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Abstract: In the verification of C programs by deductive approaches based
on automated provers, some heuristics of separation analysis are proposed to
handle the most difficult problems. Unfortunately, these heuristics are not suffi-
cient when applied on industrial C programs: some valid verification conditions
cannot be automatically discharged by any automated prover mainly due to
their size and a high number of irrelevant hypotheses.

This work presents a strategy to reduce program verification conditions by
selecting their relevant hypotheses. The relevance of a hypothesis is the com-
bination of separated static dependency analyzes based on graph constructions
and traversals. The approach is applied on a benchmark issued from industrial
program verification.
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Réduction de conditions de vérification de

programmes par graphes

Résumé : Diverses heuristiques de séparation d’hypothèses facilitent l’approche
déductive de la vérification de programmes C, dans la perspective d’utiliser
un prouveur automatique. Malheureusement, ces heuristiques ne suffisent pas
pour vérifier des programmes C issus de l’industrie : certaines conditions de
vérification valides ne sont établies par aucun prouveur automatique, en raison
de leur trop grande taille et d’un trop grand nombre d’hypothèses non pertinen-
tes.

Ce travail présente une stratégie pour réduire les conditions de vérification
de programmes par la sélection d’hypothèses pertinentes. La pertinence d’une
hypothèse résulte de la combinaison de deux analyses statiques de dépendance,
basées sur la construction et le parcours de graphes. Cette approche est appli-
quée à une étude de cas issue du monde industriel.

Mots-clés : Vérification de programme, preuve, sélection d’hypothèses
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1 Introduction

Deductive software verification aims at verifying program properties with the
help of theorem provers, by static analysis of program source code. It has gained
more interest with the increased use of software embedded in, for instance, plane
commands, cars or smart cards, requiring a high-level of confidence, but with
hardware constraints that limit the usability of a constructive formal approach,
such as refinement.

In the Hoare logic framework, program properties are expressed by first-
order logical assertions on program variables (preconditions, postconditions, in-
variants, . . . ). The deductive verification method consists in transforming a
program, annotated with sufficiently many assertions, into so-called verification
conditions (VCs) that, when proved, establish that the program satisfies its as-
sertions. This method is supported by effective tools such as ESC/Java [13],
a toolkit for Java programs annotated using the Java Modeling Language [6],
Boogie [1] for the C# programming language, and Caduceus/Why [16] for C
programs.

A theorem prover is invoked to establish the validity of each verification
condition. A challenge in deductive software verification is to automatically
discharge as many verification conditions as possible. A key issue is that the
whole context of a verification condition is a huge set of axioms modelling not
only the property and the program under verification, but also many features
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4 Couchot & Giorgetti & Stouls

of the programming language. Naively passing this large context to an auto-
mated prover induces a combinatorial explosion, preventing the prover from
terminating in reasonable time.

Possible solutions to reduce the VC size and complexity are to optimize
the memory model (e.g. by introducing separations of zones of pointers [19]), to
improve the weakest precondition calculus [20] and to apply strategies for simpli-
fying VCs [18, 11, 21]. This work focuses on the latter. We suggest heuristics to
select axioms to feed to automated theorem provers (ATPs). Instead of invoking
ATPs blindly with a large VC, we present reduction strategies that significantly
prune their search space. The idea behind these strategies is quite natural: an
axiom is relevant if it contains predicates and constants needed to establish the
conclusion. Relevance criteria are computed by the combined traversal of two
graph-based representations of dependencies between axioms and a conclusion.
On one hand, a graph of constants analyzes similarities in occurrences of con-
stants between the conclusion and each hypothesis. On the other hand, a graph
of predicates analyzes logical dependencies between predicates in the conclu-
sion and predicates either in these program-dependent hypotheses or in a global
theory of the programming language.

In a former work [9], selection was limited to ground hypotheses and compar-
ison predicates were not taken into account. This led to unsatisfactory results,
for instance when the conclusion is some equality between terms. The present
work extends selection to context axioms and to comparison predicates. Here
we propose new heuristics increasing the number of automatically discharged
VCs. The following methodology made it possible to identify relevant heuristics
and thereby to define an efficient hypothesis selection algorithm:

1. Starting from an unproved VC, try to validate it under the Coq [2] proof
assistant;

2. Determine the minimal subset of needed hypotheses;

3. Search how these hypotheses are linked to the conclusion;

4. Search some criteria to reject the largest possible amount of hypotheses
that are not needed;

5. Experiment the time needed by different provers to automatically dis-
charge this VC reduced by hypothesis rejection.

The plan of the article is as follows. Section 2 presents the general structure
of a verification condition. Section 3 presents a running example. Section 4
shows how we store dependencies in graphs. The selection of hypotheses is
then presented in Section 5. These last two sections are the first contribution.
The second contribution is the implementation of this strategy as a module of
Caduceus/Why [16] and its application to an industrial C example (Section 6).
This case study is a part of the Oslo [4] secure bootloader annotated with a
safety property. Section 7 discusses related work, concludes and presents future
work.

