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Abstract. This paper investigates the use of tree automata with global
equalities and disequalities (TAGED for short) in reachability analysis
over term rewriting systems (TRSs). The reachability problem being in
general undecidable on non terminating TRSs, we provide TAGED-based
construction, and then design approximation-based semi-decision proce-
dures to model-check useful temporal patterns on in�nite state rewriting
graphs. To show that the above TAGED-based construction can be ef-
fectively carried out, complexity analysis for rewriting TAGED-de�nable
languages is given.

1 Introduction

Model-checking techniques [24,23] are commonplace in computer aided veri�ca-
tion. Model checking refers to the following problem: given a desired property,
expressed as a temporal logic formula ϕ, and a structure M with initial state s,
decide if M, s |= ϕ. The use of model-checking techniques and tools is however
limited to systems whose state space can be �nitely represented, because of the
state explosion problem.

Recently, reachability analysis turned out to be a very e�cient veri�cation
technique for proving properties on in�nite systems modeled by term rewriting
systems (TRSs for short). In the rewriting theory, the reachability problem is
the following: given a TRS R and two terms s and t, can we decide whether
s→∗R t or not? This problem, which can easily be solved on strongly terminating
TRSs, is undecidable on non terminating TRSs. However, on the one hand,
there exist several syntactic classes of TRSs for which this problem becomes
decidable [15,19,31]. On the other hand, in addition to classical proof tools of
rewriting, given a set E ⊆ T (F) of initial terms, provided that s ∈ E , one can
prove s 6→∗R t by using over-approximations of R∗(E) [20,15] and proving that t
does not belong to these approximations. Recently, the veri�cation of temporal
properties of systems modeled by TRSs has been investigated [14,27,26]. To
apply these very interesting and promising theoretical results to applications
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in practice, the authors look for �nite abstractions to model-check temporal
properties, and use proof theory methods. Unlike these works, we develop an
approximation and tree automata based approach, which can provide a fully
automatic veri�cation framework.

Motivations. Recently, some of the most successful experiments using reach-
ability analysis were done on cryptographic protocols, [17,7], and on Java byte
code programs [6]. Presently, Java MIDLet applications security properties are
veri�ed through R∗(E) over-approximations 1. To this end, following works on
CEGAR [8], we developed in [5] over-approximations re�nement depending on
a security property to be veri�ed. To go further, we are interested in verifying
temporal properties.

Contributions. The main question is: Is it possible to exploit rewriting ap-
proximations for model-checking temporal properties on in�nite state rewriting
graphs? This paper addresses this question and o�ers a solution for three useful
patterns of temporal properties. This solution automatically attempts to show
that M, s |= ϕ by exploiting TAGED approximations over M , without building
M .

More precisely, the present paper makes the following contributions: Given
an LTL formula (of a certain pattern) to be evaluated overM , the �rst contribu-
tion is the feasibility of a systematic translation of this formula into a language
rewriting equality to be checked. Language equalities being undecidable in gen-
eral, the second contribution is approximation-based semi-decision procedures
to model-check temporal properties of three useful patterns coming from static
analysis domain and having practical applications. This contribution is obtained
using the recent TAGED model (Tree Automata with Global Equality and Dis-
equality Constraints) in [16].

Structure of the paper. Section 2 introduces preliminary notions on TRSs,
tree-automata, and rewriting-based linear temporal logic. Section 3 explains the
interest of the proposed approach via three temporal property patterns and
relates them to language rewriting equations. The main contribution in Section 4
concerns rewriting-based (semi-)decision procedures and complexity analysis for
rewriting related TAGED-de�nable languages. Then, semi-algorithms, including
approximation steps are given. Finally, Section 5 concludes and sums up related
works. Appendix contains omitted proofs and examples to illustrate theoretical
underpinnings.

2 Preliminaries

2.1 Terms, TRSs and Tree Automata

Comprehensive surveys can be found in [12,2] for TRSs, in [10,18] for tree au-
tomata and tree language theory, and in [16] for TAGEDs.
1 in the framework of the French ANR Ravaj project.



Terms and TRSs. Let F be a �nite set of symbols, associated with an arity
function ar : F → N, and let X be a countable set of variables. T (F ,X ) denotes
the set of terms, and T (F) denotes the set of ground terms (terms without
variables). The set of variables of a term t is denoted by Var(t). A substitution
is a function σ from X into T (F ,X ), which can be extended uniquely to an
endomorphism of T (F ,X ). A position p for a term t is a word over N. The empty
sequence ε denotes the top-most position. The set Pos(t) of positions of a term
t is inductively de�ned by Pos(t) = {ε} if t ∈ X and by Pos(f(t1, . . . , tn)) =
{ε}∪{i.p | 1 ≤ i ≤ n and p ∈ Pos(ti)} otherwise. If p ∈ Pos(t), then t|p denotes
the subterm of t at position p and t[s]p denotes the term obtained by replacement
of the subterm t|p at position p by the term s. We also denote by t(p) the symbol
occurring in t at position p. Given a term t ∈ T (F ,X ), we denote PosA(t) ⊆
Pos(t) the set of positions of t such that PosA(t) = {p ∈ Pos(t) | t(p) ∈ A}.
Thus PosF (t) is the set of functional positions of t. A TRS R is a set of rewrite
rules l → r, where l, r ∈ T (F ,X ) and l 6∈ X . A rewrite rule l → r is left-linear
(resp. right-linear) if each variable of l (resp. r) occurs only once within l (resp.
r). A TRS R is left-linear (resp. right-linear) if every rewrite rule l → r of R
is left-linear (resp. right-linear). A TRS R is linear if it is right and left-linear.
The TRS R induces a rewriting relation→R on terms whose re�exive transitive
closure is written →?

