
How to Tackle Integer Weighted Automata

Positivity

Y. Boichut1, P.-C. Héam2,3 and O. Kouchnarenko3

LIFO/University of Orléans1

LSV INRIA/CNRS/ENS Cachan2

INRIA/CASSIS and LIFC/University of Franche-Comté 3

Abstract. This paper is dedicated to candidate abstractions to cap-
ture relevant aspects of the integer weighted automata. The expected
e�ect of applying these abstractions is studied to build the deterministic
reachability graphs allowing us to semi-decide the positivity problem on
these automata. Moreover, the papers reports on the implementations
and experimental results, and discusses other encodings.

1 Introduction

Weighted automata is a formalism widely used in computer science for applica-
tions in images compression [21,22], speech-to-text processing [28,9] or discrete
event systems [14]. These large application areas make them intensively studied
from the theoretical point of view [25,31,19,24,11,23]. The expressive power of
these automata is high enough so that many natural questions are not decidable.
Among them the problem to know whether for a given max/+-automaton A,
every word has a positive cost, called the positivity problem, was shown to be
undecidable [25]. This problem is of special interest because systems/components
comparisons modelled by max/+-automata can be based on or reduced to it.

The question we are interested in is whether the automatic veri�cation of
certain properties taking costs into account is possible on max/+-automata. As
the semantics of max/+-automata model is described by an in�nite structure,
there is a need of �nite abstractions of this semantics to perform analysis fully
automatically. Here the problem of handling costs becomes apparent. Obviously,
this kind of �nite abstractions does not exist for max/+-automata, at least not
for the cost-based veri�cation problem investigated. Given a max/+-automaton,
our research focuses on methods for semi-deciding whether in the in�nite struc-
ture there are a word and a reachable con�guration containing some �nal state
reachable from an initial state of the max/+-automaton, with cost −1 at most.

After introducing preliminary notions and recalling useful results on max/+-
automata (Section 2), we brie�y explain how the positivity problem can be
encoded into a reachability problem (Sect. 3). Next we explain how to tackle
this reachability problem using two semi-decision approaches. The �rst one (de-
veloped in Sect. 4) is based on a con�guration space exploration using a pruning
property to reduce the search. The second one (exposed in Sect. 5) uses a rewrit-
ing encoding of the problem and applies approximation techniques developed in
the rewriting theoretical framework. We report on experiments with the two
semi-algorithms that were implemented (Sect. 6), in particular when bounding

the depth of search. Section 7 contains a discussion on possible ways to tackle
remaining unsolved instances and gives some perspectives before concluding in
Sect. 8. Omitted proofs are provided in Appendix.

Well-structured transition systems, or WSTSs, are a general family of tran-
sition systems where general decidability results exist [12,1]. It turns out that it
is possible to give to many classes of models a structure of WSTSs [13]. We want
to emphasise the fact that it is not the case for max/+-automata. Consequently,
thanks to the expressivity results in [5], the determinisation reachability graphs
corresponding to max/+-automata do not give rise to systems sitting inside some
level of the symbolic transition systems (STS) hierarchy in [20].

In a veri�cation context, weighted (priced) systems have been studied in
many recent works (see e.g.,[?,?,?,?]). The central underlying problem of these
works is to compute the optimal weight of a path to reach a given con�gura-
tion (from an initial con�guration); the di�culties are due to timed constraints
(for locations and/or transitions). In this paper, the main di�culty lies in the
quanti�cation for all words u.

2 Preliminaries

In this paper, Σ denotes a �nite alphabet, i.e. a �nite set of symbols whose
elements are called letters. We assume that the reader is familiar with basic
language theory notions as word, language, etc. In the paper, the words weight
and cost are indistinctly used.

We denote by Z the set Z∪{−∞}. Addition and max-function are classically
extended to Z by: for every x ∈ Z, −∞+x = x+−∞ = −∞ and max(x,−∞) =
max(−∞, x) = x.

De�nition 1. A max/+-automaton A over Σ is a quintuplet A = (Q,Σ,E, I, F)
where Q is the �nite set of states, E ⊆ Q×Σ × Z×Q is the set of transitions,
I ⊆ Q is the set of initial states, and F ⊆ Q is the set of �nal states. Moreover,
A satis�es the following condition: if (p, a, c, q) and (p, a, d, q) are in E, then
c = d.

Figure 1 gives two examples of max/+-automata. Initial states are repre-
sented with an input arrow, and �nal states with a double circle.

for the cost-based verification problem investigated. Our research focuses on
methods for semi-deciding whether a certain final state is reachable from an
initial state, for a given word with cost at least

The present paper makes the following contributions. The first contribution
is a reachability problem encoding and a semi-algorithm which solves – when it
stops – the non-positive cost reachability problem. In fact, for a given word we
are only interested in deciding the reachability of a final state with a non-positive
cost instead of the exact cost value.

The second contribution is another rewriting-based reachability problem en-
coding and a subsequent semi-algorithm. This semi-algorithm constructs an over-
approximation of reachable states through rewriting. In this way if a state exists
such that the property does not hold, we cannot give a verdict. Otherwise, we
can conclude.

The third contribution is the implementation of semi-decision procedures to
analyse cost-based reachability properties. The paper reports on experimenta-
tions with max/+-automata.

Z = Z ∪ {−∞}

1.1 max/+-Automata

In this paper, Σ denotes a finite alphabet, i.e. a finite set of symbols whose
elements are called letters. We assume that the reader is familiar with basic
language theory notions as word, language, etc.