INRIA
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2 Verification Conditions

A verification condition (VC) is a first-order logic formula whose validity implies
that a piece of annotated source code satisfies some soundness property. This
section describes the general structure of VCs generated by Caduceus/Why and
a preprocessing which rewrites VCs into a normal form considered in the rest
of the paper. A VC is composed of a context and a goal. This structure is
illustrated in Fig. 1.

Goal
︷ ︸︸ ︷

Context ⇒ Hypotheses ⇒ Conclusion

︸ ︷︷ ︸

Axioms

Figure 1: Structure of verification conditions

The context depends on the programming language. It is in fact a first-order
axiomatization of the language features used in the program under verification.
Typical features are memory access and update, based on an axiomatized mem-
ory model. For SMT solvers, the context is presented as a base theory, usually
a combination of equality with uninterpreted function symbols and linear arith-
metic, extended with a large set of specific axioms. For instance, a classical VC
produced by Caduceus/Why has a context with more than 80 axioms.

The goal depends on the program and on the property under verification.
When this property is an assertion about some program control point, the goal
is generated by the weakest precondition (wp) calculus of Dijkstra [14] at that
control point. The goal is considered as a conclusion implied by hypotheses that
encode the program execution up to the control point.

Context and hypotheses are reduced to conjunctive normal form as two
conjunctions Ctx1 ∧ . . . ∧ Ctxn and H1 ∧ . . . ∧ Hm of clauses (n, m ∈ N). Each
of these clauses is called an axiom. Each axiom from the context is assumed to
be universally closed. The conclusion C is assumed to be a clause. For SMT
solvers, a VC is turned into the satisfiability question Ctx1 ∧ . . .∧Ctxn ∧H1 ∧
. . . ∧ Hm ∧ ¬C.

3 Running Example

The C program in Figure 2 is the starting point of the running example that
illustrates the approach taken throughout the following sections. The left side
column of this C program introduces matryoshka structures. The right side
column presents an interface g and a function f that calls g and explicitly
modifies the value stored in one of the innermost fields of the structure pointed
by a (namely a−>y−>v[1].x).

Functions are annotated in the Caduceus/Why language [16] composed of
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6 Couchot & Giorgetti & Stouls

struct p {
int x;

} p;

struct s {
struct p v[2];

} s;

struct t {
struct s *y;

} t;

/*@ requires \valid(c)

@ assigns c−>v[0].x */

void g(struct s *c);

/*@ requires \valid(a)

@ && \valid(b)

@ && \valid(a−>y)

@ as-

signs a−>y−>v[0..1].x */

void f(struct t *a,struct p *b){
int i = b−>x;

g(a−>y);

a−>y−>v[1].x=i;

}

Figure 2: A running example in C� preconditions (defined by the requires keyword); they ensure that each
pointer given in parameter is \valid (i.e. is correctly allocated) when f

or g is invoked;� a list of data modified by side effects (defined by the assigns keyword);
for instance assigns a−>y−>v[0..1].x means that function f does
not modify other locations than a−>y−>v[0].x and a−>y−>v[1].x; this
property can be established by considering the side effects of f body and
of g.

This example is representative of programs with pointers for which the absence
of threats is hard to check statically. Threats include null pointer dereferencing
and out-of-bounds array access. For these programs, Caduceus/Why yields two
kinds of VCs. Validity VCs express that pointers point to a regularly allocated
memory block at each memory access. Effect VCs express that all the side
effects of a function are in its annotated list of side effects. For instance, the
statement g(a−>y) constrains a to be valid for a legal access to its pointed
memory block and a−>y to be valid to satisfy the precondition of g.

We apply the Burstall-Bornat memory model [7, 5] where one ‘array’ variable
(later called a memory) models each structure field. This modeling syntactically
encodes the fact that two structure fields cannot be aliased. An important
consequence is that whenever one field is updated, the corresponding array is
the only one which is modified. Hence, we have for free that any other field
is left unchanged. In the example, the fields x, v and y respectively yield the
memories mx, mv and my.

Memories can be accessed only by the acc function. acc(m, p) returns the
value stored in memory m at index p, where p is a pointer. A fresh memory can
be generated by the upd function. upd(m, p, v) duplicates m except at pointer
p where it sets the value v. Caduceus’ VC generator yields predicates valid and
diff which have the semantic of \valid and assigns respectively. Let m1 and
m2 be two memories and l be a set of pointers. The predicate diff is such that
diff(m1, m2, l) means that differences between m1 and m2 only concern the set

INRIA



Reduction of Verification Conditions 7

l. The predicate can be defined by

diff(m1, m2, l) ⇔
(
∀p . valid(p) ∧ ¬mem(p, l) ⇒ acc(m1, p) = acc(m2, p)

)
(1)

where p is a pointer and mem(p, l) means that p is a member of l. This formula
is rewritten in CNF as the conjunction

Ctx1 ∧ Ctx2 ∧ Ctx3 ∧ Ctx4 (2)

of the following four clauses:

¬diff(M1, M2, L) ∨ ¬valid(P ) ∨ mem(P, L) ∨ acc(M1, P ) = acc(M2, P ) (Ctx1)

valid(p0) ∨ diff(M1, M2, L) (Ctx2)

¬mem(p0, L) ∨ diff(M1, M2, L) (Ctx3)

acc(M1, p0) 6= acc(M2, p0) ∨ diff(M1, M2, L) (Ctx4)

where capitalized variables are universally quantified and p0 is a fresh constant
resulting from the skolemization of p. These clauses are four of the 80 clausal
axioms that compose the context (memory model) of Caduceus/Why, denoted
Ctx in all that follows.