R. The set of R-descendants of a set of ground terms E is
R∗(E) = {t ∈ T (F) | ∃s ∈ E s.t. s→?

R t}. Symmetrically, the set of R-ancestors
of a set of ground terms E is R−1?(E) = {s ∈ T (F) | ∃t ∈ E s.t. s→?

R t}.
Note that R∗(E) is possibly in�nite: R may not terminate and/or E may be

in�nite. In general, the set R∗(E) is not computable [18]. However, it is possible
to over-approximate it [15] using completion procedure over tree automata, i.e.
a �nite representation of in�nite (but regular) sets of terms.

Tree automata. Let Q be a �nite set of symbols, of arity 0, called states such
that Q ∩ F = ∅. T (F ∪Q) is called the set of con�gurations. A transition is a
rewrite rule c→ q, where c ∈ T (F ∪Q) is of the form c = f(q1, . . . , qn), f ∈ F ,
ar(f) = n, and q1, . . . , qn ∈ Q.

A bottom-up non-deterministic �nite tree automaton (tree automaton for
short) over F is a 3-tuple A = (Q,Qf , ∆), Qf ⊆ Q and ∆ is a �nite set of
transitions. The rewriting relation on T (F ∪Q) induced by ∆ of A is denoted
→∆ or→A. The tree language {t ∈ T (F) | t→?

A q} is denoted L(A, q) and called
the tree language recognised by A in q. The language recognised by A, denoted
L(A), is the language

⋃
q∈Qf

L(A, q). A tree language is regular if and only if it is

recognised by a tree automaton. A run of a tree automaton A = (Q,Qf , ∆) on a
term t ∈ T (F) is a function ρ : Pos(t)→ Q such that ρ(p) = q for all p ∈ Pos(t),
where q ∈ Q and t|p = f(t1, . . . , tn), ar(f) = n, f(ρ(p.1), . . . , ρ(p.n)) → q ∈ ∆.
A run is successful if ρ(ε) ∈ Qf .
Positive TAGEDs. A positive TAGED[16] is a 4-tuple A = (Q, E, F,∆), where
(Q, F,∆) is a tree automaton over F , and E ⊆ Q×Q is a binary re�exive sym-
metric relation on a subset of Q. The tree automaton (Q, F,∆) is denoted ta(A).
A successful run of a positive TAGED A = (Q, E, F,∆) on a term t ∈ T (F) is
a successful run ρ of ta(A) on t satisfying: for all positions p1, p2 ∈ Pos(t), if



(ρ(p1), ρ(p2)) ∈ E then t|p1 = t|p2 . For positive TAGEDs, the emptiness prob-
lem is in EXPTIME [16, Theorem 1], and universality and inclusion problems
are both undecidable [16, Proposition 5]. Following the respective de�nitions of
runs, it is straightforward that for every positive TAGED A, L(A) ⊆ L(ta(A)).

2.2 Linear Temporal Logic and Term Rewriting

In this section, linear temporal properties are put in a rewriting context. The
approach is based on the well-known and widely used Linear Temporal Logic
(LTL for short) [29]. Our goal is to express and to verify temporal constraints
on the order of rewriting rules in →∗R. The approach is very close to that in [25]
when reducing the equational theory to the identity.

Let R be a TRS and L0 be a set of terms. We denote by G(L0,R) the R-
labelled graph (T (F), L0, ∆) where ∆ = {ti l→r→ tj | l → r ∈ R and tj ∈ {l →
r}(ti)}. A path π inG(L0,R) is a (�nite or in�nite) sequence (p1, a1, q1) . . . (pi, ai, qi) . . .
of elements of ∆ such that p1 ∈ L0, for every i ≥ 1 if pi+1 exists, then qi = pi+1.
The (�nite or in�nite) word a1 . . . ai . . . over the alphabet R is called the label
of π. A path π is full if it is either in�nite or if there exists an integer i such that
π = (p1, a1, q1), . . . , (pi, ai, qi) and {p | ∃a ∈ R, (qi, a, p) ∈ ∆} is empty.

LTL formulas over R are inductively de�ned by: R0 ⊆ R is an LTL formula,
and if ϕ and ψ are LTL formulas over R, then >, ¬ϕ, (ϕ∨ ψ), ◦ϕ and ϕUψ are
also LTL formulas. Following formulas are classically de�ned: �ϕ = ¬(>U¬ϕ),
(ϕ ∧ ψ) = ¬(¬ϕ ∨ ¬ψ) and ϕ⇒ ψ = (¬ϕ ∨ ψ).

