Test Generation Based on Abstraction and Test
Purposes to Complement Structural Tests

F. Bouquet, P.-C. Bué, J. Julliand, P.-A. Masson
LIFC - Université de Franche-Comté - 16, route de Gray BaZbBesancon Cedex, France
Email: {bouquet, bue, julliand, masson}@ifc.univ-fconte.fr

Abstract—This paper presents a computer aided model-based ~ One advantage of MBT is to have with the behavioral model
test generation method. We propose this approach as a com-an oracle to predict the outputs of the IUT. Another one is the
plement to the LTG (Leirios Test Generator) method, which qsipility to achieve different kinds of coverage of thedab

extracts functional tests out of a formal behavioral model M h tat decisi th
by means of static (or structural) selection criteria. Our method (such as state coverage, decision coverage, path coverage)

computes additional tests by applying dynamic (or behavical) DY varying the selection criteria. But writing the behawior
selection criteria (test purposes called TP). Applying TP iectly model and the concretization layer is costly, and ideally a
to M is usually not possible for industrial applications dueto |arge variety of test cases, i.e. achieving a large spectrfim
the huge (possibly infinite) size of their state space. We cqte coverage, should be computed from them.

an abstraction A of M by predicate abstraction. We propose a

method to define a set of abstraction predicates from informton An MBT tool-suppo.rted method, the LTG techr)ology (11,

of TP. We generate symbolic tests from A by using TP as a has been developed in our research team and is now com-

dynamic selection criterion. Then we instantiate them on M, mercialized by the Smartesting company. It ensures straictu

which allows us play the tests on the implementation the same coverage of the model by means of static (i.e. structural)

way as we play the functional ones. Our experimental results ge|action criteria. Additionally, we intend to generatet Eases

show that our tests are complementary to the structural ones . . AR .

issued from dynamic selection criteria [6], [7]. A test emepr

Keywords-Model-Based Testing; Abstraction; Test Purpose; (theteste) specifies a set of executions that he finds interesting

to test by means of test purpos€TP). The TP is specified in

. INTRODUCTION . : .
a language [7] that allows the tester to describe which astio

Model-Based Testing (MBT) is a test generation approagh ¢ and which states to reach. Some of the action calls can
that automatically computes, from a behavioral model of & |eft unspecified, which provides flexibility to the tester
;ystem and §electlon criteria, a set (_)f tests to be_executad O expressing his test intention, but requires later thesks tal
implementation of that system (the implementation undgt tepe made explicit. This is performed by a research amongst the
IUT). There are model based test generation suites avaigbl ,sgip|e instantiations allowed by the model of the undieeti
commercial products, such as LTG [1] and T@onformid, ction calls, and it can possibly blow up with huge size medel
SpecExplorer [2], or as research prototypes, such as TGV [3\ye propose in this paper to define, based on information
and STG [4], AGATHA [3], etc. extracted from the TP, a set of predicates from which we
R compute an abstraction A (of small size) of a behavioral rhode
M. We first compute its synchronized product SP with the TP,
and th_en a set of t_races that cover every transition_ of SH‘_: Eac
trace is a symbolic test for which we search an instantiation
Fig. 1. Model-Based Testing Approach on M. _This results in a new (w.r.t. the structural ones) set of
instantiated tests IT, that can be executed on the IUT throug
A “standard” MBT h s il db }he same concretization layer.
Fi 1st2n ard I'M d appt;oach 'Sb' #S‘Ta‘ef hy means ot o contributions are to define the set of abstraction predi-
9. L. me € f escribes 1 i‘; e_aworToh the system QYies based on information of the TP. This makes the regultin
means of a ;et 0 param_etenz_e .actlons. 'he test generalipg o tion related to what the tester intends to obsense, A
tool, dependmg on selection criteria, mst_anhates frona et M provides an oracle for our new tests, and it is reused as well
of t_ests T (mstantlated_ tests). The tests in IT are seqeeent as the concretization layer to execute the tests on the I, W
action calls where the input parameters and the correspgnd111ave an experimental validation of the method
outputs are instantiatedt The tests of IT are as abstrac_t ave detail our process for generating tests from abstrac-
the model, so a concretization layer CL translates them ”ﬁan and test purposes in Sec. Il. Section Il presents the
concrete tests (QT), that are ex_ecute.d on the IUT. The_“erd'éui-Donc” example that illustrates our approach. We define
of success or failure of a tesF is delivered by comparing ﬂl’?oelled transition systems (LTSs, for short) in Sec. IV and
results returned by the IUT with the ones predicted by M. give the syntax of our behavioral models, whose semantes ar
117G and TD are from Smartestingt t p: / / waww. sner t est i ng. com L1SS. The abstractions and the test purposes are also defined
2Conformiq is from Qtronic : http://www.conformig.com as LTSsin Sec. V, where their synchronized product is defined