The effect VC for function f is the conjunction

Ctx ∧ H1 ∧ H2 ∧ H3 ∧ H4 ∧ H5 ∧ H6 ∧ ¬C (3)

of the context Ctx and of the following ground formulas:

valid(a) (H1)

valid(b) (H2)

valid(acc(my, a)) (H3)

valid acc range(mv, 2) (H4)

separation1 range(mv, 2) (H5)

diff(mx, mx 0, singleton(shift(acc(mv, acc(my , a)), 0))) (H6)

¬ diff(mx, upd(mx 0, shift(acc(mv, acc(my, a), 1)), acc(mx, b)),
range(singleton(acc(mv, acc(my, a))), 0, 1))

(¬C)

The meaning of these formulas is the following: The first three clauses corre-
spond to the precondition of the f function. The next two clauses come from the
definition of structure s: the predicate valid acc range(mv, 2) means that any
access to the memory mv returns an array t such that pointers t[0] and t[1] are
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8 Couchot & Giorgetti & Stouls

valid; with the same notation separation1 range(mv, 2) means that t[0] 6= t[1].
The sixth clause (H6) comes from the statement g(a−>y), more precisely from
the annotation assigns c−>v[0].x where c is substituted by a−>y. The func-
tion singleton has the usual meaning and shift(t, i) allows to access to the index
i in the array t. This hypothesis defines the access of a variable mx 0 which
is equal to the access in mx except for the index shift(acc(mv, acc(my , a)), 0)
corresponding to a−>y−>v[0]. The conclusion C is a diff predicate applied
to two memories. The first memory is the memory before execution of f and
the second memory is the memory after execution of f. The third parameter
range(singleton(acc(mv, acc(my, a))), 0, 1) defines the set of pointers located at
indices 0 and 1 in the array acc(mv, acc(my , a)). In fact this is the representation
of a->y->v[0..1].

Even if this example is small, Simplify and haRVey are the sole SMT provers,
among Simplify [12], Yices [15], Alt-Ergo [8], haRVey [24] and CVC-lite [3],
which succeed in establishing the validity of this VC (3) in a few seconds.

However, an engineer would have deduced from the background theory that
valid and valid acc range are not directly useful in the present case. Removing
the hypothesis concerning valid acc range permits him to obtain the desired
result.

The next section shows how dependencies are memorized in the problem of
proving a goal in a SMT solver. This is the starting point of the approach of
removing useless axioms.

4 Graph Based Memorizing of Dependency

Basically, a conclusion is a propositional combination of potentially quantified
predicates built with some functional terms. Dependencies between axioms and
the conclusion can then arise from predicates and terms. Terms in the goal may
either come from the annotated program (from statements or assertions) or may
result from a weakest precondition calculus applied on the program and its asser-
tions. The term dependency just transcribes that parts of the goal (in particular,
hypotheses and conclusion) share common terms. It is presented in Section 4.1.
Two predicates are dependent if there exists a (deductive) path leading from
one to the other. The predicate dependency is presented in Section 4.2. Finally,
Section 4.3 presents a special dependency analysis for comparison predicates.

4.1 Term Dependency

An undirected graph Gc is constructed by syntactic analysis of term occur-
rences in each ground clausal hypothesis of a VC. The graph describes how
these hypotheses relate terms together. The graph vertices are labeled with
the constants occurring in the goal and with new constants resulting from a
flattening process on ground clauses. This flattening repeatedly replaces a func-
tional term f(t1, . . . , tn) in some ground clausal hypothesis with a fresh constant
f i where i is some unique integer. The resulting conjunction of clauses aug-
mented with the new unitary clause f(t1, . . . , tn) = f i is equisatisfiable with
the former conjunction. Finally, all these ground clausal hypotheses are “flat”,
meaning that all their parameters are constants. There is a graph edge between
two (vertices labeled with) constants c1 and c2 when c1 and c2 both appear is
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b mx

mx 0

singleton 2

shift 3

acc 4

mv

acc 5

my

acc 1

a

Figure 3: Dependency Graph of Verification Condition (3)

some flat hypothesis. Consequently, each flat hypothesis appears in the graph
as a complete subgraph. Notice that flattening and edge drawing do not concern
the VC conclusion: its constants will be used to initiate a graph traversal for
selecting hypotheses. For this purpose, adding new constants in the conclusion
by flattening has no interest.

