
FESCA 2009

Refinement of interface automata strengthened by
action semantics

Sebti Mouelhi, Samir Chouali, Hassan Mountassir 1

Laboratoire d’Informatique de l’Université de Franche-Comté - LIFC
16, route de Gray - 25030 Besançon cedex, France

Abstract

Interface automata are light-weight models that capture the temporal interface behavior of software components. They
have the ability to model both the input requirements and the output behavior of a component. They support the compat-
ibility check between interface models to ensure a correct interaction between components and they adopt an alternating
simulation approach to design refinement. In this paper, we extend our previous works on checking interface automata inter-
operability by adapting their alternating refinement relation to the action semantics. We show the relation between pre and
post-conditions of transitions in the abstract version of an interface and their corresponding ones in its concrete version. We
illustrate our extensions by a case study of the CyCab car component-based system.

Keywords: Component-based systems, interface automata, alternating refinement.

1 Introduction

Interface formalisms play a central role in the conception of component-based systems.
They are increasingly used thanks to their ability to describe, in terms of communicating
interfaces, how the components of a system can be connected to each others. Two princi-
ples have to be satisfied to design properly component interfaces. First, an interface should
describe enough information about the way to make two or more components ”working
together correctly” by looking only at their interfaces. Second, more information than is
required by the first principle should not be exposed. Essentially, component interoperabil-
ity have to satisfy the type compatibility of operations (the number, order, and types of the
parameters). In addition of type check, component composition requires protocol informa-
tion about how a component must be used in a system design and the order in which their
interacting events are enabled. Interfaces that expose protocol information of components
can be specified naturally in an automaton-based language like interface automata [1,2].

Interface automata have been introduced as a formalism that captures the temporal In-
put/Output behavior of a software component. Similarly to Input/Output automata [12],

1 Email: {sebti.mouelhi, samir.chouali, hassan.mountassir}@lifc.univ-fcomte.fr

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:{sebti.mouelhi, samir.chouali, hassan.mountassir}@lifc.univ-fcomte.fr

they are specified by automata labeled by input, output, and internal actions. The ap-
proach of interface automata adopts an optimistic or environment-constraining view where
the composition of two compatible interfaces can be used together in at least one design
thanks to the non-input-enabled property, which means that at every state, some input ac-
tions may not be enabled contrarily to I/O automata and CSP [12]. There interaction is
made by synchronizing shared input an output actions, while the internal actions of con-
current automata are interleaved asynchronously. Automatic compatibility verification and
refinement checking can be made. The formalism of interface automata has been applied
in several cases as a formal model to specify the interface behaviors of software compo-
nents [4,9]. A path often taken in the literature is to check the interface compatibility of
components at the semantic level of operations. In our previous work [6], we improve the
model of interface automata to ensure a more reliable verification of components inter-
operability by taking into account the semantics of actions. The proposed method enrich
transitions of interface automata by pre and post-conditions of actions which are atomic
prepositions over a set of variables. The scope of our previous work do not cover the total-
ity of interface automata by treating refinement. This paper is essentially written to expose
the refinement our extended interface automata.

The role of refinement relation is to formalize the relationship between the abstract
and the concrete versions of the same component. For I/O automata, refinement is usually
defined as trace containment or simulation [10]; this ensures that the output behaviors of
the refined automaton are behaviors that are allowed by the abstract one. Such definitions
of refinement do not hold for non-input-enabled setting, such as interface automata: if the
set of legal inputs of the refined interface is a subset of the inputs allowed by the abstract
one, then the refined interface could be used in fewer environments than the interface ab-
straction. While a new approach is adapted to compose interface automata, an alternating
approach is used to refine them.

Alternating refinement simulation is defined to study refinement between alternating
transition systems [13]. They are introduced as a general model for component-based sys-
tems which allow the study of adversarial relationships between individual system compo-
nents. Unlike in labeled transition systems where each transition represents a possible step
of the system, each transition of an alternating transition system corresponds to a possible
move in a game between different components. The proposed refinement of interface au-
tomata is based on this approach by viewing them as alternating transition systems. Explic-
itly, a refinement of an interface automata expresses that the refined component can offer
more services (input actions) and fewer service demands (output actions). In this article,
we adapt the alternating refinement simulation of interface automata by taking into account
the relation between pre and post-conditions among the input and output transitions of an
automaton and their correspondent refinements. In other word, a refined version uses more
variables to formulate pre and post-conditions of the refined and added input actions. We
suppose that the pre and post-conditions of the remaining output actions do not change. In-
tuitively, while the offered services are local in the component, we have to strengthen their
semantics constraints if which is not the case for demanded services because the component
ignore if the demanded service was refined or not in the environment.