{HandSet, TryCounter, State }
HandSet € {hang, unhook} A

1)

The definition from the TP of a set of abstraction predicates if

detailed in Sec. VI. This set is the basis for the computation TryCounter € 0..2 A
of the abstraction, as explained in Sec. VII, where we also State € {welcome, enter_num, find_urgency,

. . . . find_num, put_down, busy} A
explain how to generate symbolic tests out of it. Experirabnt (State = put_down < HandSet = hang) A
results are presented and discussed in Sec. VIII. Section IX R Sta;es = puL_down? ;’ryCounter: 0)

= t = A ter =0 A
concludes the paper, compares our approach to related works State = put down e
and gives some future research directions. Call = HandSet = hang A
HandSet’ = unhook A
’
Il. TESTGENERATION PROCESS FROMDYNAMIC TryCounter” = TryCounter A

State’ = welcome

(HandSet = unhook Vv State = busy) A
(HandSet’ = hang A TryCounter’ = 0
A State’ = put_down)

SELECTION CRITERIA AND ABSTRACTIONS

I

HangUp
Let us present our motivations, and our process for gener-
ating tests from dynamic selection criteria and abstrastio
L Fig. 3. A fragment of the Behavioral Model of the Qui-Donc &ys
A. Problem and Motivations

In our approach, the validation engineer describes by means . .)
of an hand-written test purpose TP how he intends to test th@t match the TP. An implementation [9] of the Chinese

system, according to his know-how. We have proposed in I}Eistman a_Igorithm is applied to SP_to cover its transitions.
a language based on regular expressions, to describe a T% _result is a set of abstra(_:t symbolic tests AS_T. Thess test
a sequence of actions to fire and states to reach (targetecPffy instantiated from M, which allows for re-using the same
these actions). The states are described as state predicsg§t execution environment (i.e. the concretization lager
The actions can be explicitly called by their name, or |efind the test execution tools) as of Fig. 1: the_new mstz_ﬁmat
unspecified by means of a generic name. This genericity allol¢Sts IT (of Fig. 2) complement the ones of Fig. 1. Notice the
the tester to describe a situation to reach without SpetgfyiQashed arrow in Fig. 2_from SP to the “|nstant|at_|0n” box.sThi
how it should be reached. A regular expression repetitidh Pecause, to instantiate the abstract symbolic tests,sge u
operator can be applied to the unspecified action call. TH reflexive transitions of SP that were ignored to generate
means in the tester's mind: leaving all possibilities to th&ST. This point is explained in Sec. VII-B.

system to reach a target state. The drawback is a combialatori I1l. THE QUI-DONC EXAMPLE

explosion of the number of executions of M in which to look
for an instantiation of the action calls that reach the targgx
state. The search should be guided to avoid that problem.