Definition 1. A max/+-automaton A over Σ is a quintuplet A = (Q,Σ, E, I, F)
where Q is the finite set of states, E ⊆ Q×Σ × Z×Q is the set of transitions,
I ⊆ Q is the set of initial states, and F ⊆ Q is the set of final states. Moreover,
A satisfies the following condition: if (p, a, c, q) and (p, a, d, q) are in E, then
c = d.

Figure 1 gives two examples of max/+-automata. Initial states are repre-
sented with an input arrow, and final states with a double circle.

q1start q2

b, 1

a, 2

a, 1a, 0

q3start q5

q4start

a, 1

b, 3

b, 3

a, 1

a, 1

Fig. 1. max/+-automata Aexe1 and Aexe2Fig. 1. max/+-automata Aexe1 and Aexe2

A path π of a max/+-automatonA is a �nite sequence π = (p0, a0, c0, q0), (p1, a1,
c1, q1), . . . , (pn, an, cn, qn) of transitions of A such that for every 0 ≤ i < n,
qi = pi+1. If we add the conditions: p0 is an initial state, qn is a �nal state, then

we call π a successful path. The label lab(π) of the path π is the word a0a1 . . . an,
and the cost of the path π is the sum of the ci's: costA(π) =

∑n
i=0 ci. The cost

of a word u, denoted A(u), is the maximum of all costs of successful paths of
label u: A(u) = max{costA(π) | lab(π) = u}.

Example 1. For instance, for the max/+-automaton Aexe1 in Fig. 1, the word
baaab labels the successful paths (q1, b, 1, q2), (q2, a, 2, q1), (q1, a, 0, q1), (q1, a, 0, q1),
(q1, b, 1, q2), (q1, b, 1, q2), (q2, a, 1, q2), (q2, a, 2, q1), (q1, a, 0, q1), (q1, b, 1, q2) and (q1,
b, 1, q2), (q2, a, 1, q2), (q2, a, 1, q2), (q2, a, 2, q1)(q1, b, 1, q2). Therefore Aexe1(baaab)
= 6.

Notice that since u is �nite, there are �nitely many successful paths of label
u. A max/+-automaton is �nitely ambiguous if there exists an integer k such
that every word accepted by the automaton is the label of k successful paths, at
most. In Fig. 1, Aexe2 is �nitely ambiguous, whereas Aexe1 is not: the word banb
is accepted by n− 1 di�erent successful paths. We end this section by recalling
some useful results on decision procedures for �nite (integer weighted) automata
exploited in this paper.

Theorem 1. Given a max/+-automaton A, it is undecidable to test whether
for every u ∈ L(A), A(u) ≥ 0 [25], and polynomial time decidable whether for
every u ∈ L(A), A(u) ≥ 0 if A is �nitely ambiguous [19,31].

3 Reachability Encoding

Given an max/+-automaton A, while it is undecidable to test whether for every
u ∈ L(A), A(u) ≥ 0 [25], we de�ne a determinisation-based abstraction of
the model, leading to graphs for which reachability can be semi-decided. More
precisely, in this section, the operational semantics of a max/+-automaton A
over Σ is given as a determinisation reachability graph where for a given word
in Σ∗, the corresponding con�guration contains the information on maximal
costs for reaching states of A.

Let A = (Q,Σ,E, I, F) be a max/+-automaton. The determinisation graph
G(A) = (V, δ, s0,K) of A is de�ned by

� V = ZQ
, s0 ∈ V and s0(p) = 0 if p ∈ I, and s0(p) = −∞, otherwise;

� δ ⊂ (V ×Σ)×V is the function de�ned δ(s, a) = s′ i� s′(p) = max{s(q)+ c |
(q, a, c, p) ∈ E}, with the convention that max ∅ = −∞;

� K = {s ∈ V | ∃q ∈ F, s(q) 6= −∞ and ∀p ∈ F, s(p) < 0} ⊆ V .

Example 2. Let us consider for instance the automaton Aexe3 depicted in Fig. 2.

1start 3 2
b, 1 b, 1

b,−1 a, 1

b, 1

b,−1

Fig. 2. max/+-automata Aexe3

Let consider for instance the automaton Aexe3 depicted in Fig. 2.
An element s of Z{1,2,3} is denoted (x, y, z) if s(1) = x, s(2) = y and s(3) = z.

G(Aexe3) = (Z{1,2,3}
, δexe3, (0,−∞,−∞), Kexe3) with Kexe3 = {(x, y, z) | z <

0 and z #= −∞}. A part of δexe3 is depicted in Fig. 3.

(0,−∞,−∞)

(−∞,−∞,−∞)

(−∞,−1, 1)

(−∞, 0,−∞)

(−∞, 0, 0)

(−∞, 1,−∞)

(−∞, 1, 1)

a

b

a

b

a

a

b

b

a, b

Fig. 3. A part of G(Aexe3)

The automaton A is said to be non-positive if in G(A) there exists a path
from s0 to an element of K.

Proposition 3. Let A = (Q,Σ, E, I, F) be a max/+-automaton. There exists
u ∈ L(A) such that A(u) < 0 if and only if A is non-positive.

The proposition is a direct consequence of the following lemma. The reader
familiar with max/+-automata may notice that this lemma is a direct conse-
quence of matricial presentation of max/+-automata.

Lemma 4. Let u ∈ Σ+, A = (Q,Σ, E, I, F) be a max/+-automaton and G(A) =
(V, δ, s0, K) its determinisation graph. There is a path in G(A) from s0 to s la-
belled by u if and only if for every p ∈ Q,

s(p) = max{costA(π) | π is a path in A from an intial state to p}.