Concretely, we strengthen the alternating simulation between states of a refined inter-
face and its correspondent abstract one by establishing equivalence and implications be-
tween their similar input and output actions. After this introduction, in section 2 and 3,

2

we will give an overview of interface automata and we will present our contribution of
considering action semantics to verify their interoperability. In section 4, we will detail our
adaptation of the alternating refinement simulation of interface automata to the semantics of
actions and we will illustrate our works by a case study of the CyCab car component-based
system.

2 Preliminary

I/O automata have been introduced by Nancy A.Lynch and Mark.Tutle [12] as labeled
transition systems. Commonly, they are used to model distributed and concurrent systems.
Labels of I/O automata fall into three categories of actions: input, output, and hidden
actions where input actions are enabled at every state of an automaton.

Defintion 2.1 An I/O automaton A = 〈SA, IA,ΣI
A,Σ

O
A,Σ

H
A , δA〉 consists of

• a finite set SA of states;
• a subset of initial states IA ⊆ SA;
• three disjoint sets ΣI

A,Σ
O
Aand ΣH

A of inputs, output, and hidden actions. All actions, as
a whole, are denoted by ΣA = ΣI

A ∪ ΣO
A ∪ ΣH

A ;
• a set δA ⊆ SA × ΣA × SA of transitions. It gives a transition relation with the property

that for every state s and an input action a there is a transition (s, a, s) in δA.

Interface automata have been defined by L.Alfaro and T.Henzinger [1], to model the
temporal behavior of software component interfaces. These models are non-input-enabled
I/O automata, as previously said, where it is not necessary to enable input actions at
every state of one automaton. Every component interface is described by one interface
automaton where input actions are used to model methods that can be called, and the end
of receiving messages from communication channels, as well as the return values from
such calls. Output actions are used to model method calls, message transmissions via
communication channels, and exceptions that occur during the method execution. Output
actions describe the required actions of a component (represented by the symbol ”!”), input
actions describe the provided actions of a component (represented by the symbol ”?”),
and internal (or hidden) actions inside the component itself describe its local operations
(represented by the symbol ”;”). Both for I/O automata (IOAs) and interface automata
(IAs), the input and output actions of an automaton A are called external actions uniformly
(Σext

A = ΣI
A ∪ ΣO

A) while output actions and internal actions are called locally-controlled
actions (Σloc

A = ΣO
A ∪ ΣH

A). We define by ΣI
A(s), ΣO

A(s), ΣH
A (s) the input, output, and

internal actions enabled at the state s.

Definition 2.2 An interface automaton A = 〈SA, IA,ΣI
A,Σ

O
A,Σ

H
A , δA〉 consists of

• a finite set SA of states;
• an subset of initial states IA ⊆ SA. It contains at most one state. If IA = ∅, then A is

called empty;
• three disjoint sets ΣI

A,Σ
O
A and ΣH

A of inputs, output, and hidden actions;
• a set δA ⊆ SA×ΣA×SA of transitions between states. Contrarily to I/O automata, the

3

input actions are not necessarily enabled at every state.

For an IA A, we define two type of actions a ∈ ΣA and ax ∈ Σext
A , and two type of action

sequences α = a1a2...an ∈ (ΣA)n and β = b1b2...bn ∈ (Σext
A)n. Given two states s1 and

s2, we define the following relations.

• s1
a−→A s2 iff (s1, a, s2) ∈ δA;

• s1
τ−→A s2 iff s1

b−→A s2 for some b ∈ Σint
A ;

• s1
α−→A s2 iff s1

a1−→A
a2−→A ...

an−→A s2;
• s1

ε=⇒A s2 iff s1(τ−→A)
∗
s2 (* is reflexive and transitive closure and juxtaposition of

transitions);
• s1

ax=⇒A s2 iff s1
ε=⇒A

ax−→A s2 (this relation is called input or output sequence of steps
according to the type of the action ax and states between the two extremities s1 and s2
are called internal states);

The optimistic view of interface automata incorporates a notion of interface composition
that leads to smaller compound automata than the input-enabled view. When we com-
pose two interface automata, the resulting composite automaton may contain illegal states,
where one automaton issues an output that is not acceptable as input in the other one. The
proposed approach to compute compatibility between interface automata based on the fact
that each interface expects the environment to provide only legal inputs. The compound
interface expects the environment to pass over transitions leading only to legal states. The
existence of a such legal environment for the composition of two interfaces indicates that
there is a way to use their corresponding components together by ensuring the encounter
of their environment assumptions. The composite interface automaton combines the be-
haviors of the two component interfaces and the environment assumptions under which the
components can work together properly.

3 Interface automata strengthened by action semantics

Our approach presented in [6] extends interface automata by considering the action seman-
tics to ensure a more reliable verification of component interoperability. In [1], the checking
of the component compatibility uses only action signatures, which are not sufficient to de-
cide if two interfaces are compatible or not. Our contribution uses pre and post-conditions
over a set of variables to annotate the actions of interface automata. These constraints on
actions show their semantic effects which can be useful to strengthen the compatibility
checking. The proposed algorithm to verify the composition and the compatibility between
interface automata takes into account of pre and post-conditions of actions.