Let w be a �nite or in�nite word over R (considered as an alphabet). The
i-th letter of w, if it exists, is denoted w(i). We inductively de�ne the satisfaction
of an LTL formula ϕ by w at position i, denoted (w, i) |= ϕ by:

(w, i) |= > i� w(i) exists,
(w, i) |= R0, with R0 ⊆ R i� w(i) exists and w(i) ∈ R0,
(w, i) |= ¬ϕ i� (w, i) 6|= ϕ,
(w, i) |= (ϕ1 ∨ ϕ2) i� (w, i) |= ϕ1 or (w, i) |= ϕ2 ,
(w, i) |= ◦ϕ i� (w, i+ 1) |= ϕ,
(w, i) |= (ϕ1Uϕ2) i� there exists j ≥ i such that (w, i) |= ϕ2

and for every i ≤ k < j, (w, k) |= ϕ1.
We say that w is a model of ϕ if (w, 1) |= ϕ. A graph G(L0,R) satis�es an LTL
formula ϕ, denoted G |= ϕ, if and only if the label of each full path in G(L0,R)
satis�es ϕ. Illustrated examples are given in Section 3.

3 Three LTL Patterns and Related Language Equalities

In this section, we study three LTL formula patterns which are useful to express
security requirements when performing Java MIDLet applications static analysis.

� Formula �(R1 ⇒ ◦R2) intuitively means that if an accessible term is rewrit-
ten using a rule in R1, then the obtained term can be rewritten using a rule
in R2 and only by a rule in R2, as illustrated on an abstract graph in Fig. 1.
In our application domain, this temporal pattern is used to express that if



a method m1 is invoked, then a method m2 must be invoked just after. For
instance, if the method asks the user to authentify using his PINCODE, then
the next invoked method is either the authentication or the cancellation of
the authentication.

� Formula ¬R2 ∧�(◦R2 ⇒ R1) is the dual of the above temporal pattern: if
an accessible term is rewritten using a rule in R2, then just before it was
rewritten using a rule in R1, as illustrated on an abstract graph in Fig. 2.
For instance, this temporal formula pattern expresses that if a SMS is sent,
then the user has just before provided his agreement.

� Formula �(R1 ⇒ �¬R2) encodes that if a rule in R1 is used in a rewriting
derivation, then no rule of R2 can be used in the future, as shown in Fig. 3.
Thanks to this temporal formula pattern, one can express that if a particular
application accesses to the user's private data, like his address book, no
message can be sent by this application in the future. So, the user's private
data cannot be exploited unbeknown to him. Notice that, according to [13],
this formula pattern appears to be commonly used for system speci�cation.

3.1 Formula �(R1 ⇒ ◦R2)

We explore in this section how the model-checking of the formula �(R1 ⇒ ◦R2)
can be translated into language equations. A R-labelled graph satisfying this
formula is depicted in Fig. 1.

a method m1 is invoked, then a method m2 must be invoked just after. For
instance, if the method asks the user to authentify using his PINCODE, then
the next invoked method is either the authentication or the cancellation of
the authentication.

– Formula ¬R2 ∧!(◦R2 ⇒ R1) is the dual of the above temporal pattern: if
an accessible term is rewritten using a rule in R2, then just before it was
rewritten using a rule in R1, as illustrated on an abstract graph in Fig. 2.
For instance, this temporal formula pattern expresses that if a SMS is sent,
then the user has just before provided his agreement.

– Formula !(R1 ⇒ !¬R2) encodes that if a rule in R1 is used in a rewriting
derivation, then no rule of R2 can be used in the future, as shown in Fig. 3.
Thanks to this temporal formula pattern, one can express that if a particular
application accesses to the user’s private data, like his address book, no
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Proposition 1. Let R be a TRS, R1,R2 ⊆ R and L0 be a tree language. One
has G(L0,R) |= !(R1 ⇒ ◦R2) iff (R\R2)(R1(R∗(L0))) = ∅ and R1(R∗(L0))∩
R−1

2 (T (F)) = R1(R∗(L0)).

Fig. 1. A graph satisfying �(R1 ⇒ ◦R2)

Proposition 1. Let R be a TRS, R1,R2 ⊆ R and L0 be a tree language. One
has G(L0,R) |= �(R1 ⇒ ◦R2) i� (R\R2)(R1(R∗(L0))) = ∅ and R1(R∗(L0))∩
R−1

2 (T (F)) = R1(R∗(L0)).

Example 1. Let F = {⊥, a, b, c, f, g} where ar(⊥) = 0, ar(a) = ar(b) = ar(c) =
1, and ar(f) = ar(g) = 2. Let consider the TRS R = {r1, . . . , r5} with r1 =
f(b(x), b(x))→ g(x, x), r2 = a(x)→ a(a(x)), r3 = a(⊥)→ b(⊥), r4 = a(b(x))→
b(b(x)) and r5 = g(x, y) → c(g(x, y)). Finally, let L0 = {f(a(u(⊥)), v(a(⊥))) |
u ∈ {a, b}∗ and v ∈ a∗}. One has {r1}(R∗(L0)) ⊆ g(b∗(⊥), b∗(⊥)). Thus (R \



{r5})({r1}(R∗(L0))) = ∅.Moreover, {r5}−1(T (F)) is the set of terms where g oc-
curs once at least. Consequently, {r1}(R∗(L0))∩{r5}−1(T (F)) = {r1}(R∗(L0)).
It follows that G(L0,R) |= �({r1} ⇒ ◦{r5}).

3.2 Formula ¬R2 ∧ �(◦R2 ⇒R1)

In this section the formula ¬R2 ∧�(◦R2 ⇒ R1) is compiled to into a language
equation to be checked. A R-labelled graph satisfying this formula is depicted
in Fig. 2.