Fig. 2. max/+-automata Aexe3

An element s of Z{1,2,3}
is denoted (x, y, z) if s(1) = x, s(2) = y and s(3) = z.

G(Aexe3) = (Z{1,2,3}
, δexe3, (0,−∞,−∞),Kexe3) with Kexe3 = {(x, y, z) | z <

0 and z 6= −∞}. A part of δexe3 is depicted in Fig. 3 (at this stage, we are not
concerned with dashed arrows).

Algorithm Name: Explore
Input: A, k ∈ N
Local Variables: L, C finite sets,
Begin
01. Compute C := ∅
02. Compute s0

03. Compute L := {s0}
04. While (k ≥ 0)
05. If C ∩K = ∅ and L = ∅
06. Return 1
07. EndIf
08. Get s ∈ L
09 . If C ∩K %= ∅
10. Return −1
11. EndIf
12. If not exists s′ ∈ C such that s′ ' s
13. C := C ∪ {s}
14. L := L ∪ {δ(s, a) | a ∈ Σ}
15. EndIf
16. k := k − 1
17. EndWhile
18. Return 0
End

Fig. 4. Exploration Algorithm

(0,−∞,−∞)

(−∞,−∞,−∞)

(−∞,−1, 1)

(−∞, 0,−∞)

(−∞, 0, 0)

(−∞, 1,−∞)

(−∞, 1, 1)

b

b

a

b

a

b

a

a

'
a, b

'

Fig. 5. Runing the Exploration AlgorithmFig. 3. A part of G(Aexe3)

The automaton A is said to be non-positive if in G(A) there exists a path
from s0 to an element of K.

Proposition 1. Let A = (Q,Σ,E, I, F) be a max/+-automaton. There exists
u ∈ L(A) such that A(u) < 0 if and only if A is non-positive.

4 State Space Exploration

We are interested in semi-deciding whether a max/+-automaton A is non-
positive. Clearly, this is a matter of walking � by classical algorithms like depth-
�rst search, random-walk, etc. � the determinisation graph G(A) de�ned above,
until either a con�guration in K is reached or there is an argument to prove
such a con�guration can no longer be found. Unfortunately, the determinisation
reachability graph is generally in�nite, and it is not easy to determine when it
is safe to stop. Consequently, these algorithms may not terminate and can only
conclude that A is non-positive but, when G(A) has in�nitely many reachable
con�gurations, they cannot conclude that A is not non-positive.

While reachability seems to a be a good tool to �nd con�gurations in K, for
practical problems the determinisation graph usually has far too many con�gu-
rations to calculate. To alleviate this problem, we exploit a pruning con�guration
approach. For that there is a need to introduce the relation � over con�gura-
tions of a determinisation graph G(A) of an max/+-automaton A. We de�ne
this relation by: s1 � s2 i� for every state p in A, s1(p) = −∞ i� s2(p) = −∞
and s1(p) ≤ s2(p) otherwise. The pruning is based on the following property.

Proposition 2. Let A = (Q,Σ,E, I, F) be a max/+-automaton and G(A) =
(V, δ, s0,K) its determinisation graph. Let s1, s2 ∈ ZQ

such that s1 � s2. Then
if a con�guration s′2 in K is reachable in G(A) from s2, then there also is a
con�guration s′1 in K reachable from s1.

Proposition 2 can be proved by a direct induction using the following lemma.

Lemma 1. Let A = (Q,Σ,E, I, F) be a max/+-automaton and G(A) = (V, δ,
s0,K) its determinisation graph. Let s1, s2 ∈ ZQ

such that s1 � s2. Then for
every letter a ∈ Σ, δ(s1, a) � δ(s2, a).

While bounding the depth, Proposition 2 leads to the search based algorithm
depicted in Fig. 4. In this algorithm, δ and K are related to the determinisation
graph of A. Notice too that a Return instruction ends the execution of the
algorithm. Integer k is the bound of the number of computed con�gurations of
the determinisation graph of A. Set C is the set of computed accessible con-
�gurations. Set L encodes con�gurations to explore. Line 08, the function Get
takes an element of L: the way this function is implemented may lead to di�erent
search approaches (depth �rst search, breadth �rst search, etc.). Next the graph
is classically computed but only for con�gurations s such that there is no s′ ∈ C
such that s′ � s (notice that � is re�exive). The procedure ends at Line 06
if there is no more con�guration to visit: K is not reachable. The algorithm
then returns 1, indicating that for all u ∈ Σ+, A(u) ≥ 0. The procedure ends
at Line 10 if a con�guration of K is reachable. Then the algorithm returns −1
indicating there exists u such that A(u) < 0. At Line 18, the algorithm returns
0, indicating that it cannot conclude whether A is non-positive or not.

Algorithm Name: Explore
Input: A, k ∈ N
Local Variables: L,C �nite sets,
Begin

01. Compute C := ∅ 10. Return −1
02. Compute s0 11. EndIf

03. Compute L := {s0} 12. If not exists s′ ∈ C such that s′ � s
04. While (k ≥ 0) 13. C := C ∪ {s}
05. If C ∩K = ∅ and L = ∅ 14. L := L ∪ {δ(s, a) | a ∈ Σ}
06. Return 1 15. EndIf

07. EndIf 16. k := k − 1
08. Get s ∈ L 17. EndWhile

09 . If C ∩K 6= ∅ 18. Return 0
End

Fig. 4. Exploration algorithm

For instance, let consider the max/+-automaton depicted in Fig. 2. The ex-
ploration algorithm computes the graph depicted in Fig. 3 where dashed arrows
represent the � relation. On this example, the algorithm stops after a few steps
and returns 1.