Our approach is illustrated by means of the Qui-Donc

ample [10]. It is a reverse phone book service. When the
user contacts the service, he gets a welcome message fdllowe
B. Test Generation Process by Abstraction by an invitation to enter the number he searches for. When he

. . : has done so, the service possibly answers that the number is
A small size state-transition graph, that symbolically misd L ; : .
an emergency one, or is invalid, or is unknown, otherwise the

the executions of the system, can be obtained by computggswer is the name and address of the owner of the number
an abstraction A of M. We propose to perform a synchronizc?d . . : '
n_case the user forgets to provide an input, or provides an

product between A and the automaton that is the semantics . .
of the TP, and to use paths of the synchronized product %r%expected one (such as an unauthorized key), the service

uides for the instantiation of the TP on M invites up to twice the user to provide its input again and
9 ’ finally closes the communication if needed.

We have designed a behavioral model of the Qui-Donc.
Let us introduce its variables and some actions, which appea
in a forthcoming example of test purpose. Thkall and
HangUp actions allow respectively to call the service and to
close the communication. Theelay action simulates that the

user remains inactive during a fixed delay. ThendSet €
{hang, unhook} variable stands for the state of the handset.
Fig. 2. Generating Tests from Test Purpose by Abstraction The TryCounter € {0,1,2} variable counts how many times

the user has provided an unexpected (or void) input. Stire

)] o _ variable indicates in which state the service is. Amongst th

Our approach is dep|cte(_j in Fig. 2. From a behaVIor’s‘Ix possiblestate values aravelcome (Wwhen the service is ready
model M and the state variables of a TP, we define a Sgtjisten to a new input from the user) apat_down (when the

SD of abstraction predicates. SD stands for sub-domains (@fmmunication has been closed). A fragment of its model is
the state variables). The details of this definition are YiVexpressed w.r.t. the syntax of Def. 4 in Fig. 3.

in Sec. VI. TheGeneSystool [8] produces an abstraction

A of M based on the predicates of SD. The synchronized V. BEHAVIORAL MODELS AND THEIR SEMANTICS
product, defined in Sec. V-B, of A with the TP results in We define Labelled Transition Systems (LTSs) and present
a model SP. The executions of SP are the executions ofaAsyntax, inspired from the guarded commands [11], [12], to

describe the behavioral models. B. Model syntax and semantics
A. Labelled Transition Systems Our work does not necessitate that we specify a particular

The state transition graph of the behavioral models, th&fl°delling syntax. We only consider a model as being defined
abstractions as well as the test purposes are formalized®gs? Set Of variables, and as being specified by means of an

LTSs (see Def. 1). Notice that we only consider LTSs witWItlal cpndition gnd a transitipn relgtion. They are s_ﬂieci
finite state spaces in this paper, which is usual with mod gntactlcally as f|rs_,t-order logic predicates. The retatwr_n-
for the test. ols form the atomic predicates. The expressions are ddfined

Definition 1 (Labelled Transition Systemin LTS is de- the data set theory, as it is for example the case in B [13]. The
fined by a tuple(O, Q, Qo, A, AP, L, Q;), where main data structures are sets, functions and relationseSom
1 0 s T) relation and function symbols may have fixed interpretation

o O is a finite set of action names,
such as=, #, <, €, +, etc.

« @ is a finite set of states, - : . .
g (C Q) is a set of initial states Definition 4 (Behavioral Model)A behavioral model is
. 0\= ’

e A(€ Q x O x Q) is a labelled transition relation, defined _by a tgple{X, L,init, 0, OP)where: _
AP is the set of atomic propositions, « X is a finite non-empty set of state variables. Each
« L(€ Q — 24P) is a state labelling function which maps ~ Vvarablez € X has a finite or infinite domain of values,
each state to the set of atomic propositions that hold in denoted byD(z), g _
this state, « I is an invariant specified as a predicate ¥n
« Q/(C Q) is a set of final states. « init is an initial condition specified as a predicate &n
such thatinit = 1,
« O is a set of guarded action labels,
OP is the transition relation, specified by the definition of
every guarded action (labelled by 0) by an equatich
To(X, X"), whereT,(X, X') is a before-after predicate
onXUX'. X' is a set of “next-state” variables that is in 1-
1 correspondence with . It is such that AT, (X, X') =