We introduce a finite set of variables x ∈ V with their respective domain Dx. These
variables are used to represent the effect of actions by updating there values. The variable
updates are modeled by pre and post atomic formulas over V.

Definition 3.1 Let A = 〈SA, IA,ΣI
A,Σ

O
A,Σ

H
A , P reA, PostA, δA〉 be an IA strengthened by

action semantics where

• a finite set SA of states;
• an initial state IA ⊆ SA;

4

• three disjoint sets ΣI
A,Σ

O
Aand ΣH

A of inputs, output, and hidden actions;
• Pre and Post are the set of pre and post-conditions of actions, they are atomic formulae

over the set of variables V;
• a set δA ⊆ SA × PreA × ΣA × PostA × SA of transitions.

For a ∈ ΣA, we denote by PreAa and PostQa respectively the precondition and post-
condition of the action a in the automaton A.

The composition condition is the same as the preexisting approach. The composition of
two automata may take effect only if their actions are disjoint, except shared input and
output actions between them. When we compose them, shared actions are synchronized
and all the others are interleaved asynchronously.

Definition 3.2 Two interface automata A1 and A2 are composable if

ΣI
A1
∩ ΣI

A2
= ΣO

A1
∩ ΣO

A2
= ΣH

A1
∩ ΣA2 = ΣH

A2
∩ ΣA1 = ∅

Shared(A1,A2) = (ΣI
A1
∩ΣO

A2
)∪ (ΣI

A2
∩ΣO

A1
) is the set of shared input and output actions

between A1 and A2. We can now define the product automaton A1 ⊗ A2 properly. We
mention that some transitions in A1 and A2 may not occur in the product.

Definition 3.3 LetA1 andA2 be two composable interface automata. The productA1⊗A2

is defined by

• SA1⊗A2 = SA1 × SA2 and IA1⊗A2 = IA1 × IA2 ;
• ΣI

A1⊗A2
= (ΣI

A1
∪ ΣI

A2
) \ Shared(A1, A2);

• ΣO
A1⊗A2

= (ΣO
A1
∪ ΣO

A2
) \ Shared(A1, A2);

• ΣH
A1⊗A2

= ΣH
A1
∪ ΣH

A2
∪ Shared(A1, A2);

• ((q1, q2), P re, a, Post, (q′1, q
′
2)) ∈ δA1⊗A2 if

· a 6∈ Shared(A1, A2) ∧ (q1, P re1, a, Post1, q′1) ∈ δA1 ∧ q2 = q′2 ∧ Pre ≡
Pre1 ∧ Post ≡ Post1
· a 6∈ Shared(A1, A2) ∧ (q2, P re2, a, Post2, q′2) ∈ δA2 ∧ q1 = q′1 ∧ Pre ≡
Pre2 ∧ Post ≡ Post2
· a ∈ Shared(A1, A2) ∧ ((q1, P re1, a, Post1, q′1) ∈ δA1 ∧ a ∈ ΣI

A1
) ∧

((q2, P re2, a, Post2, q′2) ∈ δA2 ∧ a ∈ ΣO
A2

) ∧ Pre ≡ Pre2 ∧ Post ≡ Post1
such that Pre2 ⇒ Pre1 ∧ Post1 ⇒ Post2
· a ∈ Shared(A1, A2) ∧ ((q1, P re1, a, Post1, q′1) ∈ δA1 ∧ a ∈ ΣO

A1
) ∧

((q2, P re2, a, Post2, q′2) ∈ δA2 ∧ a ∈ ΣI
A2

) ∧ Pre ≡ Pre1 ∧ Post ≡ Post2
such that Pre1 ⇒ Pre2 ∧ Post2 ⇒ Post1

Illegal states are the states at which the shared actions do not synchronize. We distinguish
two different cases: (i) a component requires a shared action which is not provided by the
environment, or (ii) they synchronize on a shared action between them but the required
action and the provided one are not compatible at the semantic level.

Definition 3.4 Given two composable interface automata A1 and A2, the set of illegal
states Illegal(A1,A2) ⊆ S1 × S2 of A1 ⊗ A2 is defined by {(q1, q2) ∈ SA1 × S2 | ∃ a ∈

5

Shared(A1, A2). such that the following conditions hold } .



a ∈ ΣO
1 (q1) ∧ a 6∈ ΣI

2(q2)

∨

(a ∈ ΣO
1 (q1) ∧ a ∈ ΣI

2(q2)

∧

(Pre1 6⇒ Pre2) ∨ (Post2 6⇒ Post1))


or



a ∈ ΣO
2 (q2) ∧ a 6∈ ΣI

1(q1)

∨

(a ∈ ΣO
2 (q2) ∧ a ∈ ΣI

1(q1)

∧

(Pre2 6⇒ Pre1) ∨ (Post1 6⇒ Post2))



The set of illegal states in the product A1 ⊗ A2 describes the possibility that one of the
two automata may produce an output action that is an input action of the other, but it is not
accepted. In our contribution, we extend the previous definition by the possibility that, for
some states (q1, q2) in the set of illegal states, an output action issued from q1 in A1 can be
synchronized with the same action enabled as input at q2 in A2 but the precondition of the
output action does not imply the the precondition of the input action or its post-condition
is not implied by the post-condition of the input one.