Proposition 2. Let R be a TRS, R1,R2 ⊆ R and L0 be a tree language.
One has G(L0,R) |= ¬R2 ∧ �(◦R2 ⇒ R1) i� R2((R \ R1)(R∗(L0))) = ∅ and
R2(L0) = ∅.

Example 2. In the setting of Example 1, one has {r5}(L0) = ∅. Moreover, one
can check that g doesn't occur in terms of R \ {r1, r5}(R∗(L0)), proving that
{r5}(R \ {r1, r5}(R∗(L0))) = ∅. Consequently, G(L0,R) |= ¬{r5} ∧ �(◦{r5} ⇒
{r1, r5}).
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3.3 Formula !(R1 ⇒ !¬R2)

This section shows how the model-checking of the formula !(R1 ⇒ !¬R2) can
be done thanks to language equations. A R-labelled graph satisfying this formula
is depicted in Fig. 3.

Proposition 3. Let R be a TRS, R1,R2 ⊆ R and L0 be a tree language. One
has G(L0,R) |= !(R1 ⇒ !¬R2) if and only if R2(R∗(R1(R∗(L0)))) = ∅.

Fig. 2. A graph satisfying ¬R2 ∧�(◦R2 ⇒R1)

3.3 Formula �(R1 ⇒ �¬R2)

This section shows how the model-checking of the formula �(R1 ⇒ �¬R2) can
be done thanks to language equations. AR-labelled graph satisfying this formula
is depicted in Fig. 3.

Proposition 3. Let R be a TRS, R1,R2 ⊆ R and L0 be a tree language. One
has G(L0,R) |= �(R1 ⇒ �¬R2) if and only if R2(R∗(R1(R∗(L0)))) = ∅.

Example 3. In Example 1 setting, one has {r1}(R∗(L0)) ⊆ g(b∗(⊥), b∗(⊥)).
It follows that a never occurs in terms of R∗({r1}(R∗(L0))). Consequently,
{r2}(R∗({r1}(R∗(L0)))) = ∅, proving that G(L0,R) |= �({r1} ⇒ �¬{r2}).



4 Semi-decision Procedures

In Section 4.1, we �rst show that for the above properties, model-checking is un-
decidable; That is not surprising. To obtain semi-decision procedures for model-
checking these properties, we then provide TAGED-based construction presented
in this section. As explained in Sect. 1, given a set E ⊆ T (F) of initial terms,
over-approximations of the set of reachable termsR∗(E) can be computed [20,15].
In Sect. 4.2, we explain how to exploit these over-approximations and use con-
structions of Sect. 4.1 to verify three rewriting temporal properties introduced
in Sect. 3.

4.1 Language Equalities and Positive TAGEDs

First we claim that the model-checking of the three pointed out formulas is
undecidable.

Proposition 4. Given a TRS R, R1,R2 ⊆ R and a term t0, one cannot decide
whether G({t0},R)) |= �(R1 ⇒ ◦R2) (resp. whether G({t0},R) |= �(◦R2 ⇒
R1)) (resp. whether G({t0},R)) |= �(R1 ⇒ �¬R2)).

Now we provide several positive TAGED-based constructions in order to cope
with the language equalities involved in Sect. 3.

Proposition 5. Let R be a TRS. One can compute in polynomial time a positive
TAGED accepting R−1(T (F)).
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An example of the construction described in the proof of Proposition 5 can
be found in Appendix, Sect. 6.6. Notice that if R is left-linear, the obtained
TAGED is a tree automaton as for any variable x, the state qx occurs at most
once in runs; This is a well-known result.
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An example of the construction described in the proof of Proposition 5 can
be found in Appendix, Sect. 6.6. Notice that if R is left-linear, the obtained
TAGED is a tree automaton as for any variable x, the state qx occurs at most
once in runs; This is a well-known result.

Proposition 6. Let A be a positive TAGED automaton and R be a TRS. De-
ciding whether R(L(A)) is empty is in EXPTIME.

Proposition 7. Let A be a tree automaton and R be a TRS. The language
R(L(A)) is accepted by a positive TAGED.

A constructive example is given in Appendix, Section 6.9



4.2 Algorithms

In order to semi-decide whether the temporal properties are satis�ed or not, we
introduce the following procedures.

� Approx(A,R), where A is a tree automaton and R is a TRS, returns a tree
automaton B such that R∗(L(A)) ⊆ L(B). This can be done using the
procedure de�ned in [7].

� ta(A), where A is a positive TAGED, returns the tree automaton ta(A).
� OneStep(A,R), where A is a tree automaton and R is a TRS, returns the
positive TAGED B accepting R(L(A)) built as in Proposition 7.

� Backward(R), where R is a TRS, returns the positive TAGED B accepting
R−1(T (F)) built as in Proposition 5.

� IsEmpty(A,R), where A is a positive TAGED and R is a TRS, returns true
if R(L(A)) is empty and false, otherwise.

The above procedures and the results in Section 3 allow to deduce the following
result.
Proposition 8. Let R be a TRS, R1,R2 ⊆ R and A be a tree automaton. The
following properties hold:

(1) If R2 is left-linear and if IsEmpty(OneStep(Approx(A,R),R1),R \R2)= true
and if OneStep(Approx(A,R),R1)⊆ Backward(R2), then G(L(A),R) |= �(R1

⇒ ◦R2).
(2) If IsEmpty(A,R2) and if IsEmpty(OneStep(Approx(A,R),R \R1),R2)= true,

then G(L(A),R) |= �(◦R2 ⇒ R1).
(3) If IsEmpty(Approx(ta(OneStep(Approx(A,R),R1)),R),R2)= true, then

G(L(A),R) |= �(R1 ⇒ �¬R2).