We write ¢ % ¢ instead of (¢,0,¢') € A for the
sake of simplicity. An executior of an LTS is a finite
sequence of transitions represented by a sequence of pairs
o= (L,q),(01,q1),- .. (0n,qn) Whereo; is an action name
andg; a state.s is such thatg, is an initial state ofQ), and
for everyi in [0, n-1], ¢ "' ¢;11 andg, € Q.

The set of atomic propositiond P is defined over a set of , , o . _
state variablesX and their domains by relational operators. I, wlhereI denotes the invariant in which the variables
Any z € X has a domain denoted by(x). Let v be a value of X replz?lce the ones QK .)
of D(z) andV be a sub-domain oD(z) (V C D(z)). An The semantics of a b_ehaworal model is an L'_I@. is
atomic proposition is either in the shapexof v in a concrete the subset of the cartesian product of the domains of the
LTS where the states are valuated, or in the shape ofV variablesX that satisfy the invariant conditioh The value of
in an abstract LTS where the states are symbolic. Notice tifaPredicate: in a stateg is denoted by:(q). It can be defined
we unify the notations and denote= v by z € {v}. When DY induction on the syntax of the predicates. A siais an
necessary, we use an upper-script notation to indicateaiven initial state inQy iff init(q) = true. The Eransmon relation is
of the LTS to which we refer. defined as follows: there is a transitign— ¢’ iff T,(q,q’) is

An LTS A is compatible with an LTS M (see Def. 2) if its true. The state labelling functioh is defined as follows: for
action names are in M, its set of state variables is includ@ch atomic predicate = v, we have that € {v} is in L(q)
into that of M, and the atomic propositions dfP4 partition Iff v is the value ofz in . Any state is a final stat&) s = Q.
the domains of the variables of the subset of state variatiles Figure 3 models a fragment of the Qui-Donc exampiiach
M that also are state variables of A into several sub-domai@étion in a behavioral model is made of one or many elemen-

Definition 2 (Compatible LTSs)tet M and A be two tary guarded actions (EGA) in the shape®@i X' = f(X),

LTSs. A is compatible with M if: that assign all the state variables &f when a guardG is
« 04 C OM (A uses only actions of M), true. Each of the two actionsall and Hangup in Fig. 3 is
. the set of variablest2 on which is defineddPA is a Made of only one EGA, but there can be several of them in
subset ofX™ on which is definedd P, an operation, as it is the case for theay operation. We denote

. for any atomic proposition: € V™ in APM such that PY To:(X; X') the i** EGA of an actiono.
. . A . . A . A
x is in X7, there exists a proposition € V' in AP V. ABSTRACTION, TESTPURPOSE SYNCHRONIZATION

such thafy™ ¢ 7% In this section, we define the abstractions, the test pugpose
A M ; A is section, w i S ions, st pugpos
Two statesy® and¢™ are compatible (see Def. 3) §f* is and their synchronization as LTSs.

an abstract state that includes the more concrete gtte
Definition 3 (Compatible States)-et A be an LTS com- A, Abstraction, Test Purpose
patible with an LTS M. A statg” is compatible with a state
¢™ if for any atomic proposition: € V4 in L4(¢*) there
exists a proposition: € VM in LM (¢™) with VM C V4,
We say that(¢”, ¢) is a compatible pairwhen ¢# is
compatible Witth. 3its LTS can be Seen OMitp: //1ifc. univ-fconte. fr/ ~t est AndAbs/ i ndex. ht i

An abstraction A of a behavioral model M is an LTS defined
on a subset of the variables of M;4 C X It is compatible
with the semantics of M. It uses the same set of action names

as M. Each variable ofY4 has an abstracted domain of

values which is a partition of its domain in M. The state

space@” is the subset of the cartesian product of the set
of the abstracted domains of the variablé$ that satisfy the