Compatible states, denoted by Comp(A1,A2), are states from which the environment
can prevent entering illegal states. The compatibility can be defined differently, A1 and A2

are compatible iff their initial state is compatible.

Definition 3.5 Given two composable interface automata A1 and A2. The compostion
A1 ‖ A2 is an interface automaton defined by: (i) SA1‖A2

= Comp(A1,A2), (ii) the initial
state is IA1‖A2

= IA1⊗A2 ∩ Comp(A1,A2), (iii) ΣA1‖A2
= ΣA1⊗A2 , and (iv) the set of

transitions is δA1‖A2
= δA1⊗A2 ∩ (Comp(A1,A2) × PreA1⊗A2 × ΣA1‖A2

× PostA1⊗A2

× Comp(A1,A2)).

The verification steps in this approach are the same as [1] except that we consider the
action semantics. The proposed algorithm [6] verify the compatibility of two interface
automata by checking if their composition is nonempty. We mention that our approach
does not increase the linear complexity of the previous proposed one. Finally, we add that
the associative criterion of the composition operator ‖ between three automata is undefined
when some of them are not composable.

4 Adapting the alternating refinement relation

The aim of the refinement relation is to concretize an abstract version of a component
interface. It permits to move a component or an interface from a high-level understanding to
a more concrete specification. Contrarily to traditional types of I/O automata, refinement is
defined as trace containment, the refinement of interface automata is based on an alternating
refinement relation in the spirit of simulation. A more concrete version of an interface have
to be used in stronger environments than its abstraction. In other words, the refinement of
an interface must allow more legal inputs, and fewer outputs than the abstract version.

By taking the fact that the internal actions are independent, an interface automaton Q

6

refines another P if all input transitions of the second one can be simulated by the first one,
and contrarily for output transitions.

4.1 Preliminary

We recall the preliminary notions used to define the alternating simulation relation between
interface automata. The ε-closure of a state s is the set of all reachable states from s by
transiting only internal steps. The environment cannot distinguish between s and all states
of ε-closure(s).
Definition 4.1 Given an interface automaton P and a state s ∈ SP , ε-closureP (s) is the
smallest set R ⊆ SP such that (1) s ∈ R and (2) for s′ ∈ R, if there exists s” such that
s′

ε=⇒P s
′′ is a sequence of internal steps, then s′′ ∈ R.

An interface automaton P must be able to accept an output action a issued from the
environment if a is accepted at all states in ε-closure(s). Contrarily, P can issue an output
action b at least from one state in ε-closure(s) to the environment.

Definition 4.2 The sets of externally enabled output and input actions at a state s ∈ SP are
defined as follow

• ExtEnOP (s) = {a | ∃ r ∈ ε-closure(s). a ∈ ΣO
P (r)}

• ExtEnIP (s) = {a | ∀ r ∈ ε-closure(s). a ∈ ΣI
P (r)}.

We redefine also the set of all reachable states from a state s by transiting steps labeled by
externally enabled actions.

Definition 4.3 The set ExtDestP (s, a) of externally reachable states from a state s in an
interface automaton P for an externally enabled action a ∈ ExtEnOP (s) ∪ ExtEnIP (s) is
defined by the set {r′ | ∃ r a−→P r

′. r ∈ ε-closure(s)}

4.2 Alternating simulation

Let us consider now pre and post-conditions to establish properly the new definition of
the alternating simulation between the states of an interface automaton P and its refined
version Q. We extend the set of variables V by adding some others, so we define V’ as a
set that includes the set V. We assume that pre and post-conditions of the refined interface
automaton Q are defined over the set V’.

Defining pre and post-conditions of actions of the refined interface must obey to some
variant constraints. On the one hand, when we refine a component, we add to their provided
services (input actions) some other new services by defining new signatures of actions and
on the other hand, we strengthen their former operations by adding some other constraints
on their pre and post-conditions. We take into account the principle that, in the refined
interface, an old input action must have a fewer precondition than the precondition of the
same corresponding action in the abstract one and its post-condition must be stronger than
the corresponding post-condition in the abstraction.

Things change for required services, constraints on the required services (output
actions) in the abstract interface still unchanged in the refinement. In more details, it is

7

assumed that there is less output actions in the refinement and the required computing
results of extinct actions become internal. So, refining remaining ones has no sense.
More concretely, the pre and post-conditions of a remaining output action in the abstract
interface are equivalent to their correspondents in the refined one. For the requirements of
internal actions, we apply the same rules as input actions. We can now define our manner
to adapt alternating simulation to the action semantics formally.