5 Rewriting Techniques Approach

Rewriting techniques are also well-suited for performing reachability analysis.
In particular, reachability analysis allows verifying safety properties on criti-
cal systems: Java programs [?,?], cryptographic protocols [?] or Java Bytecode
programs [?].

For the use of such techniques, rewriting semantics are de�ned for a given
reachability problem, and the reachability analysis is performed from a rewriting

point of view. Section 5.1 describes the rewriting model we use for determinisa-
tion graphs, and Section 5.2 explains how to show that an max/+-automaton is
positive.

5.1 Rewriting Model for Determinisation Graphs

Focusing on the abstraction chosen in this paper, we specify the determinisation
graph G(A) of a given automaton A as follows: its states are represented by
terms and its transition relation is then compiled into rewrite rules. Integers are
manipulated in their peano representations, i.e., using the constructors s (for
successor), p (for predecessor) and 0. For example, 1 is represented by the term
s(0) and −2 by p(p(0)).

Thus, a con�guration of a determinisation graph G(A) is speci�ed by a term
of the form run(w1, . . . , wn) where n is the number of states of A, wi is either a
peano integer or −∞. Considering this representation, the initial con�guration
(0,−∞,−∞) of the determinisation graph in Fig. 3 is speci�ed by the term
run(0,−∞,−∞).

The transition relation of a determinisation graph G(A) is then speci�ed by a
term rewriting system (TRS), i.e., a set of rewrite rules. The algorithm for gener-
ating such a TRS is simple. For a given max/+−automaton A = (Q, Σ,E, I, F),
we generate a set of rules per symbol of Σ by anticipating every possible scenario.

For instance, concerning Aexe3 of Fig. 2 and the letter b, b can be read from
the states 1, 2 and 3. So, a con�guration of the determinisation graph when
b is reading is a term of the form run(t1, t2, t3) where xi's are variables, t1 ∈
{−∞, s(x1), p(x1)}, t2 ∈ {−∞, s(x2), p(x2)} and t3 ∈ {−∞, s(x3), p(x3)}. For
each of these terms, according to the transition relation of G(Aexe3), a successor
term can be de�ned.

Example 3. For example, let run(s(x1),−∞, p(x3)) be one of the forms men-
tioned right above. According to the G(Aexe3) transition relation, the following
successor term can be set: run(−∞,+(s(x1), p(0)),max(+(s(x1), s(0)), +(p(x3),
p(0)))). Consequently, one can de�ne the rewrite rule

run(s(x1),−∞, p(x3))→ run(−∞,+(s(x1), p(0)),max(+(s(x1), s(0)),+(p(x3), p(0)))).

Doing so for each letter of Σ and for each form of terms, the whole transition
relation can be de�ned as a TRS R. In addition to these rules, those concerning
the function max and the addition + between two peano integers complete
the set of rewrite rules. These classical additional rules are given in Appendix,
Section 9.3.

5.2 Reachability Analysis

The rewriting model is now de�ned. Since we face systems whose number of
states is potentially in�nite, a complete and exact rewriting analysis is in general
impossible. A well-suited approach as proposed in [16] is to compute an over-
approximation of the reachable terms by rewriting � with a given set of rewrite
rules R � from an initial set of terms E.

Initially, terms and subterms of terms in E are split into equivalence classes.
For example, one can use tree automata to de�ne equivalence classes where

classes are actually the states of these automata. We refer the interested reader
to [10,17] for more detail on tree automata and theoretical results on this topic.
The technique in [16] enhances and creates new equivalence classes of terms and
subterms by rewriting. If a term t is in an equivalence class C and t′ is reachable
by rewriting from t, then t′ is added into the equivalence class C. Moreover, new
equivalence classes may be added if there are subterms of t′ which are not in
existing equivalence classes. One proceeds in this way for all equivalence classes
de�ned.

Approximations are done by manipulating equivalence classes of terms. In
[15], Genet uses equations for merging equivalence classes. Let c = c′ be an
equation where c and c′ are two patterns, i.e., two terms that may contain
variables. Let also C and C ′ be two equivalence classes of terms built with the
technique described in [16]. If there exists a solution of c in C (resp. C ′) and a
solution of c′ in C ′ (resp. C), then the two equivalence classes are merged.

Example 4. For example, let consider the equation s(x) = s(s(x)) and the equiv-
alence classes C0, C1, C2, C3 and C4 such that Ci = {s(i)(0)}. Since s(0) is in
C1 and s(s(0)) is in C2, using the equation we obtain that s(0) = s(s(0)). Con-
sequently, C1 and C2 are merged into C1,2. The same process can be applied for
C3 and C4. Thus, the merging of C3 and C4 results in the equivalence class C3,4.
Once again, s(s(0)) and s(s(s(0))) are respectively in C1,2 and C3,4. Using the
given equation, the process results in a single equivalence class denoted C1to4.
Finally, using the given equation over the �ve equivalence classes gives rise to
only two equivalence classes: C0 and C1to4.

As soon as the set of equivalence classes is stable by equation, rewriting is
performed anew, and so on. The computation stops when all equivalence classes
are closed by rewriting, i.e., when a �x-point set of terms is computed. Thus,
the �nal set of terms is an over-approximation of the set of reachable terms.