Running example. The graph representing verification condition (3) is given
in Fig. 3. The flattening of hypothesis (H6) introduces the fresh constants
singleton 2, shift 3, acc 4 and acc 5 and the flat hypotheses resulting from H6

are represented by the complete subgraphs defined by the sets {mx, mx 0,
singleton 2}, {singleton 2, shift 3}, {shift 3, acc 4}, {acc 4, acc 5, mv} and
{acc 5, my, a}. Similarly, (H3) introduces the fresh constant acc 1 and is rep-
resented by the set {acc 1, my, a}.

4.2 Predicate Dependency

A weighted directed graph is constructed to represent implication relations be-
tween predicates in an efficient way. Intuitively, each graph vertex represents a
predicate name and an arc from a vertex p to a vertex q means that p may imply
q. What follows details how to compute such a graph of predicates, named GP .
We first describe the general approach. Then we propose a special treatment
for comparison operators.

Each graph vertex is labeled with a predicate symbol that appears in at
least one literal of the theory. If a predicate p appears negated (as ¬p) in an
axiom clause, it is represented by a vertex labeled with p. For each clause Cl
and for each pair (p, q) ∈ Cl × Cl of literals in this clause (considered as a set of
literals), there is an arc in GP depending on the positiveness of p and q. Modulo
symmetry there are three distinct cases to consider. They are enumerated in
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10 Couchot & Giorgetti & Stouls

Table 1. To reduce the graph size, the contraposite of each implication is not
represented as an arc in the graph but is considered when traversing it, as
detailed in Section 5.1.

The intended meaning of an arc weight is that the lower the weight is, the
higher is the probability to establish q from p. Therefore, the arc introduced
for the pair (p, q) along Table 1 is labeled with the number card(Cl ) − 1 of
predicates in the clause Cl under consideration. For instance, a large clause
with many negative literals, with ¬p among them, and with many consequents,
with q among them, is less useful for a deduction step leading to q than the
smaller clause {¬p, q}. Finally, two weighted arcs p

w1−→ q and p
w2−→ q are

replaced with the weighted arc p
min(w1,w2)
−−−−−−→ q.

Pair Arcs

(¬p, q) {p −→ q}
Pure predicates (p, q) {p −→ q}

(¬p,¬q) {p −→ q}

Table 1: Translating Pair of Literals into Arcs.

4.3 Handling Comparison Predicates

In a former work [9], (in)equalities were abstracted in the step of memorizing
dependency. This leads to unsatisfactory results when (in)equality is central in
deduction steps, e.g. when the conclusion is some equality between terms.

One may handle each comparison predicate as all the other binary predicates
and for instance memorize an equality with a node labeled with =. Neverthe-
less, since comparisons are ubiquitous in axioms, this solution would produce a
graph where nodes labeled with =, 6= , 6, <, > or > have a huge number of
arcs. Consequently it allows to abusively link predicates, leading to losing the
semantic of the graph.

The objective of the predicate graph is to memorize logical paths between
predicates. It could be of great benefit to make it memorizing the transitivity
property of comparison predicates. In doing so, the comparison operator itself is
less important than its operands. Consequently, we generate specific nodes for
comparison literals, annotated with the toplevel symbol of one of their operands.

Practically, each comparison t1 = t2, t1 6= t2, t1 6 t2, t1 < t2, t1 > t2 and
t1 > t2 is represented by two nodes labeled with �f1

and �f2
where f1 (resp. f2)

is the functional symbol at the top of t1 (resp. t2). These labels are called post-
fixed comparison predicates. Again, arcs are constructed modulo symmetry,
for each pair (l, t1 ◦ t2) ∈ Cl × Cl , where ◦ is a comparison symbol in the set
Comp = {=, 6=, 6, <, >, >} and l is a literal. The construction rules are given
in Table 2. In the first two lines, p is not a comparison predicate. In this case,
an arc is constructed in the same way as for pure predicates, but with �f1

or
�f2

instead of q. Two additional arcs relate �f1
and �f2

. The last line defines
how pair of comparisons are represented. Since �f1

and �f2
uniformly represent

all the comparison predicates between t1 and t2, there is no distinction between
�f1

and �f1
.

INRIA
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p

t1 = .

t2 = .

t1 6= .

t2 6= .

11 11

11

1 1

Figure 4: Abstract representation of {¬p, t1 ◦ t2}

The semantics of these nodes is detailed now. Given a comparison predicate
◦ ∈ Comp, two functional terms t1 and t2, and a set L of l literals, the clause

L ∪ {t1 ◦ t2} (4)

is equisatisfiable with L ∪ {t1 = c1 ∧ t2 = c2 ∧ c1 ◦ c2} where c1 and c2 are
two fresh variables. The weaker clause L ∪ {t1 = c1, t1 6= c1, t2 = c2, t2 6= c2} is
memorized. It abstracts away relations between c1 and c2. Nodes and arcs of the
predicate graph are computed following lines of Section 4.2. Notice weights are
calculated from the original equation, not from the weaker clause. For instance,
the graph of Fig. 4 represents the clause (4) through this abstraction where L
is {¬p}.