Definition 4.4 A binary relation � ⊆ SP × SQ from Q to P is an alternating simulation if
for all s ∈ SP , r ∈ SQ such that r � s the following conditions holds

(i) ExtEnIP (s) ⊆ ExtEnIQ(r);

(ii) ExtEnOQ(r) ⊆ ExtEnOP (s);

(iii) ∀ a ∈ ExtEnIP (s) ∪ ExtEnOQ(r) and ∀ r’ ∈ ExtDestQ(r, a): ∃ s’ ∈
ExtDestP (s, a) such that r’ � s’ and
• if a ∈ ExtEnIP (s) then PreP,a ⇒ PreQ,a and PostQ,a⇒ PostP,a.
• else if a ∈ ExtEnOQ(r) then PreP,a ⇔ PreQ,a and PostP,a ⇔ PostQ,a.
over the set of variables V’.

The first condition of the second part of the definition ensures that all externally enabled
inputs of s are also externally enabled in r, and conversely, all externally enabled outputs
of r are also externally enabled in s.

vu

u′ v′

�

⇐
a?

PreQ,a

PostQ,a

�
⇒

a?

PreP,a

PostP,a

vu

u′ v′

�

⇔
a!

PreQ,a

PostQ,a

�
⇔

a!

PreP,a

PostP,a

Fig. 1. The extended condition 2 of the alternating simulation definition.

The second one ensures that each input (resp. output) sequence of steps labeled by an
externally enabled action a from r in the refinement must be matched by an input (resp.
output) sequence of step labeled by the same action a from s in the abstraction except that
the equivalences and the implications between pre and post-conditions must be checked as
it is shown in Figure 1. We can now define the refinement between two interface automata
P and Q as follow

Definition 4.5 The interface automaton Q refines the interface automaton P, written Q� P
according to the set of variables V’ if

• ΣI
P ⊆ ΣI

Q and ΣO
P ⊇ ΣO

Q;
• there is an alternating simulation � from Q to P such that IQ � IP .

As in [1], we can easily verify that refinement between interface automata in our con-
tribution is reflexive an transitive. But, when we want to establish the relation between the

8

refinement and the compatibility between automata things have to be more detailed: a more
refined version Q of P can replace P in a system design such that Q � P if the environ-
ment does not provide some input actions (calls of some offered services) for Q that are
not in P. Alternatively, new incompatibilities may be arise when we compose Q with the
environment, namely all new input actions in the refined version Q must not be required as
output actions by the environment.

Also, another conditions must be verified when we consider pre and post-conditions. A
refined version of an interface P remains consistent with the environment if the abstraction
is compatible with it under the hypothesis seated previously. As shown in the Figure 2,
the step x a!−→Env y of Env is compatible with final step of the input sequences of steps
1 a?=⇒P 2 of P , then it is compatible also with the final step of 1′ a?=⇒Q 2′ of the refinement
Q of P such that 1′ � 1 and 2′ � 2 because PreEnv,a ⇒ PreQ,a and PostQ,a ⇒
PostEnv,a. Things do not change when we consider output steps in the refinement Q.
Based on the fact that pre and post-conditions of the remaining actions in the refinement
are equivalent to their corresponding ones in the abstraction, the implications PreEnv,a ⇒
PreQ,a and PostQ,a ⇒ PostEnv,a are also satisfied. The dashed edges in the previous and
the following figure represent input or output sequences of steps between states 1 and 2 in
P and between 1’ and 2’ in Q. We can easily deduce that the substitution of an automaton
by a more refined one preserve the compatibility between them.

x y

1 2

1′ 2′

Env:

P:

Q:

PreEnv,a, a!, PostEnv,a

PreP,a, a?, PostP,a

⇓ ⇑

PreQ,a, a?, PostQ,a

⇓ ⇑

x y

1 2

1′ 2′

Env:

P:

Q:

PreEnv,a, a?, PostEnv,a

PreP,a, a!, PostP,a

⇑ ⇓

PreQ,a, a!, PostQ,a

m m

Fig. 2. Relation between the environment and the refined version Q of P

We can now rise the following theorem properly as in [1] without having hindsight.

Theorem 4.1 Consider three interface automata P, Q, and R such that Q and R are
composable and ΣQ

I ∩ ΣR
O ⊆ ΣP

I ∩ ΣR
O. If P and R are compatible and Q � P , then Q

and R are compatible and Q‖R � P‖R.

From the hypothesis of this theorem, we can extract the following important corollary
establishing that if two interface automata are compatible then their refinements are
compatible and the composition of their refinement refines them.

