

1 x
m0

2 x
m0

3 . . . x
m0

N
x

m0+m1

1 x
m0+m1

2 x
m0+m1

3 . . . x
m0+m1

N

x
m0+m1+m2

1 x
m0+m1+m2

2 x
m0+m1+m2

3 ...

and itskth bit is
x

P⌊k/N⌋
i=0

mi

k+1 (mod N).

The basic design steps of the novel generator are also
presented in flow chart form in Figure 1 (N ·L is the length
in bits of obtained sequence).

N = 5 and M = {4, 5} are adopted in the following
subsections for easy understanding.

B. Chaotic strategy

Let y0 ∈]0; 1[ be a real number deduced as a seed too
(see Subsection III-D) andy = (yn)n∈N ∈ [0, 1] the logistic
sequence defined as bellow

∀n ∈ N, yn+1 = 4yn(1 − yn) (4)

Chaotic strategy is then the sequence(Sn)n∈N ∈ J1; 5KN

equal to



Figure 1. Flow chart of chaotic strategy

∀n ∈ N, Sn =
(
⌊107yn⌋

)
mod 5 + 1 (5)

C. Sequence m of returned states

Let us recall thatmn is the number of iterations between
the nth return of 5 pseudo-random bits and the following
n + 1th return. To define(mn)n∈N, the chaotic sequence of
equation 4 is used another time:

∀n ∈ N, mn =

{
4 if yn < 0.5
5 if yn > 0.5

(6)

D. Parameters of the generator

The initial state of the systemx0 and the first termy0 of
the logistic map are seeded by the current time in seconds
since the Epoch, or a number that the user inputs.

Different ways are possible. For example, let us denote byt

the decimal part of the current time. Sox0 can bet (mod 32)
written in binary digits (25 = 32 and the system is constituted
by 5 bits) andy0 = t.

E. Illustration example

In this example, the current time in seconds since
the Epoch is 1237632934.484076. So,t = 484076,
x0 = t (mod 32) in binary digits,i.e. x0 = (1, 0, 1, 0, 0) and
y0 = 0.484076.

Then
• y = 0.484076, 0.998985..., 0.004053..., 0.016146...,

0.063543.., 0.238022..., 0.725470..., 0.796651...
• m = 4, 5, 4, 4, 4, 4, 5, 5, 5, 5, 4, 5, 4,...
• S = 2, 4, 2, 2, 5, 1, 1, 5, 5, 3, 2, 3, 3,...
Chaotic iterations are made with initial statex0, vectorial

logical negation and strategyS, as shown in Table I, andm
gives the statesxn to return:x4, x4+5, x4+5+4, ....

In this situation, the output of the generator is:
10100111101111110011...

IV. STATISTICAL TESTS AND EXPERIMENTS

The security of the new scheme is evaluated via both
theoretical analysis and experiments.

A. NIST statistical test suite

1) Presentation: Among the numerous standard tests for
pseudo-randomness, a convincing way to show the random-
ness of the produced sequences is to confront them to
the NIST (National Institute of Standards and Technology)
Statistical Test: an up-to-date2 test suite by the Information
Technology Laboratory (ITL).

The NIST test suite, SP 800-22, is a statistical package
consisting of 15 tests. They were developed to test the
randomness of (arbitrarily long) binary sequences produced
by either hardware or software based cryptographic random
or pseudo-random number generators. These tests focus on a
variety of different types of non-randomness that could occur
in a sequence.

2) Interpretation of empirical results: P is the tail proba-
bility that the chosen test statistic will assume values that are
equal to or worse than the observed test statistic value when
cosidering the null hypothesis. For each statistical test,a set
of Ps is produced from a set of sequences obtained by our
generator (i.e., 100 sequences are generated and tested, hence
100 Ps are produced). The interpretation of empirical results
can be conducted in any number of ways. In this paper, the
examination of the distribution ofPs to check for uniformity
(PT ) is used.

The distribution ofPs is examined to ensure uniformity.
If PT ≥ 0.0001, then the sequences can be considered to be
uniformly distributed.

In our experiments, 100 sequences (s = 100), each with
1,000,000-bit long, are generated and tested. If thePT of any
test is smaller than 0.0001, the sequences are considered tobe
not good enough and the generating algorithm is not suitable
for usage.

Table II showsPT of the sequences based on discrete
chaotic iterations using different schemes. If there are atleast
two statistical values in a test, the test is marked with an
asterisk and the average value is computed to characterize the
statistical values. Different schemes are using differentlengths
N of the iterated system and different setsM (range ofmi

which gives the states to return).
We can conclude from Table II that the worst situation is

Scheme 1: it just can be observed that 3 out of 15 of the tests
are failed. However, if we find a right combination ofN and
M (Scheme 6) a noticeable improvement is observed, and all
the tests are passed.