Pair Arcs

(¬p, f1(. . .) ◦ f2(. . .)) {p −→ �f1
, p −→ �f2

, �f1
−→ �f2

, �f2
−→ �f1

}
(p, f1(. . .) ◦ f2(. . .)) {p −→ �f1

, p −→ �f2
, �f1

−→ �f2
, �f2

−→ �f1
}

(g1(. . .) � g2(. . .), {�g1
−→ �f1

, �g1
−→ �f2

, �g2
−→ �f1

, �g2
−→ �f2

,
f1(. . .) ◦ f2(. . .)) �f1

−→ �f2
, �f2

−→ �f1
, �g1

−→ �g2
, �g2

−→ �g1
}

where ◦ and � are comparison operators in Comp and
p is a literal that is not a comparison.

Table 2: Translating Comparisons into Arcs.

Finally, both t1 = . and t1 6= . are represented by �f1
. Consequently, �f1

and �f1
are the same node, and then not represented twice.

Notice that, given ◦ ∈ Comp , t1 and t2 two functional terms, and L a set of
literals, another attempt could consist in translating the clause L∪{t1 ◦ t2} into
the three clauses L ∪ {t1 = c1}, L ∪ {t2 = c2} and L ∪ {c1 ◦ c2} where c1 and
c2 are two fresh constants, whilst preserving satisfiability. Later each equality
ti = ci between a functional term and a constant and each comparison c1 ◦ c2

between two constants could be represented by a node labeled with ◦ti
(as before

but more precisely) or directly by a node labeled with ◦ respectively. However
this careful approach that allows to consider comparison as other uninterpreted
predicates leads to a combinatorial explosion of clauses. In what follows, we
only retain the translation from comparison to post-fixed comparison �.
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12 Couchot & Giorgetti & Stouls

1 1

1

2

2

4

3

3

1

1 3

3

3

diffdiff mem

�acc

mem

valid acc range

valid

valid

separation1 range

Figure 5: Dependency Graph of Axiom (1), with Post-Fixed Comparison Pred-
icates and Some Vertices and Arcs From Other Axioms

Running example. Figure 5 represents the dependency graph of the conjunc-
tion of clausal axioms (2), with a post-fixed comparison predicate for the equality
between two acc(. . .) terms. The dashed vertices represent the other predicates
from the verification condition (3). The dashed arcs represent some links be-
tween these predicates and those of (2), extracted from other axioms of the
Caduceus/Why context. These links are thus an excerpt of the graph repre-
senting the memory model of Caduceus/Why. Notice that the arc weight from
valid to diff is 1 since (¬diff,¬valid) appears in the clause (Ctx1) with 4 literals
and (valid, diff) appears in the clause (Ctx2) with 2 literals.

5 Axiom Selection

It remains to select relevant axioms. Intuitively, an axiom is relevant with
respect to a conclusion if that conclusion cannot be established without this
axiom. More formally, let A1 ∧ . . . ∧ An ∧ ¬C be a satisfiability problem. The
axiom A1 is relevant w.r.t. C if A1 ∧ . . . ∧ An ∧ ¬C is not satisfiable whereas
A2 ∧ . . . ∧ An ∧ ¬C is.

This section shows how to select relevant predicates (Section 5.1), relevant
variables (Section 5.2) and explains how to combine these results to select rele-
vant axioms (Section 5.3).

5.1 Relevant Predicates

In what follows, we do not distinguish a predicate symbol from its corresponding
vertex in the graph of predicates GP . A predicate symbol p is relevant w.r.t.
a predicate symbol q if there is a path from p to q in GP , or dually from q

INRIA



Reduction of Verification Conditions 13

to p. Intuitively, the weaker the path weight is, the higher is the probability
of p to establish q. Relevant predicates extracted from GP are stored into an
increasing sequence (Ln)n∈N of sets gathering predicates helping to establish
predicates of the conclusion. The natural number n is the maximal weight of
paths considered in the graph of predicates.

We now present how Ln is computed. L0 gathers all predicates of the con-
clusion, assumed to be a single clause. For each predicate symbol p that is not
in L0, a graph traversal computes the paths with the minimal weight w from p
to some predicate in L0.

Furthermore, contraposition of each implication is considered: let p1 and p2

be two node labels, corresponding either to a positive or a negative literal. If
the arc p1

w
−→ p2 is taken into account, its couterpart p2 −→ p1 is too, with the

convention that p is p. Let n be the minimal distance from L0 to the deepest
reachable predicate. For 1 6 i 6 n, Li is the set of vertices of GP whose distance
to L0 is less than or equal to i. L∞ is the limit

⋃

i≥0 Li augmented with the
vertices from which L0 is not reachable.