For performing a reachability analysis, we can check on the �x-point set of
terms if a pattern has a solution. If no solution exists then we can conclude that
no term matching such a pattern is reachable from an initial set of terms E by
rewriting with the given TRS R.
Example 5. For example, in Fig. 2, the state 3 is the �nal state of Aexe3. From
the rewriting model, if we obtain a �x-point set of terms E′, we have to check
whether the patter run(x, y, p(z)) has a solution. In the negative case, we can
conclude that no path in the determinisation graph has a negative cost. And,
consequently, we also conclude that for every u ∈ L(Aexe3), Aexe3(u) ≥ 0.
Whereas in the positive case, no conclusion can be raised. Indeed, the solution
of the pattern may come from a side-e�ect of the approximation.

Section 6 reports on the implementation and experimental results for the
proposed rewriting model. Notice that the rewriting-based encoding and analysis
are used when the exploration algorithm in Fig. 4 returns 0. Obviously, other
rewriting models and other rewriting approximations can be de�ned.

6 Experiments

In order to evaluate our approaches, we randomly generate non-deterministic �-
nite max/+-automata using the following method: given a set of states {1, . . . , n},

for each letter a and each i, j, there is a �xed probability ptransition to have a
transition of the form (i, a, c, j). If such a transition exists, its weight is uniformly
picked up between −cmax and cmax. Moreover, 1 is the unique initial state, n is
always a �nal state, and there is a �xed probability pfinal for each other state to
be �nal. If a generated automaton accepts the empty language, it is rejected. We
have done several tests with di�erent values of cmax, ptransition and pfinal. Table 1
reports on results obtained with cmax = 3, ptransition = 0.3 and pfinal = 0.1.
For each value of n from 2 to 20, we randomly generate 1000 automata. Line
n is the number of states of the automata. We �rst run the Explore algorithm
developed in Sec. 4 with k = 10n. Line pos. (resp. neg.) reports on the pro-
portion of inputs when the algorithm returns 1 (resp. −1). Line ?? indicates
the number of automata (out of 1000 automata generated for each n) for which
the algorithm returns 0. Line depth reports on the average number of computed
reachable con�gurations in the Explore algorithm (when it returns 1 or −1).

n 2 3 4 5 6 7 8 9 10 12 14 16 18 20

pos. 0.34 0.23 0.15 0.1 0.1 0.12 0.13 0.16 0.21 0.27 0.33 0.40 0.42 0.6

neg. 0.65 0.74 0.82 0.86 0.87 0.85 0.83 0.81 0.77 0.71 0.66 0.59 0.57 0.54

depth 2.45 3.83 4.66 5.92 6.68 6.88 7.14 7.10 7.40 7.35 7.46 7.64 7.47 7.37

?? 4 21 25 39 27 28 27 22 21 23 8 8 5 4

TRS 36 43 58 79 125 296 554 1068 2094 8242 32822 131130 524350 ≈221

inc. 0 4 6 10 6 T T T T T T T T T

Table 1. Experimental results

When the �rst algorithm gives the inconclusive results, we apply the second
rewriting approximation approach to them. Experiments have been led for n =
2, 3, 4 and 5 using equations allowing to split integers into 13 equivalence classes:
< −5, = −5, = −4, = −3, = −2, = −1, = 0, = 1, = 2, = 3, = 4, = 5
and > 5. For example, the equivalence class < −5 is de�ned by the equation
p(p(p(p(p(p(x)))))) = p(p(p(p(p(p(p(x))))))).

Table 1 reports at line inc. on the number of automata that are not shown
to be positive using the rewriting approximation technique among inconclusive
analyses from the pruning approach. The result T points out that the implemen-
tation of the rewriting approach fails to answer because of a stack over�ow. This
table also gives details (line TRS) about the average number of rewrite rules
generated for the rewriting speci�cations.

7 Discussions and Perspectives

Let consider the max/+-automaton Aexe4 depicted in Fig. 5. Notice that Aexe4

is not non-positive.
For this automaton, the exploration will never end since G(Aexe4) has in-

�nitely many con�gurations of the form (−n, 2n), which are pairwise incompa-
rable by �. For more di�cult reasons, similar to those given in [7], the approxi-
mation technique can not conclude either.

We discuss and propose several ways to handle remaining intractable cases.

other state to be final. If a generated automaton accepts the empty language, it
is rejected. We done several test with different values of cmax, ptransition and pfinal.
Table 1 reports on results obtained with cmax = 3, ptransition = 0.3 and pfinal =
0.1. For each value of n from 2 to 20 we randomly generate 1000 automata. Line
n is the number of states of the automata. We first run the algorithm Explore
developed in Sec. 3 with k = 10n. Line pos. (resp neg.) reports the proportion
of inputs of which the algorithm returns 1 (resp. −1). Line ?? indicates the
number of automata (from the 1000 generated for each n) for which the algorithm
returns 0. Line depth reports the avarage number of computed accessibles states
in algorithm Explore (when it returns 1 or −1).

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
pos. 0.34 0.23 0.15 0.1 0.1 0.12 0.13 0.16 0.21 0.24 0.27 0.3 0.33 0.34 0.40 0.43 0.42 0.48 0.6
neg. 0.65 0.74 0.82 0.86 0.87 0.85 0.83 0.81 0.77 0.73 0.71 0.69 0.66 0.65 0.59 0.56 0.57 0.52 0.54
depth 2.45 3.83 4.66 5.92 6.68 6.88 7.14 7.10 7.40 7.51 7.35 7.65 7.46 7.43 7.64 7.80 7.47 8.04 7.37
?? 4 21 25 39 27 28 27 22 21 21 23 12 8 7 8 7 5 2 4

Table 1. Experimental Results

6 Discutions and Perspectives

Consider the max/+-automaton Aexe4 depicted in Fig 6.