Notice that in (1) R2 is required to be left-linear in order to make the inclusion
test decidable.

5 Conclusion and Related Work

We proposed to exploit abstraction-based rewriting approximations to model-
check some LTL temporal properties on in�nite state systems, and to combat a
combinatorial state-space blow up faced by model-checking tools. Our approach
is based on the reachability analysis through rewriting approximations as well
as tree automata with global equality constraints. We address static analysis
problems. Approximation techniques were already implemented in [3]. In the
future we plan to integrate TAGED-based algorithms into this tool in order to
treat practical applications.
Related work.
Temporal properties and rewriting. Hundreds of works exist using LTL [29] in
order to model and to verify systems properties. We refer the interested reader
to the Spin Model-Checker home page2.

2 http://spinroot.com/spin/whatispin.html



Rewriting logics [25] is a very general theoretical framework allowing one to
model various systems. In this context, rewriting graphs are considered: nodes
of these graphs are labeled by equivalence classes of an equational theory. There
is an edge between two nodes if an element of the �rst node can be rewritten
into an element of the second node, using a rule of TRS R. When the considered
equational theory is the identity, these rewriting graphs are exactly the graphs
underlying our labeled transition systems. In this framework, works [14,27,26]
focuses on LTL approaches. In [1] authors proposes proposes a general model for
security protocols based on the set-rewriting formalism in a decidable context
(considered underlying graphs are �nite).

Tree automata with constraints. Tree automata were intensively studied in
the literature, in particular for program veri�cation, where tree automata pro-
vide abstraction-based approximations of program con�gurations. In this direc-
tion, several classes of extended automata were de�ned in order to provide �ner
approximations [4,11,9,16,30,22,28,21].
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6 Appendix

6.1 Proof of Proposition 1

Assume thatG(L0,R) |= �(R1 ⇒ ◦R2). Let t be a term in (R\R2)(R1(R∗(L0))).
There exist terms t1 and t2 such that t1 ∈ R∗(L0) and

t1 →R1 t2 →(R\R2) t.

Since t1 ∈ R∗(L0), there exist terms s0, . . . , sk such that s0 ∈ L0, sk = t1 and
si+1 ∈ R(si) for every i < k. Therefore there is a path

(s0, a0, s1) . . . (sk−1, ak, t1)(t1, a, t2), (t2, b, t)

in G(L0,R) such that s0 ∈ L0, a ∈ R1 and b ∈ R \ R2. This path may be
extended to a full path whose label is not a model of �(R1 ⇒ ◦R2), a contra-
diction.

Now sinceR1(R∗(L0))∩R−1
2 (T (F)) ⊆ R1(R∗(L0)), ifR1(R∗(L0))∩R−1

2 (R∗(L0)) 6=
R1(R∗(L0)), then there exists t ∈ R1(R∗(L0)) such that t /∈ R−1

2 (T (F)). It fol-
lows there exists a term t1 ∈ R∗(L0) such that t ∈ R1(t1). Therefore there exist
terms s0, . . . , sk such that s0 ∈ L0, sk = t1 and si+1 ∈ R(si) for every i < k.
Consequently, there is a path

π = (s0, a0, s1) . . . (sk−1, ak, t1)(t1, b, t)

in G(L0,R) such that s0 ∈ L0, b ∈ R1. Since t /∈ R−1
2 (T (F)), there is no term

t2 such that t2 ∈ R2(t). Consequently, π cannot be extended using a transition
whose label is in R2. It follows that either π is maximal and its label is not a
model of �(R1 ⇒ ◦R2), or π may be extended to a full path which is not a
model of �(R1 ⇒ ◦R2), a contradiction.

Conversely, assume that (R \ R2)(R1(R∗(L0))) = ∅ and R1(R∗(L0)) ∩
R−1

2 (T (F)) = R1(R∗(L0)). Let π = (t0, a0, t1) . . . (tk, ak, tk+1) . . . be a maxi-
mal path in G(L0,R) whose label is not a model of �(R1 ⇒ ◦R2). It follows
there exists i such that ai ∈ R1 and either ai+1 /∈ R2 or ai+1 doesn't exist (the
trace is �nite). If ai+1 /∈ R2 then ti+1 ∈ (R \ R2)(R1(R∗(L0))), a contradic-
tion. If ai+1 doesn't exist, then ti+1 ∈ R1(R∗(L0)) but, by maximality of π,
R2(ti+1) = ∅, proving that ti+1 /∈ R−1

2 (T (F)), a contradiction.

6.2 Proof of Proposition 2

Proof. It is straightforward that G(L0,R) |= ¬R2 i� R2(L0) = ∅. Now we will
prove that G(L0,R) |= �(◦R2 ⇒ R1) i� R2((R \R1)(R∗(L0))) = ∅.