Notice that if the VC is a propositional formula, the set of all predicates of
the fixpoint is the set of hypotheses with polarized connectivity [18].

Running example. According to the graph given in Fig. 5, we have:

L0 = {diff}
L1 = L0 ∪ {mem, �acc, valid}
L2 = L1 ∪ {diff}
L3 = L2 ∪ {valid acc range}
L4 = L3 ∪ {valid, mem}
L5 = L4 ∪ {separation1 range, separation1 range, valid acc range}
. . .
L∞ =

⋃

i≥0 Li ∪ unreachable vertices

Notice that the spurious predicate valid acc range only appears at depth 3, al-
lowing all the deductions concerning predicates obtained with a depth less or
equal to 2 to be more easily discharged.

5.2 Relevant Constants

Nodes in the graph of constants Gc are identified with their labeling constant.
Let n be the diameter of the graph of constants Gc. Starting from the set C0 of
constants in the conclusion, a breadth-first search algorithm computes the sets
Ci of constants in Gc that are reachable from C0 with at most i steps (1 6 i 6 n).
Finally, unreachable constants are added to the limit of the sequence

(
Cn

)

n∈N

for completeness. Let C∞ be the set so obtained.
To introduce more granularity in the calculus of reachable constants, we

propose as a heuristic to insert nodes that are linked several times before nodes
that are just linked once. Semantically it gives priority to constants which are
closer to the conclusion. Notice that, in this case, the index i of Ci does not
correspond to a path length anymore.
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14 Couchot & Giorgetti & Stouls

Running example. According to Fig. 3, the sequence of reachable constants
sets associated to the verification condition (3) is:

C0 = {mx, mx 0, mv, my, a, b},
C1 = C0 ∪ {acc 5},
C2 = C1 ∪ {acc 1, singleton 2},
C3 = C2 ∪ {acc 4},
C4 = C3 ∪ {shift 3} and
C∞ = C4.

5.3 Selection of Relevant Axioms

In this section, we present the main principles of the axiom selection combining
predicates selection and constant selection.

Suppose given the sequences (Ln)n∈N,
(
Cn

)

n∈N
respectively of relevant pred-

icate sets and of relevant constant sets. Let i be the counter which represents
the depth of predicate selection. Similarly, let j be the counter corresponding
to the depth of constant selection.

In a first part we describe the hypotheses selection and in the second one we
extend the approach to consider also axioms from the context.

Suppose given a clause Cl from a hypothesis. Let V be the set of constants
of Cl augmented with constants resulting from flattening (see Section 4.1). Let
P be the set of predicates of Cl . The clause Cl should be selected if it includes
constants or predicates that are relevant according to the conclusion. Different
criteria can be used to verify this according to its sets P and V . Possible choices
are, in increasing order of selectiveness

1. the clause includes at least one relevant constant or one relevant predicate:

V ∩ Cj 6= ∅ ∨ P ∩ Li 6= ∅

2. the clause includes more than a threshold tv of relevant constants or more
than a threshold tp of relevant predicates:

card(V ∩ Cj)/card(Cj) > tv ∧ card(P ∩ Li)/card(Li) > tp

3. all the clause constants and clause predicates are relevant:

V ⊆ Cj ∧ P ⊆ Li

Our experiments on these criteria have shown that a too weak criterion does
not accomplish what it is designed for: too many clauses are selected for few
iterations, making the prover quickly diverge. In the following, we only consider
the strongest criterion.

Consider now the case of selecting relevant axioms from the context. The
semantic of context axioms that defines algebraic structures is distinct from
the semantic of hypotheses, that defines the execution of the program. Hence,
selecting axioms cannot be uniformly expressed for these both cases.

Intuitively, an axiom of the context has to be selected if one of the predicate
relations it defines is relevant for one hypothesis, i.e. the corresponding arc is
used in the computation of Li. Practically, for each arc that is passed through
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Reduction of Verification Conditions 15

while generating Li, we keep all the axioms of the context that have generated
this arc, abstracting away weights.

Consider a formula resulting from the selection of axioms (from context or
hypotheses) according to the strongest criterion. Discharging it into a prover
with the following algorithm, and starting from i = 0 and j = 0, can yield three
issues: satisfiable, unsatisfiable or timeout.

1. If the formula is declared to be unsatisfiable, the procedure ends. Adding
more axioms cannot make the problem satisfiable.

2. If the formula is declared to be satisfiable, we may have omitted some
axioms; we are then left to increment either i or j, i.e. to enlarge either
the set of selected predicates or the set of selected constants.

However, divergence appears when the generation of new literals by a set
of axioms falls in a bottomless pit. Such a generation is controlled by the
presence in the formula of predicates of incriminated axioms. Given a set
of predicates and a set of constants, allowing the use of new predicates
has a more critical impact than allowing the use of new constants.

Therefore we recommend to first increment j, increasing Cj until eventu-
ally C∞, before considering incrementing i. In this later case, j resets to
0.

3. If the formula is not discharged in less than a given time, after having
iteratively incremented i and j, then the approach halts.