1start 2
b, 2

a, 1

a, 3

b,−1

a,−1

b, 2

Fig. 6. max/+-Automata Aexe3

For this automaton (which is not non positive), the explorating approach
will never end since G(Aexe4 has infinitely many states of the form (−n, 2n),
which are pariwe uncomparable by ". For more complex reasons (similiar to
those explained in []), the approximation technique can neither conclude.

We propose several way to handle untracktable cases/

Fig. 5. max/+-automaton Aexe3

7.1 Counter Systems Encoding

Presburger logic is the �rst order logic over (Z,+,=). A n-counter-system C is
a tuple (Q,T, P) where Q is a �nite set of states, P is a �nite set of Presburger
formulas with 2n free variables, and T is a �nite set of elements of the form
(p, ϕ, q) where ϕ ∈ P . For every ϕ(x1, . . . , xn, y1, . . . , yn) ∈ P we de�ne the rela-
tion →ϕ on Zn × Zn by: (a1, . . . , an)→ϕ (b1, . . . , bn) i� ϕ(a1, . . . , an, b1, . . . , bn)
is true. Finally, given the set S0 ⊆ Zn, the set Post∗C(S0) (resp. Pre∗C(S0))
is the set of s ∈ Zn such that there exist w = w1 . . . wk ∈ P ∗ (wi ∈ P),
s0 ∈ S0 and s1, . . . , sk ∈ Zn, where sk = s and for every i, si →wi+1 si+1 (resp.
si+1 →wi+1 si).

It is known [18] that subsets of Zn that are de�nable by a Presburger formula
with n free variables are exactly regular subsets of (Zn,+). This nice property,
associated with nice connections to Petri nets, has lean to many works to com-
pute sets of the form Post∗C(S0) or Pre∗C(S0) (see [26] for a recent work with
references), supported by tools as FAST [4], LASH [8] or TReX [2].

We now illustrate how to encode our problem into this model. Let A =
(Q,Σ,E, I, F) be a max/+-automaton. Without loss of generality we may as-

sume that Q = {1, . . . , n}. We consider the function ψ from ZQ
into Z2n de�ned

as follows: for every s ∈ ZQ
, ψ(s) is the vector (s1, . . . , s2n) where for every

1 ≤ i ≤ n, si = s(i) and sn+i = 0 if si ∈ Z, and si = 0 and sn+i = 1 oth-
erwise. For instance if Q = {1, 2, 3} and s(1) = −1, s(2) = 3 and s(3) = −∞,
then ψ(s) = (−1, 3, 0, 0, 0, 1). Notice �rst that the max-function is Presburger
de�nable: z = max(x, y) i� x, y, z satisfy the formula

ϕmax(z, x, y) := ((z = x ∨ z = y) ∧ ((x ≤ y)⇒ z = y))

Writing exact formulas encoding a generic A is quite long. Since we do not
use this approach and since our goal is just to show how to use it, we provide the
encoding for the automaton Aexe3. One has δexe3(s, b) = s′ i� ϕb(ψ(s), ψ(s′)) is
satis�ed, where ϕb is depicted in Fig. 6.

In this context, the non-positivity problem is reduced either to Pre∗C({ψ(s0))}∩
ψ(K) = ∅? or, equivalently, to ψ(s0) ∈ Post∗C({ψ(K))}? where C is the counter
system encoding A. One can also easily verify that ψ(K) is Presburger de�nable.

7.2 Using max/+ Theory

Another way to improve the approach consists in using theoretical results on
max/+-automata. For instance, a recent work [23] points out new subclasses of
max/+-automata for which the positivity problem is decidable. However, the
proposed constructive proof is far from being e�ective, and an algorithmic re-
search has still to be done.

ϕb(x1, x2, x3, x4, x5, x6, y1, y2, y3, y4, y5, y6) :=

y1 = 0 ∧ y4 = 1

∧ ((x4 = 0 ∧ x5 = 0 ∧ x6 = 0)⇒ (y2 = 0 ∧ y3 = 0 ∧ y5 = 1 ∧ y6 = 1))

∧ ((x4 = 0 ∧ x5 = 0 ∧ x6 = 1)⇒ (y2 = 0 ∧ y3 = x3 − 1 ∧ y5 = 0 ∧ y6 = 1))

∧ ((x4 = 0 ∧ x5 = 1 ∧ x6 = 0)⇒ (y2 = x2 + 1 ∧ y3 = x2 + 1 ∧ y5 = 0 ∧ y6 = 0))

∧ ((x4 = 0 ∧ x5 = 1 ∧ x6 = 1)⇒ (y2 = x2 + 1 ∧ ϕmax(y3, x2 + 1, x3 − 1) ∧ y5 = 0 ∧ y6 = 0))

∧ ((x4 = 1 ∧ x5 = 0 ∧ x6 = 0)⇒ (y2 = x1 − 1 ∧ y3 = x1 + 1 ∧ y5 = 0 ∧ y6 = 0))

∧ ((x4 = 1 ∧ x5 = 0 ∧ x6 = 1)⇒ (y2 = x1 − 1 ∧ ϕmax(y3, x1 + 1, x3 − 1) ∧ y5 = 0 ∧ y6 = 0))

∧((x4 = 1 ∧ x5 = 1 ∧ x6 = 0)⇒ (ϕmax(y2, x1 − 1, x2 + 1)

∧ ϕmax(y3, x1 + 1, x2 + 1) ∧ y5 = 0 ∧ y6 = 0))

∧((x4 = 1 ∧ x5 = 1 ∧ x6 = 1)⇒ ϕmax(y2, x1 − 1, x2 + 1)

∧ ∃z (ϕmax(y3, x1 + 1, z) ∧ (ϕmax(z, x2 + 1, x3 − 1)) ∧ y5 = 0 ∧ y6 = 0))

Fig. 6. Presburger formula

Another very interesting direction may be to use results of [27]: for a one-
letter alphabet, many problems becomes decidable. In particular, such results
can be used during the exploration of a determinisation graph. When visiting
a con�guration s, for each letter a, one can test with one step whether there
exists n ≥ 0 such that δ(s, an)∩K 6= ∅. It may deeply reduce the exploration for
non-positive max/+-automata. Moreover, we think this approach can be used to
perform a symbolic exploration of the determinisation graph: rather than visiting
each accessible con�guration, we would work on in�nite sets of con�gurations
similarly to the counter system encoding presented below.