Assume �rst that G(L0,R) |= �(◦R2 ⇒ R1). Let t ∈ R2((R\R1)(R∗(L0))).
There exist terms t1 and t2 such that t1 ∈ R∗(L0) a rule a ∈ R \ R1 such that
t2 ∈ {a}(t1) and t ∈ R2(t2). Since t1 ∈ R∗(L0), there exist terms s0, . . . , sk such
that s0 ∈ L0, sk = t1 and si+1 ∈ R(si) for every i < k. Therefore there is a path

(s0, a0, s1) . . . (sk−1, ak, t1)(t1, a, t2), (t2, b, t)



in G(L0,R) such that s0 ∈ L0, a ∈ R \ R1, and b ∈ R2. Since a ∈ R \ R1, this
path may be extended to a full path whose label is not a model of �(◦R2 ⇒ R1),
a contradiction.

Conversely, assume that R2((R \R1)(R∗(L0))) = ∅. Let

π = (t0, a0, t1) . . . (tk, ak, tk+1) . . .

be a maximal path in G(L0,R) whose label is not a model of �(◦R2 ⇒ R1).
It follows there exists i such that ai /∈ R1 and ai+1 ∈ R2. Therefore ti+1 ∈
R2((R \R1)(R∗(L0))) 6= ∅, a contradiction.

6.3 Proof of Proposition 3

Proof. Assume �rst thatR2(R∗(R1(R∗(L0)))) 6= ∅. Let t be inR2(R∗(R1(R∗(L0)))).
There exist terms t0, t1, t2 such that t0 ∈ R∗(L0), and t0 →R1 t1 →∗R t2 →R2 t.
It implies that there is a full path w in G(L0,R) such that (w, 1) 6|= �(R1 ⇒
�¬R2).

Assume now that R2(R∗(R1(R∗(L0)))) = ∅. Let

π = (t0, a0, t1) . . . (tk, ak, tk+1) . . .

be a maximal path in G(L0,R) whose label is not a model of �(R1 ⇒ �¬R2).
It follows there exist i such that ai ∈ R1 and j > i such that aj ∈ R2. Therefore
tj+1 ∈ R2(R∗(R1(R∗(L0)))), a contradiction.

6.4 Proof of Proposition 4

It is well known that the following problem, called Reachability(R, s, t,F) is
undecidable.
Input: A TRS R on T (F), two terms s and t of T (F).
Question: Does s→∗R t?

Assume there exists an algorithm P1(R,R1,R2, L0,F) that , given a TRS
R and a set of terms L0 of T (F), decides whether G(L0,R) |= �(R1 ⇒ ◦R2).
Let R0, s0, t0,F0 be an instance of the Reachability problem. Let #, $ /∈ F0 and
F1 = F ∪{#, $}, with ar(#) = ar($) = 0. We claim that P1(R0 ∪{t0 → #, $→
#}, {t0 → #}, {$→ #}, {s0},F1) = false if and only if Reachability(R0, s0, t0,F0)=true.
Indeed, if Reachability(R0, s0, t0,F0)=true, then there exists in G({s0},R0) a
path π from s0 to t0. By construction, π also is a path inG({s0},R∪ {t0 → #, $→ #}).
But π,(t0, {t0 → #},#) is a full path in G({s0},R∪ {t0 → #, $→ #}) whose
label doesn't model {t0 → #} ⇒ ◦{$ → #}. Consequently P1(R0 ∪ {t0 →
#, $→ #}, {t0 → #}, {$→ #}, {s0},F1) = false.
Conversely, if P1(R0 ∪ {t0 → #, $ → #}, {t0 → #}, {$ → #}, {s0},F1) = false,
then there exists a full path π′ in G({s0},R∪ {t0 → #, $→ #}) whose label
doesn't model {t0 → #} ⇒ ◦{$ → #}. Therefore, the transition {t0 → #} is
used in π′. It follows that t0 is reachable in G({s0},R∪ {t0 → #, $→ #}) from



s0. It is straightforward that Reachability(R0, s0, t0,F0)=true, which concludes
the proof.

The undecidability proofs for the two other formulas can be done with similar
reductions.

6.5 Proof of Proposition 5

Let l→ r ∈ R. Let Al = (Ql, El, Fl, ∆l) be the positive TAGED de�ned by:

� Ql = {qi | i ∈ PosF (l)} ∪ {qx, qax | x ∈ Var(l)} ∪ {qa},
� El = {(qx, qx) | x ∈ Var(l)},
� ∆l = ∆1 ∪ ∆2 with ∆1 = {l(p)(qα1 , . . . , qαn) → qp | p ∈ Pos(l) and αi =
p.i if l(p.i) ∈ F and αi = x otherwise} ∪ {f(qax, . . . , q

a
x) → qax | f ∈ F , x ∈

Var(l)}∪{f(qax, . . . , q
a
x)→ qx | f ∈ F , x ∈ Var(l)} and∆2 = {f(qa, . . . , qa)→

qa | f ∈ F} ∪ {f(qa, . . . , qa, qε, qa, . . . , qa)→ qε | f ∈ F},
� Fl = {qε}.

Notice �rst that {t | t →∗Al
qx} = T (F). Second, {t | t →∗∆l

qε} = {t | ∃p ∈
Pos(t), µ : X 7→ T (F) s.t. t|p = lµ}. It follows that L(Al) = {l → r}−1(T (F)).
The construction is clearly polynomial (F is considered as �xed and is not a
parameter of the problem). Polynomial time complexity results directly from [16,
Proposition 2]. However complexity is exponential relatively to the maximal arity
of a symbol in F .