B. Experiment results

The PRNG adopted in this section is Scheme 6 of Table II.
The auto-correlation and cross-correlation of the symbolic

sequence are also given in Figure 2. It can be seen that this
sequence hasδ-like auto-correlation which is required for a
good PRNG. The sequences generated with different initial
values will have zero cross-correlation due to the sensitive
dependence on initial conditions.

The FFT of the sequence (Figure 3) is performed and the
corresponding power spectrum is computed. A complete flat

2A new version of the Statistical Test Suite (Version 2.0) hasbeen released
in August 25, 2008.



Table I
APPLICATION EXAMPLE

m : 4 5 4

S 2 4 2 2 5 1 1 5 5 3 2 3 3

x0 x4 x9 x13

1 1
1
−→ 0

1
−→ 1 1 1

0
2
−→ 1

2
−→ 0

2
−→ 1 1 1

2
−→ 0 0

1 1 1
3
−→ 0

3
−→ 1

3
−→ 0 0

0
4
−→ 1 1 1 1

0 0
5
−→ 1

5
−→ 0

5
−→ 1 1 1

Output:x0
1
x0
2
x0
3
x0
4
x0
5
x4
1
x4
2
x4
3
x4
4
x4
5
x9
1
x9
2
x9
3
x9
4

x9
5
x13
1

x13
2

x13
3

x13
4

x13
5

... = 10100111101111110011...

Table II
SP 800-22TEST RESULTS(PT )

Scheme 1 2 3 4 5 6

N (size of the system) 8 8 8 5 5 5

M {1} {8} {1, ..,8} {4, 5} {9, 10} {14, 15}

Frequency (Monobit) Test 0 0.289667 0 0.108791 0.026948 0.851383

Frequency Test within a Block (M=20000) 0 0 0 0.699313 0.262249 0.383827

Runs Test 0 0.955835 0.816537 0.739918 0.419021 0.319084

Test for the Longest Run of Ones in a Block 0 0 0 0.834308 0.616305 0.137282

Binary Matrix Rank Test 0 0 0.699313 0.935716 0.153763 0.699313

Discrete Fourier Transform (Spectral) Test 0 0 0 0.162606 0.798139 0.129620

Non-overlapping Template Matching Test* (m=9) 0 0 0 0.482340 0.410039 0.484733

Overlapping Template Matching Test (m=9) 0 0 0 0.401199 0.678686 0.474986

Maurers Universal Statistical Test (L=7,Q=1280) 0 0.075719 0.080519 0.102526 0.455937 0.096578

Linear Complexity Test (M=500) 0.955835 0.474986 0.051942 0.023545 0.637119 0.419021

Serial Test* (m=10) 0 0 0 0.308152 0.369959 0.534272

Approximate Entropy Test (m=10) 0 0 0 0 0 0.991468

Cumulative Sums (Cusum) Test* 0 0.553415 0 0.661814 0.840655 0.755309

Random Excursions Test* 0.015102 0.45675 0.194299 0.293228 0.335133 0.654062

Random Excursions Variant Test* 0.045440 0.49615 0.145418 0.330716 0.574089 0.553885

Success 3/15 7/15 6/15 14/15 14/15 15/15

−1.5 −1 −0.5 0 0.5 1 1.5
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(a) The auto-correlation
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intercorrelation

(b) The cross-correlation

Figure 2. The auto-correlation and cross-correlation of the pseudo-random sequence

power spectrum, with almost equal frequency contribution for
all frequencies, is indicative of a total random serie.

C. On the periodicity of chaotic orbit

Suppose the system is realized ink-bit finite precision
(under fixed-point arithmetic) and then digital chaotic itera-
tions are constrained in a discrete space with2k elements,
it is obvious that every chaotic orbit will eventually be

periodic [6], i.e., finally go to a cycle with limited length
not greater than2k.

The schematic view of a typical orbit of a digital chaotic
system is shown in Figure 4. Generally, each digital chaotic
orbit includes two connected parts:x0, x1, . . . , xl−1 and
xl, xl+1, . . . , xl+n , which are respectively called transient
(branch) and cycle in this paper. Accordingly,l and n + 1
are respectively called transient length and cycle period,and
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Figure 3. The FFT of the pseudo-random sequence

Figure 4. A pseudo orbit of a digital chaotic system

l + n + 1 is called orbit length.

Definition 3 A sequenceX = (x1, ..., xn) is said cyclic if
a subset of successive terms is repeated from a given rank,
until the end ofX .

This novel generator based on discrete chaotic iterations
generated by two pseudo-random sequences (m andS) has a
long cycle length. If the cycle period ofm andS is nm and
nS , in an ideal situation, the cycle period of the new sequence
is nm · nS · 2 (becausē̄x = x).