8 Conclusion

We proposed to exploit abstractions and approximations to semi-decide the posi-
tivity problem over max/+-automata whose determinisation reachability graphs
are in�nite state systems. The positivity problem is then reduced to a reacha-
bility problem on these graphs. We developed two semi-decision procedures and
explained how to conclude more often and how to do it e�ciently.

The �rst kind of determinisation-based reachability graphs abstractions to-
gether with pruning technique gives rise to a semi-decision procedure. The ex-
perimental results on thousands of automatically generated max/+-automata
show that when bounding the depth of search in the determinisation graphs, the
algorithm seems to be e�cient enough.

The second kind of abstractions is based on the reachability analysis through
rewriting approximations as well as tree automata. The rewriting-based reach-
ability encoding has been applied to the inconclusive cases previously obtained
with the exploration algorithm.

Rewriting approximation techniques were already implemented in [3]. In the
future we plan to integrate integer weighted automata based algorithms into this

tool in order to treat practical applications. Obviously, other rewriting models
and other rewriting approximations can be de�ned. Moreover, one can propose
an abstraction re�nement for rewriting approximations guided by the property
to be veri�ed, as in [6].

Finally we plan to experiment our techniques with other random generators of
non-deterministic �nite automata, for instance using the one developped in [30].

References

1. P. A. Abdulla, K. Cerans, B. Jonsson, and T. Yih-Kuen. General decidability
theorems for in�nite-state systems. In Proc. 11th IEEE Symp. Logic in Computer

Science, 1996.
2. A. Annichini, A. Bouajjani, and M. Sighireanu. Trex: A tool for reachability

analysis of complex systems. In G. Berry, H. Comon, and A. Finkel, editors, CAV,
volume 2102 of Lecture Notes in Computer Science, pages 368�372. Springer, 2001.

3. E. Balland, Y. Boichut, T. Genet, and P.-E. Moreau. Towards an e�cient imple-
mentation of tree automata completion. In AMAST, pages 67�82, 2008.

4. S. Bardin, A. Finkel, J. Leroux, and Laure Petrucci. Fast: acceleration from theory
to practice. STTT, 10(5):401�424, 2008.

5. N. Bertrand and Ph. Schnoebelen. A short visit to the sts hierarchy. Electr. Notes
Theor. Comput. Sci., 154(3):59�69, 2006.

6. Y. Boichut, R. Courbis, P.-C. Héam, and O. Kouchnarenko. Finer is better: Ab-
straction re�nement for rewriting approximations. In Rewriting Techniques and

Application, RTA'08, volume 5117 of Lecture Notes in Computer Science, pages
48�62. Springer, 2008.

7. Y. Boichut and P.-C. Héam. A theoretical limit for safety veri�cation techniques
with regular �x-point computations. Inf. Process. Lett., 108(1):1�2, 2008.

8. B. Boigelot and P. Wolper. Representing arithmetic constraints with �nite au-
tomata: An overview. In P. J. Stuckey, editor, ICLP, volume 2401 of Lecture Notes
in Computer Science, pages 1�19. Springer, 2002.

9. A.L. Buchsbaum, R. Giancarlo, and J. Westbrook. An approximate determiniza-
tion algorithm for weighted �nite-state automata. Algorithmica, 30(4):503�526,
2001.

10. H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Ti-
son, and M. Tommasi. Tree automata techniques and applications.
http://www.grappa.univ-lille3.fr/tata/, 2002.

11. M. Droste and P. Gastin. Weighted automata and weighted logics. Theor. Comput.
Sci., 380(1-2):69�86, 2007.

12. A. Finkel. Reduction and covering of in�nite reachability trees. Information and

Computation, 89(2):144�179, 1990.
13. A. Finkel and Ph. Schnoebelen. Well-structured transition systems everywhere!

Theoretical Computer Science, 256(1-2):63�92, 2001.
14. S. Gaubert. Performance Evaluation of (max,+) Automata. IEEE Trans. on

Automatic Control, 40(12), 1995.
15. Th. Genet. Timbuk 3.0 : Equationnal approximations. Available at

http://http://www.irisa.fr/lande/genet/timbuk/.
16. Th. Genet. Decidable approximations of sets of descendants and sets of normal

forms. In proceedings of RTA, volume 1379 of LNCS. Springer-Verlag, 1998.
17. R. Gilleron and S. Tison. Regular tree languages and rewrite systems. Fundamenta

Informaticae, 24:157�175, 1995.
18. S. Ginsburg and E.H. Spanier. Bounded regular sets. Proceedings of the American

Mathematical Society, 7:1043�1049, 1966.

19. K. Hashiguchi, K. Ishiguro, and S. Jimbo. Decidability of the Equivalence Problem
for Finitely Ambiguous Finance Automata. IJAC, 12(3), 2002.