Running example. For L0, no axiom is selected with C0, C1, C2, C3. However
with C4, it yields the VC:

diff(mx, mx 0, singleton(shift(acc(mv, acc(my, a)), 0)))∧
¬(diff(mx, upd(mx 0, shift(acc(mv, acc(my, a), 1)), acc(mx, b)),

range(singleton(acc(mv, acc(my, a))), 0, 1)))
(5)

This VC does not contain the axiom with valid acc range, which causes
provers to diverge. In addition to Simplify and haRVey that already discharged
the original VC, Alt-Ergo and Yices run successfully on VC (5).

6 Experiments

The proposed approach is included in a global context of annotated C program
certification. T. Hubert and C. Marche [19] proposed a separation analysis that
strongly simplifies the verification conditions generated by a weakest precondi-
tion calculus, and thus greatly helps to prove programs with pointers. Their
approach is supported by the Why tool. The pruning heuristics presented here
are developed as a post-process of this tool.

Section 6.1 gives some details about algorithms developed following the lines
of this paper. A case study for trusted computing is presented in Section 6.2.
This case study raises new challenges associated to the certification of C pro-
grams annotated with a temporal logic formula.
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16 Couchot & Giorgetti & Stouls

Method parameters : VC, Prover, imax, jmax, TO
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Tn = TO/((imax + 1) ∗ jmax + 1)
Res := Prover(VC, timeout = Tn,without axiom selection)
if Res = timeout then















i := 0;
j := 0;
While (Res 6= unsat) ∧ i 6 imax ∧ j 6 jmax do









Res := Prover(VC, timeout = Tn, axiom selection=(i, j))
j := j + 1;
if j > jmax then
⌊

i := i + 1;
j := 0;

return Res;

Figure 6: General Algorithm Discharging a VC with Axiom Selection

6.1 Methodology

All the strategies presented in this work are implemented in OCaml as modules
in the Why [16] tool in less than 2000 lines of code. Since these criteria are
heuristics, their use is optional, and Why has command line arguments which
allow a user to enable or disable their use. In the current version, several others
heuristics have been developed, which we do not consider in the following as
their impact on the performance of Why seems to be less pronounced than the
one of the heuristics presented above. In order to use them, the arguments to
include in the Why call are:

--prune-with-comp --prune-context --prune-vars-filter CNF

The first parameter includes comparison predicates in the predicate dependency
graph. The second one asks for filtering also axioms from context (not only
hypotheses). Finally, the third argument asks for rewriting hypotheses into
CNF before filtering.

Internally, the last method described in Section 5.3 is implemented as shown
in Fig. 6. The tool needs 5 parameters:� a VC whose satisfiability has to be checked,� a satisfiability solver Prover,� two natural numbers imax and jmax that are depth bounds for predicate

graph and constant graph traversals, respectively, and� the maximal amount of time TO allowed by the user to discharge a VC.

As announced in Section 5.3, three issues (satisfiable, unsat or timeout) can arise
while discharging a VC. The last case denotes that the VC is not discharged in
less than a given time, after which the prover is halted.

INRIA



Reduction of Verification Conditions 17

The global timeout TO is divided into n = (imax+1)∗jmax+1 equal timeouts
Tn granted to each prover call. The experiment starts with a first attempt to
discharge the VC without axiom selection. The algorithm stops if this first
result is unsatisfiable or satisfiable: in the latter case, removing axioms cannot
modify the result provided. The implemented decision procedure is complete.
Next, Prover is called following an incremental constant-first selection.

Notice that the whole experiment is done on an Intel Xeon 3.20GHz with
2Gb of memory.

6.2 Trusted Computing Case Study

Some new challenges for axiom filtering are posed by the context of the PFC
project1 on Trusted Computing (TC). Section 6.2.1 presents the context of TC.
Corresponding verification results are given in Section 6.2.2.

6.2.1 Motivations and Context

The main idea of the TC approach is to have some confidence about the exe-
cution context of a program. This confidence is obtained by construction, by
using a trusted chain. A trusted chain is a chain of program executions where
each program launched is previously registered with a trusted component (in
our case, this component is a hardware chipset named TPM – Trusted Plat-
form Module). The trusted component classically provides some services, such
as sealed memory (e.g. for private cryptographic keys) and remote attestation
(to identify which software is running on a remote computer). Since this de-
vice is passive and cannot monitor program execution, the main risk is identity
spoofing. We then need to validate each trusted program according to trusted
properties. In this context of TC, we focus on the Oslo [4] secure loader. This
program is the first step of a trusted chain. It uses some hardware functional-
ities of recent CPUs2 to initialize the chain and to launch the first program of
the chain.

The main trusted chain properties are temporal, but can be rewritten into
first order logic annotations in the C code, according to the approach proposed
by Giorgetti and Groslambert in [17]. To summarize, the safety part of any
temporal property can be rewritten, through its Büchi automaton represen-
tation, into annotations. Our specification of this code is the union of three
specifications of preconditions, postconditions and invariants:� a functional specification of each operation, described in terms of Oslo

variables;� a modelization of the hardware architecture, expressed in terms of Oslo
variables and new variables introduced in order to describe the hardware
status;� a description of the Büchi automaton, modelized with new variables de-
scribing the current states.