Corollary 4.1 Consider four automata P, Q, R, and S such that

• Q and R are composable;
• ΣQ

I ∩ ΣR
O ⊆ ΣP

I ∩ ΣR
O;

9

• S and Q are composable;
• ΣS

I ∩ ΣQ
O ⊆ ΣR

I ∩ ΣQ
O;

If P and R are compatible, Q � P , and S � R then Q is compatible with R and S is
compatible with Q and Q‖S � P‖R.

To check that Q � P , we should compute the maximal alternating simulation between the
two initial states of P and Q thanks to the algorithm proposed in [1]. Our approach does
not increase the complexity of the algorithm.

4.3 Case study of the CyCab car

We illustrate our works by applying refinement to the component vehicle of the CyCab
car component-based system studied in [6]. The CyCab [7] car is a new electrical means
of transportation conceived essentially for free-standing transport services. It is totally
manipulated by a computer system and it can be driven automatically according to many
modes.

Vehicle

position!

halt?

far?

emergency?

reset!

Station

position?

halt!

far!

Emergency

Halt

emergency!

reset?

Starter
start!

start?

Fig. 3. A UML-like model of the CyCap components.

The goal of the CyCab car system design is to allow for users the displacement of the
vehicle from one station to another. As an illustration of its concept, we consider the
following requirements and functionalities of the CyCab car and its environment: (i) a
CyCab has and appropriate road where stations are equipped by sensors, (ii) the driving of
the CyCab is guided by information received from the station allowing to position of the
CyCab from the stations, (iii) there is no obstacle in the roads, (vi) the vehicle has a starter
and also an emergency halt button.

The CyCab car and its environment can be seen as an abstract system composed of
four components: the vehicle, the emergency halt button, the starter, and the station. The
Figure 3 represents the UML 2 component model of our system. The emergency halt button
can be activated at every moment during the running of the vehicle. It is specified by
sending a signal emergency!. The starter allows the starting of the vehicle. The station
is materialized by a sensor that receives signals position? from the vehicle to know its
position. The station sends as consequence a signal far! or halt! to the vehicle to indicate
if it is far from the station or not.

2 The component diagram showed in Figure 3 do not respect exactly the UML 2 notation. It is simply used to clarify the
CyCab system

10

In this section, as shown in Figure 3, we apply our proposed contribution of refinement
of the interface automaton of the component vehicle. Assume that Av is the interface
automaton associated to the component vehicle and V = { carstrd, isknpos, isacstr, isrcstn,
isnuldist } be the set of five boolean variables used to define pre and post-conditions of
actions.

1

2

3

4

VPrS,start?,VPsS

VPrP,pos!,VPsP
VPrF,far?,VPsF

VPrH,halt?,VPsH

VPrE
,em

rg
?,V

PsE

VPrE,emrg?,VPsE

VPrR,reset!,VPsR

start

emrg

far

halt

pos

reset

1

2

S
P

rP
,p

os
?,

S
P

sP

S
P

rF
,fa

r!,
S

P
sF

S
P

rH
,h

al
t!,

S
P

sH

pos

far

halt

Fig. 4. The IAs Av and As of the Vehicle and the Station

The variable carstrd indicates if the vehicle is started or not, the variable isknpos indicates
if the vehicle knows its position from the station, isacstr equals to true when the starter is
active, isrcstn equals to true when the station is reached, and finally the variable isnuldist
indicates if the distance between the vehicle and the station is null or not. The automaton
Av is given by the tuple 〈Sv, Iv,ΣI

v,Σ
O
v ,Σ

H
v , P rev, Postv, δv〉 where

• Prev = {V PrH, V PrS, V PrE, V PrF, V PrP, V PrR} where
· V PrH ≡ carstrd = true ∧ isrcstn = false ∧ isknpos = true ∧ isnuldist = true;
· V PrS ≡ isknpos = false ∧ carstrd = false ∧ isacstr = true;
· V PrE ≡ carstrd = true;
· V PrF ≡ carstrd = true ∧ isrcstn = false ∧ isknpos = true ∧ isnuldist = false;
· V PrP ≡ carstrd = true ∧ isknpos = false;
· V PrR ≡ carstrd = false ∧ isacstr = false;

• Postv = {V PsH, V PsS, V PsE, V PsF, V PsP, V PsR} where
· V PsH ≡ carstrd = false ∧ isrcstn = true;
· V PsS ≡ carstrd = true;
· V PsE ≡ carstrd = false ∧ isacstr = false;
· V PsF ≡ carstrd = true ∧ isrcstn = false;
· V PsP ≡ carstrd = true ∧ isknpos = true;
· V PsR ≡ isacstr = true.

A possible refinement of this abstract interface of the vehicle component is an automaton
that guards all output actions of the abstraction and allows more services (input actions).
We can add the requirement that the vehicle functions according to two modes: the station
mode where the vehicle runs while communicating with stations and the other is the free-
running mode where the vehicle displace freely without interaction with stations.