20. Th. A. Henzinger, R. Majumdar, and J.F. Raskin. A classi�cation of symbolic
transition systems. ACM Trans. Comput. Log., 6(1):1�32, 2005.

21. K. Culik II and P.C. von Rosenberg. Generalized weighted �nite automata based
image compression. J. UCS, 5(4):227�242, 1999.

22. F. Katritzke, W. Merzenich, and M. Thomas. Enhancements of partitioning tech-
niques for image compression using weighted �nite automata. Theoretical Com-

puter Science, 313(1):133�144, 2004.
23. D. Kirsten and S. Lombardy. Deciding unambiguity and sequentiality of polyno-

mially ambiguous min-plus automata. In STACS, pages 589�600, 2009.
24. I. Klimann, S. Lombardy, J. Mairesse, and Ch. Prieur. Deciding unambiguity and

sequentiality from a �nitely ambiguous max-plus automaton. Theoretical Computer
Science, 327(3):349�373, 2004.

25. D. Krob. The Equality Problem for Rational Series with Multiplicities in the
Tropical Semiring is Undecidable. IJAC, 4(3), 1994.

26. J. Leroux. Structural presburger digit vector automata. Theoretical Computer

Science, 409(3):549�556, 2008.
27. S. Lombardy. Sequentialization and unambiguity of (max,+) rational series over

one letter. In S. Gaubert and J.-J. Loiseau, editors,Workshop on max-plus Algebras

and Their Applications to Discrete-event Systems, Theoretical Computer Science,

and Optimization, Prague, 2001. IFAC, Elsevier Sciences.
28. M. Mohri, F. Pereira, and M. Riley. Weighted �nite-state transducers in speech

recognition. Computer Speech & Language, 16(1):69�88, 2002.
29. M. Mohri, F. Pereira, and M. Riley. Weighted automata in text and speech pro-

cessing. volume abs/cs/0503077, 2005.
30. D. Tabakov and M.Y. Vardi. Experimental evaluation of classical automata con-

structions. In G. Sutcli�e and A. Voronkov, editors, LPAR, volume 3835 of Lecture
Notes in Computer Science, pages 396�411. Springer, 2005.

31. A. Weber. Finite-valued Distance Automata. Theoretical Computer Science, 134,
1994.

9 Appendix

9.1 Proof of Proposition 1

Proposition 1 is a direct consequence of the following lemma. The reader familiar
with max/+-automata may notice that this lemma is a direct consequence of
matricial presentation of max/+-automata.

Lemma 2. Let u ∈ Σ+, A = (Q,Σ,E, I, F) be a max/+-automaton and G(A) =
(V, δ, s0,K) its determinisation graph. There is a path in G(A) from s0 to s la-
belled by u if and only if for every p ∈ Q,

s(p) = max{costA(π) | π is a path in A from an initial state to p}.

Proof. We will prove the lemma by induction on the length of u.
Assume that u ∈ Σ and that δ(s0, u) = s. By de�nition of δ, for every state

p, s(p) = max{s0(q)+ c | (q, a, c, p) ∈ E}. Therefore and by de�nition of s0, s(p)
is exactly the maximal value of all transition weights from an initial state to p,
proving the lemma for u's in Σ.

Assume now that the lemma is true for all words of length k ≥ 1. Let u ∈
Σk+1. There exists v ∈ Σk and a ∈ Σ such that u = va. Let s1 = δ(s0, v). Each
path π in A from an initial state to p can be decomposed into π = π1, (q, a, c, p)
where π1 is labelled by v and (q, a, c, p) ∈ E. Since costA(π) = costA(π1) + c,
one has

s(p) = max{s1(q) + c | (q, a, c, p) ∈ E}
= max{max{cost(π1) | π1 from an initial state to q}+ c | (q, a, c, p) ∈ E}
= max{max{cost(π1) + c | π1 from an initial state to q} | (q, a, c, p) ∈ E}
= max{cost(π1) + c | π1 from an initial state to q and (q, a, c, p) ∈ E}
= max{costA(π) | π is a path in A from an initial state to p}.

Consequently, the lemma is true for words of Σk+1, concluding the proof.

9.2 Proof of Lemma 1

Proof. Notice �rst that δ is a function de�ned on V ×Σ, thus δ(s1, a) and δ(s2, a)
both exist.

Now δ(s1, a)(p) = −∞ i� {q | s1(q) 6= −∞}∩{q | ∃(q, a, c, p) ∈ E} = ∅. Since
s1 � s2, {q | s1(q) 6= −∞} = {q | s2(q) 6= −∞}. Therefore, δ(s1, a)(p) = −∞ i�
δ(s2, a)(p) = −∞. Moreover, for every state p,

δ(s1, a)(p) = max{s1(q) + c | (q, a, c, p) ∈ E}
≤ max{s2(q) + c | (q, a, c, p) ∈ E}
= δ(s2, a)(p),

proving the lemma.

9.3 Rewriting Rules for max and +

max(s(x), s(y))→ s(max(x, y)) +(s(x), p(y))→ +(x, y)
max(p(x), s(y))→ s(y) +(p(x), s(y))→ +(x, y)
max(s(y), p(x))→ s(y) +(s(x), s(y))→ s(s(+(x, y))
max(p(x), p(y))→ p(max(x, y)) +(p(x), p(y))→ p(p(+(x, y))
max(0, 0)→ 0 +(0, x)→ x
max(s(x), 0)→ s(x) +(x, 0)→ x
max(0, s(x))→ s(x)
max(p(x), 0)→ 0
max(0, p(y))→ 0