1 PFC (meaning trusted platforms – Plateformes de Confiance in french) is a project of
the SYSTEM@TIC Paris Region French cluster.

2AMD-V or Intel-TET technologies.
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18 Couchot & Giorgetti & Stouls

Oslo program and specification

Lines of code: approx. 1500 lines
Lines of functional specification (program and TPM): approx. 1500 lines
Number of VCs: approx. 7300

Observed part of Oslo

Lines of code observed: approx. 40 lines
Lines of specification for the Büchi automaton: approx. 500 lines
Number of VCs: 771

Table 3: Some Figures about the Oslo Program

Note that the last point depends on the others, and thus they have to be proved
together. Hence, the main problem of this case study is the large amount of
hypotheses. Table 3 gives some factual information about the studied part of
Oslo. The web page http://www.lri.fr/~stoulsn/tools/oslo/ gives more
technical details about this benchmark.

6.2.2 Results of Oslo Verification

First of all, among the 771 generated VCs, 726 are directly discharged (i.e.
without any axiom selection). Next, the approach developed in [9] allows to
automatically prove 732 VCs. This result is obtained by using the algorithm
described in Fig. 6 with the three provers Simplify, Alt-Ergo and Yices and
with the algorithm parameters imax = 3, jmax = 6 and TO = 250 (250 seconds
come from the fact that 25 different prover calls are done in the worst case,
with a timeout Tn = 10). These limits (imax and jmax) are experimental and
correspond to the timeout limit of the algorithm.

Among the remaining unproved VCs, some rely on quantified hypotheses.
Others need comparison predicates that are not handled in the previous work [9]
and have motivated the present extensions, namely CNF reduction, comparison
handling and context reduction.

Figure 7 sums up these results. Finally, notice that the entire process needs
4.4 hours with the results presented in this work, while it needs 5.8 hours with
the results from the former work.

7 Related Work and Conclusion

We have presented a new strategy to select relevant hypotheses in formulas com-
ing from program verification. To do so, we have combined two separate depen-
dency analyses based on graph computation and graph traversal. Moreover, we
have given some heuristics to analyze the graphs with a sufficient granularity.
Finally we have shown the relevance of this approach with a benchmark issued
from a real industrial code.

Strategies to simplify the prover’s task have been widely studied since au-
tomated provers exist [29], mainly to propose more efficient deductive sys-
tems [29, 28, 27]. The present work can be compared with the set of support
(sos) selection strategy [29, 22]. This approach starts with asking the user to
provide an initial sos: it is classically the negative of the conclusion and a subset
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Reduction of Verification Conditions 19

Figure 7: Comparison of Results on Oslo Between Proposed Methods

of hypotheses. It is then restricted to only apply inferences with at least one
clause in the sos, consequences being added next into the sos. Our work can
also be viewed as an automatic guess of the initial sos guided by the formula to
prove. In this sense, it is close to [21] where initial relevant clauses are selected
according to syntactical criteria, i.e. counting matching rates between symbols
of any clause and symbols of clauses issued from the conclusion. By considering
syntactical filtering on clauses issued from axioms and hypotheses, this latter
work does not consider the relation between hypotheses, formalized by axioms
of the theory: it provides a reduced forward proof. In contrast, by analyzing
dependency graphs, we simulate natural deduction and are not far from back-
ward proof search. By focusing on the predicative part of the proof obligation,
our objectives are dual to those developed in [18]: this work concerns boolean
verification conditions with any boolean structure whereas we treat predicative
formulas whose symbols are axiomatized in a quantified theory. Even in a large
set of context axioms, most of the time, each proof obligation only requires a
tiny portion of this context. In [25, 10] a strategy to select relevant context
axioms is presented, but it needs a preliminary manual task classifying axioms.
Our predicate graph computation makes this axiom classification automatic.
Recent advances have been made in the direction of semantic selection of ax-
ioms [26, 23]. Briefly speaking, at each iteration, the selection of each axiom
depends on the fact that a computed valuation is a model or not of the axiom.
By comparison, our syntactical axiom selection is more efficient, indeed linear
in the size of the input formula.

In future work, we expect to avoid the decomposition of axioms in con-
junctive normal form. This decomposition presents the advantage to make it
possible to select only relevant parts of axioms, but it is costly and the resulting
clauses often contain the same subformula. Hence the prover sometimes has
to treat this formula several times and worst to instantiate it twice with the
same value of its quantifiers. It seems interesting to avoid this decomposition
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20 Couchot & Giorgetti & Stouls

and to prune general axioms. The pruning would be done by preserving their
general form and just removing irrelevant branches. We have already performed
some manual experiments and observed a time gain of a factor of two on some
verification conditions.
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