Example 1 m (nm = 2): 12121212121212121212121212...
S (nS = 4): 1 23 4 12 3 41 2 34 1 23 4 12 3 41 2 34 1

23 4...
X(nX = 2 · 4 · 2 = 16): 0000(0) 1000(8) 1110(14)

1111(15) 0011(3) 0001(1) 1000(8) 1100(12) 1111(15)
0111(7) 0001(1) 0000(0) 1100(12) 1110(14) 0111(7) 0011(3)
0000(0) 1000(8) 1110(14) 1111(15) 0011(3) 0001(1) 1000(8)
1100(12) 1111(15) 0111(7) 0001(1) 0000(0) 1100(12)
1110(14) 0111(7) 0011(3)...

V. A N APPLICATION EXAMPLE OF THE PROPOSEDPRNG

Cryptographically secure PRNGs are fundamental tools to
communicate securely through the Internet.

For example, in order to guarantee security of image
transmission, the previous pseudo-random sequence can be
used to encrypt the digital image (one-time pad encryption).
The original image and the encrypted image are shown in
Figures 5(a) and 6(a). Figures 5(b) and 6(b) depict the
histograms. It can be seen that the distribution of the encrypted
image is very close to the uniform distribution, which can
well protect the information of the image to withstand the
statistical attack.

TLS protocol is another example in which cryptograph-
ically secure PRNGs are needed, during the generation of
private key for symmetric cypher. This generation requiresa
high quality of the randomness for the PRNG.

(a) The original image
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(b) The histogram of original image

Figure 5. Distribution of original image

(a) The encrypted image
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(b) The histogram of encrypted image

Figure 6. Distribution of encrypted image

The generator presented in this paper has passed the whole
NIST800-22 statistical test suite, so it can reasonably be
considered as a possibly usable PRNG. We believe that this
generator can also be used for cryptographic applications,
because of its topological chaos quality. Indeed, it is proved in
[2] that Devaney’s chaos property is satisfied by the discrete
chaotic iterations: they are regular, transitive and sensitive to
initial conditions.

Because of transitivity, the discrete dynamical system can-
not be decomposed: the behavior of the system cannot be
reduced to the study of one of its parts. As a consequence,
the knowledge of a part of the private key (or the encrypted
image) cannot help an hypothetical attacker to guess the whole
key (image). Moreover, the sensitiveness conducts to the fact
that, even if the attacker tries anyway to decrypt the cypher
message by attempting to complete the part in his possession,
he cannot succeed.

Last the regularity participates to an increase of the random-
ness of our generator and conducts to the impossibility of the
prediction of its future evolution. Two very similar sequences
can have completely different behaviors after some iterations,
the first can quickly enter into a cycle whereas the second can
follow a more divergent trajectory. Thus, two different seeds
generate completely different keys.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, a novel pseudo-random generator based on
discrete chaotic iterations is proposed. Different schemes
are used to generate this chaotic sequence. A particular
scheme (Scheme 6) offers a sufficiently secure randomness
for cryptographic applications. The proposed PRNG is based



on a rigorous framework. In addition, a detailed statistical
analysis concerning the numbers produced by this method is
given. These experimental results lead us to conclude that our
generator is a very good and reliable PRNG and that chaotic
iterations can be used in computer science security field[2].

In future work, different random sequences will be used
in place of logistic map, the influence ofN and the range
M of mj for the output sequence will be explored and
other iteration functions will be studied. New applications
in computer science field will be proposed, specially in the
security and cryptography domains.
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APPENDIX

In this appendix we give outline proofs of the properties
on which our pseudo-random number generator is based.

Denote by δ the discrete boolean metric,
δ(x, y) = 0 ⇔ x = y. Given a functionf , define the
functionFf : J1; NK ×B

N −→ B
N such that

Ff (k, E) =
(

Ej .δ(k, j) + f(E)k.δ(k, j)
)

j∈J1;NK
,

where + and . are the boolean addition and product operations.
Consider the phase space:X = J1; NKN×B

N and the map

Gf (S, E) = (σ(S), Ff (i(S), E)) ,

then the chaotic iterations defined in (II-A) can be described
by the following iterations

{
X0 ∈ X
Xk+1 = Gf (Xk).

Let us define a new distance between two points
(S, E), (Š, Ě) ∈ X by

d((S, E); (Š, Ě)) = de(E, Ě) + ds(S, Š),

where

• de(E, Ě) =

N∑

k=1

δ(Ek, Ěk) ∈ J0; NK

• ds(S, Š) =
9

N

∞∑

k=1

|Sk − Šk|

10k
∈ [0; 1].

It is then proved in [2] by using the sequential continuity
that

Proposition 1 Gf is a continuous function on (X , d).

Then, the vectorial negationf0(x1, . . . , xN) = (x1, . . . , xN)
satisfies the three conditions for Devaney’s chaos, namely,
regularity and transitivity and sensitivity in the metric space
(X , d). This leads to the following result.

Proposition 2 Gf0
is a chaotic map on (X , d) in the sense

of Devaney.