A new input action fstart? allowing the free-starting of the vehicle. The separation
between the starting of the vehicle and its moving off can be interesting as a new refinement
requirement. We add the two internal actions move; and stop; permitting respectively to
move off the vehicle and to stop it. The internal action move; can be enabled by taking as

11

precondition the proposition that a vehicle can be started without moving from its place.

Vehicle’

pos!

halt?

far?

emrg?

reset!

fstart?

start?

1′ 2′

3′

4′

5′

6′
start?

pos!

move;

emrg?

far?

halt?

emrg?emrg?
reset!

fstart?

move;

stop;

emrg?

fstart

start

emrg

far

halt

pos

reset

Fig. 5. The refinement automaton A′
v of the Vehicle

The set of variables V is extended by adding two new variables carmovg and frunmode.
The new set of variables V’ = V ∪ { carmovg, frunmode } is used to define pre and post-
conditions of the refined automaton A′v. The first variable carmovg is used to make the
difference between the act to start the vehicle and the act to move it. The second variable
is used to position the two different modes of the vehicle running. The refined automaton
Vehicle’ 3 is showed in the right part of Figure 5. Assuming that atomic formulas are
defined now over V’, we define the pre and post-conditions of the automaton A′v as follow

• Pre′v = {V PrH ′, V PrS′, V PrE′, V PrF ′, V PrP ′, V PrR′,
P rM,PrStp, V PrFS′} where
· V PrH ′ ≡ carstrd = true ∧ isnuldist = true;
· V PrS′ ≡ isknpos = false ∧ carstrd = false ∧ isacstr = true;
· V PrE′ ≡ carstrd = true;
· V PrF ′ ≡ carstrd = true ∧ isrcstn = false ∧ isnuldist = false;
· V PrP ′ ≡ carstrd = true ∧ isknpos = false;
· V PrR′ ≡ carstrd = false ∧ isacstr = false;
· PrM ≡ carstrd = true ∧ carmovg = false;
· PrStp ≡ carstrd = true ∧ carmovg = true;
· V PrFS′ ≡ frunmode = true ∧ carstrd = false ∧ isacstr = true;

• Post′v = {V PsH ′, V PsS′, V PsE′, V PsF ′, V PsP ′, V PsR′,
PsM,PsStp, V PsFS′} where
· V PsH ′ ≡ carstrd = false ∧ carmoving = false ∧ isrcstn = true;
· V PsS′ ≡ carstrd = true ∧ carmovg = false;
· V PsE′ ≡ carstrd = false ∧ carmovg = false ∧ isacstr = false;
· V PsF ′ ≡ carstrd = true ∧ isrcstn = false;
· V PsP ′ ≡ carstrd = true ∧ isknpos = true;
· V PsR′ ≡ isacstr = true;
· PsM ≡ carstrd = true ∧ carmovg = true;
· PsStp ≡ carstrd = false ∧ carmovg = false;
· V PsFS′ ≡ carstrd = true ∧ carmovg = false.

3 The actions of the automaton A′
v are not annotated by pre and post-conditions in order to alleviate the automaton.

12

According to our new definition of the alternating simulation between states, the reader
can remark that, for example, the precondition of the input action halt? in the abstraction
implies the precondition its correspondent one in the refinement and vice versa for
post-conditions (V PrH ⇒ V PrH ′ and V PsH ′ ⇒ V PsH). We suppose that the two
automata Av and As are compatible. The automaton Av can be substituted in the product
Av ⊗As by the automaton A′v by applying Theorem 4.1.

1′1 2′1

3′1

4′2

5′1

6′1

5′2

1′2 6′2

start?

halt;

pos;

move;

em
rg

?

far;

reset!

fstart?

move;

stop;

emrg? emrg?
emrg? reset!

fstart?

move;

stop;

fstart

start

emrg

reset

Fig. 6. The composite automaton A′
v ‖ As

The verification that A′v � Av can be easily made using the proposed algorithm in [1] by
taking into account the extended third condition of Definition 4.4. The algorithm permits
to compute the unique maximal alternating simulation from A′v to Av.

Algorithm
Input: Interface automata P and Q extended by pre and post-conditions
Output: The maximal alternating simulation from Q to P .

Let �0 = SP × SQ
repeat

For i ≥ 0, define �i+1⊆�i by v �i+1 u if v �i+1 u and the conditions 1, 2, and 3 of
Definition 4.4 hold for v and u where � = �i

until �i+1 = �i
return �i

The complexity of the alternating simulation check between our extended IAs is linear like
the original model. The unique difference is the consideration of the semantics of actions
modeled by relations between pre and post-conditions which can be computed in linear
time. Consequently, our approach does not increase the PTIME-complete complexity of
the classical refinement checking between IAs.

5 Related works

Luca de Alfaro and al. [11] propose ”sociable” interfaces as a different formalism to specify
component interfaces from that of interface automata. Their formalism communicates via
both actions and shared variables and the synchronization between actions is based on on

13

two main principles: (i) the first principle is that that same action can label both input and
output transitions, and (ii) the second is that global variables can be updated by multiple
interfaces. The authors show that the compatibility and the refinement check of sociable
interfaces can be made thanks to efficient symbolic algorithms. Their tool called TICC [5]
(Tool for Interface Compatibility) implements these algorithms.