6.6 Example for Proposition 5

Example 4. Let F = {⊥, h, f} where ar(⊥) = 0, ar(h) = 1 and ar(f) = 2.
The language {f(x, x) → h(x)}−1(T (F)) is accepted by the positive TAGED
Al = (Ql, El, Fl, ∆l) with

� Ql = {qε, q1, q2} ∪ {qx, qax} ∪ {qa},
� El = {(qx, qx)},
� ∆l = ∆1 ∪ ∆2 with ∆1 = {f(qx, qx) → qε} ∪ {f(qax, q

a
x) → qax,⊥ →

qax, h(q
a
x)→ qax}∪{f(qax, q

a
x)→ qx,⊥ → qx, h(qax)→ qx} and∆2 = {f(qa, qa)→

qa,⊥ → qa, h(qa)→ qa} ∪ {f(qa, qε)→ qε, f(qε, qa)→ qε, h(qε)→ qε}
� Fl = {qε}.

6.7 Proof of Proposition 6

It su�ces to note that R(L(A)) is empty if and only if L(A)∩R−1(T (F)) = ∅.
The proposition is then a direct consequence of Proposition 5 and [16, Proposi-
tion 2 and Theorem 1].



6.8 Proof of Proposition 7

Notice that the proof is constrcutive and that an example is is given in Section 6.9

Since R(L(A)) = ∪l→r∈R{l → r}(L(A)) and since positive TAGED lan-
guages are closed by union, it su�ces to prove the proposition for a single rule
l→ r.

The proof is composed of three parts: �rst, in (Point 1), a construction of
some useful positive TAGEDs Ar,σ,q is proposed. Second, in (Point 2), we prove
that {l → r}(L(A)) is accepted by the (�nite) union of the Ar,σ,q's by showing
that L(Ar,σ,q) ⊇ {l → r}(L(A)) and that L(Ar,σ,q) ⊆ {l → r}L(A) (Point 3).
Since the class of languages accepted by positive TAGEDs is closed under �nite
union, the proof is then complete.

Point 1
Let l → r ∈ R. An (l → r)-substitution is an application from PosX (l) into
Q. Let σ be a (l → r)-substitution. We denote by lσ the term of T (F ∪Q)
de�ned as follows: Pos(lσ) = Pos(l), and for each p ∈ Pos(l), if p ∈ PosX (l)
then lσ(p) = σ(l(p)), otherwise lσ(p) = l(p).

Set A = (Q, F,∆). Since the class of regular tree languages is closed by
intersection, for each variable x occurring in l and for each (l→ r)-substitution
σ, there exists a �nite tree automaton Aσx = (Qσx , Fσx , ∆σ

x) such that

L(Aσx) =
⋂

p∈Pos{x}(l)
L(A, σ(p)).

We may assume, w.l.o.g., that states of Fσx do not occur in left hand sides of
transitions of ∆σ

x .

Let Ar,σ,q = (Qr,σ,q, Er,σ,q, Fr,σ,q, ∆r,σ,q) be the positive TAGED de�ned by:

� Qr,σ,q = Q∪ {qi | i ∈ PosF (r)} ∪ {q+ | q ∈ Q} ∪⋃
x∈Var(r)Qσx ,

� Er,σ,q = {(q1, q2) | ∃x ∈ Var(r) s.t. q1, q2 ∈ Fσx },
� Fr,σ,q = {q+f | qf ∈ F},
� ∆r,σ,q = ∆ ∪∆1 ∪∆2 with

∆1 = {r(p)(qα1 , . . . , qαn
)→ qp | p ∈ Pos(r) and αi = p.i if r(p.i) ∈ F and qαi

∈
Fσr(p.i) otherwise} ∪

⋃
x∈Var(r)∆

σ
x

∆2 = {f(s1, . . . , sj , qε, sj+1, . . . , sn)→ s+n+1 | si ∈ Q and
f(s1, . . . , sj−1, q, sj+1, . . . , sn)→ sn+1 ∈ ∆}
∪ {f(s1, . . . , sj−1, s

+
j , sj+1, . . . , sn)→ s+n+1 | si ∈ Q and

f(s1, . . . , sj−1, sj , sj+1, . . . , sn)→ sn+1 ∈ ∆, ar(f) ≥ 1}.

We claim that

R(L(A)) =
⋃

lσ→∗Aq
L(Ar,σ,q),

where the union is taken for every state q ∈ Q, every (l→ r)-substitution σ such
that lσ →∗A q and L(Aσx) 6= ∅ for every x ∈ Var(l).



Point 2
Assume that t ∈ R(L(A)). There exist a term t0 ∈ L(A), a substitution µ from
X into T (F) and a position p of t0 such that

t0 = t0[lµ]p and t = t0[rµ]p. (1)

Let {p1, . . . , pk} = PosX (l). Since t0 ∈ L(A) there exist q, q1, . . . , qk ∈ Q such
that

lµ→∗A l[q1]p1 . . . [qk]pk
→∗A q and t0[q]p →∗A qf ∈ F. (2)

Let σ be the (l→ r) substitution de�ned by σ(pi) = qi. By construction one has
for every x ∈ Var(l),

µ(x) ∈
⋂

p∈Pos{x}(l)
L(A, σ(p)). (3)

By de�nition of Aσx one then has

µ(x) ∈ L(Aσx). (4)

It follows that for every x ∈ Var(r),

µ(x)→∗∆1
qx ∈ Fσx (5)

Therefore,
rµ→∗∆1

qε (6)

Using (1) and (2) it follows that

t→∗∆1
t0[q]p →∗∆2

q+f , (7)

proving that t ∈ L(Ar,σ,q). Notice that the constraints de�ned by Er,σ,q are
satis�ed: if during the reduction t→∗∆1

t0[q]p, two states q1, q2 ∈ Fσx are used in
position p′1 and p′1, then t|p′1 = t|p′2 = µ(x).