Ivana Černá and al. [8] had been founded an automata-based formalism to capture
component interactions in hierarchical component-based systems. Their ”Component-
interaction automata” language represents a flexible model to compose components by
respecting the architectural assembly of a system design. Other works are published that
extend component-interaction automata by checking LTL temporal properties.

In [3], the authors propose concurrent automata to model component behaviors. The
described model consists of a pair: a component signature which captures the static view
of a component as depicted in UML 2.0, and a language of component vectors over this
signature which describe the behaviour of the component. There is similarity between
the notion of a component signature and the static structure of interface automata. The
major difference with our model is that whereas in concurrent automata ports are associated
to a set of operation calls/signals, thereby ports in our model correspond to individual
operations/signals which are furthermore assumed to be sent or received sequentially. So,
in our model concurrency is no allowed between ports of the same component.

6 Conclusion and perspectives

In this paper we adapt the alternating refinement relation between interface automata to
the semantics of actions. We have improved these automata by pre and post-conditions of
component required or provided actions in order to integrate the action semantics in the
verification of interface compatibility and interoperability. We strengthen the alternating
simulation between states of an abstract version of an interface automaton and its refined
version. Equivalence and implications between input and output actions of the refinement
and their correspondent ones in the abstraction are established. The compatibility between
the refined version of an abstract interface automaton and the environment is preserved in
the case when the abstract one is compatible with same environment. These results are
applied to the case study of the component-based system of the CyCab car.

As future works, we are interested in implementing a verification tool which takes into
account pre and post conditions of actions to check compatibility and refinement between
interface automata.

References
[1] L. Alfaro and T. A. Henzinger. Interface automata. ACM Press, 9th Annual Aymposium of FSE (Foundations of

Software Engineering), pages 109–120, 2001.

[2] L. Alfaro and T. A. Henzinger. Interface-based design. NATO Science Series : Mathematics, Physics, and Chemistry,
Engineering Theories of Softwareintensive Systems, 195:83104, 2005.

[3] J. K. F. Bowles and S. Moschoyiannis. Concurrent logic and automata combined: A semantics for components.
Electron. Notes Theor. Comput. Sci., 175(2):135–151, 2007.

[4] S. Brookes, C. Hoare, and A. Roscoe. A theory of communicating sequetial processes. Journal of the ACM (JACM),
(31):560–599, 1984.

[5] L. D. d. S. M. F. A. L. V. R. B.T. Adler, L. de Alfaro and P. Roy. Ticc: A tool for interface compatibility and composition.
In Computer Aided Verification (CAV06) in Seattle, WA, pages 59–62.

14

[6] S. Chouali, H. Mountassir, and S. Mouelhi. An i/o automata based approach to verify component compatibility:
application to the cycab car. LNCS, Springer-Verlag - FESCA of the European joint conference on Theory and Practice
of Software (ETAPS’08), March 2008.

[7] B. Grard, G. Philippe, M. Herv, and P.-G. Roger. The inria rhône-alpes cycab. INRIA technical report, 1466, Avril
1999.

[8] P. V. Ivana Černá and B. Zimmerová. Component-interaction automata modelling language. Brno, Czech Republic :
Faculty of Informatics, Masaryk University, 2006. Technical report FIMU-RS-2006-08.

[9] Y. Jin, R. Esser, C. Lakos, and J. Janneck. Modular analysis of dataflow process networks. International conference
on Fundamental Approaches to Software Engineering (FASE’03 - ETAPS 2003) - Springer-Verlag, 2621(31):184–199,
2003.

[10] T. H. L. Alfaro. Interface theories of component-based design. In Proceedings of the First International Workshop of
Embedded Software (EM-SOFT) - LNCS., Springer-Verlag, 2211:148–165, 2001.

[11] M. F. A. L. P. R. L. de Alfaro, L. Dias Da Silva and M. Sorea. Sociable interfaces. In FROCOS 2005: 5th International
Workshop on Frontiers of Combining Systems, Springer-Verlag, LNAI 3717, 2005.

[12] N. Lynch and M. Tuttle. Hierarcical correctness proofs for distributed algorithms. In Proc. 6th ACM Symp. Principles
of Distributed Computing, pages 137–151, 1987.

[13] R. Milner. An algebraic definition of simulation between programs. In Proc. 2nd International Joint Conference on
Artificial Intelligence, The British Computer Society, pages 481–489, 1971.

15

	Introduction
	Preliminary
	Interface automata strengthened by action semantics
	Adapting the alternating refinement relation
	Preliminary
	Alternating simulation
	Case study of the CyCab car

	Related works
	Conclusion and perspectives
	References