Point 3
Assume now that t ∈ L(Ar,σ,q) for a state q ∈ Q and an (l → r)-substitution σ
such that lσ →∗A q and L(Aσx) 6= ∅ for every x ∈ Var(l). Let ρ be a successful
run of Ar,σ,q on t. It is straightforward that there exists a unique position p of
t such that ρ(p) = qε. Let {p1, . . . , pk} = PosX (r). By de�nition of Er,σ,q, if
ρ(pi), ρ(pj) ∈ Fσx for a variable x occurring in r, then r|pi

= r|pj
. Therefore one

can de�ne the substitution µ from Var(r) into T (F) by: if ρ(pi) ∈ Fσx , then
µ(x) = r|pi

. This construction provides

µ(x) ∈ L(Aσx) (8)

and
t = t[rµ]p. (9)

Remind that Var(r) ⊆ Var(l), µ is extended to Var(l) by: if z ∈ Var(l) and
z /∈ Var(r), let µ(z) be an element arbitrarily chosen in L(Aσx) (which is by



hypotheses non empty). Consequently, for every x ∈ Var(l) and every position
px of l such that l(px) = x,

µ(x)→∗A σ(px) (10)

Thus

lµ(x)→∗A lσ (11)

Since t ∈ L(Ar,σ,q) one has

t→∗∆1
t[qε]p →∗∆2

q+f with q+f ∈ Fr,σ,q. (12)

Since t[qε]p →∗∆2
q+f ,

t[q]p →∗A qf . (13)

Using (11) and (13) one has

t[lµ]p →∗A t[lσ]p →∗A t[q]p →∗A qf . (14)

Therefore t ∈ R(L(A)), proving the claim.

6.9 Example for Proposition 7

Let F = {⊥, a, b, f} where ar(⊥) = 0, ar(a) = ar(b) = 1 and ar(f) = 2. We
consider the tree automaton A whose set of state is {s0, s1, s2, s4, sf}, whose
�nal state is sf and whose set of transition ∆ is

⊥ → s0 ⊥ → s2 f(s1, s3)→ s4
a(s0)→ s0 b(s2)→ s3 f(s3, s4)→ sf
b(s0)→ s0 a(s3)→ s3
a(s0)→ s1 b(s3)→ s3

The terms which can be reduced to s1, are those of L1 = a({a, b}∗(⊥)). The
terms which can be reduced to s3 are those of L2 = {a, b}∗(b(⊥)). The language
accepted by A is f(L2, f(L1, L2)).

Let R = {f(x, x) → a(f(x, b(x))}. We will construct a TAGED accepting
R(L(A)) using the method developed in the proof of Proposition 7.

The only variable occurring in f(x, x) is x. So we are looking for substitutions
such that L(A, σ(1))∩L(A, σ(2)) 6= ∅ and f(σ(1), σ(2))→∗A q, where q is a state
of A The second condition implies that only substitutions σ0 and σ1 de�ned by
σ0(1) = s1, σ0(2) = s3 and σ1(1) = s3, σ(2) = s4 have to be considered. Now
σ1 doesn't satisfy the �rst condition on languages intersection. It follows that
R(L(A)) = L(Aa(f(x,b(x))),σ0,s4).

Since L(A, σ0(1))∩L(A, σ0(2)) = L1∩L2 = a({a, b}∗(b(⊥))), one can choose
for Aσ0

x the automaton whose set of states is {s5, s6, s7}, whose �nal state is
{s7} and whose transitions are ⊥ → s5, b(s5)→ s6, a(s6)→ s6, b(s6)→ s6 and
a(s6)→ s7.

The automaton Aa(f(x,b(x))),σ0,s4 is de�ned by:



� Its set of states is
{s0, s1, s2, s3, s4, sf} ∪ {q1, q1.2, qε}∪ {s+0 , s+1 , s+2 , s+3 , s+4 , s+f } ∪ {s5, s6, s7},

� Ea(f(x,b(x))),σ0,s4 = (s7, s7),
� Its set of �nal states is {s+f },
� Its set of transition is ∆ ∪∆1 ∪∆2, with ∆1 = {b(s7) → q1.2, f(s7, q1.2) →
q1, a(q1) → qε} ∪ {⊥ → s5, b(s5) → s6, a(s6) → s6, b(s6) → s6, a(s6) → s7}
and ∆2 is the union of {f(s3, qε)→ s+f } and of the following set:

a(s+0 )→ s+0 b(s+2 )→ s3 f(s+3 , s4)→ s+f
b(s+0 )→ s+0 a(s+3 )→ s3 f(s1, s+3 )→ s+4
a(s+0 )→ s+1 b(s+3 )→ s3 f(s3, s+4 )→ s+f

f(s+1 , s3)→ s+4