{TryCounter = 0,
State = put_down}

HangUp Cal

invariant condition/™ . Any state is a final stated P4 is the
set of atomic predicates defined 6! and their abstracted
domains. An atomic proposition on A is denoted by V4 - —

where V4 is one of the elements a4 (x) which is a sub- " ety 2
domain of DM (z). Figure 5 shows an example of abstraction [state ¢ {welcome, pu_down}})«?{ state ¢ {welcome, pu_down} |]
ooy) (e

of the Qui-Donc model. pelay
Fig. 5. An Abstraction of the Qui-Donc System

Delay

{TryCounter # 0,
State = welcome }

{TryCounter = 0, —

State = welcome }

Delay

A test purpose TP defined w.r.t. a behavioral model M
(whose abstraction is A) is an LTS, where there is only one

initial state inQ{’. This LTS is defined as follows. The labels - .
of the transitions are actions names of M. WitK, any state the transitions that have the same label are synchronized wh

of the setQ” is labelled by a set of atomic predicates defingdieir source and target states are compatible and when they
W.r.t. a subset of the variables &f™ . The set of final states &re not reflexive in the abstraction. The reflexive transgio
Q}D is a subset of@” which is defined by the tester. We©f A are not considered for the synchronized product because

assume that the tester defines test purposes that are cbimpdii€y do not help in progressing towards a target state of the
(see Def. 2) with the LTS semantics of M. TP. But they are essential for the instantiation of the alostr

In our context, the sets of atomic predicates of a TiSts. Consequently, the input SP of the instantiationtfanc
compatible with the semantics of M are subsets of atonf Fig. 2 is defined as in Def. 5, except that this time the
predicates of the abstraction A of M. By construction in ouieflexive transitions of A are taken into account. It is dedine
method, the set of symbolic states of A is a partition of th&om Def. 5 by suppressing the conditiar' # ¢'* of the
set of symbolic states of TP (see definition of SD in Sec. Vvijourth item.

Figure 4 shows the automaton representation of a TP forDefinition 5 (Synchronized Product of two compatible LTSs):
the Qui-Donc. Its aim is to test that the try counter, oncEh€ synchronized product between a test purpose
incremented, gets back to 0 in case of a correct entry from tffé"’, @7, QY , A¥, APF, LF,QF) with a compatible
user. For readability purposes, in the graphical represiens LTS (0", Q4,Qg', A%, AP#, L4, Q) of an abstraction is
of the LTSs of Fig. 4 and 5, some transitions are labelled witn LTS (O™, Q, Qo, A, APA, L, Q), where:

a set of labels: this means that there are as many transitiong Q(c QF x Q4) is the subset of compatible pairs

in the LTS as there are labels in the set. Notice that the (,7 (4) of the cartesian producd® x Q4,

tester does not have to draw the automaton to express 3 Q,(C QL x Q4) is the subset of compatible pairs of the

TP: he would rather use the language of [7]. The automaton cartesian produa®? x Q&,

wpuld be its semantics. In our egample, TPis comp_atlble b_oth, for any state(¢”, ¢*) € Q, L((¢¥, ¢?)) = LA(¢?),

with the semantics of M and W|t_h A. By construction, A'is , for any pair of pairs of compatble states

also compgtlble with the_ semantics of M. The sets of action ((4” ¢4), (¢'F,¢*)), (¢, ¢*) 2> (¢F,¢?) if

names satisfy the condition@” C O4 and 04 = OM. q” > P gh % ¢ A and gt # ¢4,

Thf set of state variablex ™ :F;{HindSet, TryCounter, State }, e Qr={(a",aM) | (¢",4") € QA" € Q¥ ng* € Q41

X4 = {TryCounter, State} and X* = {TryCounter} are such Notice thatOF — (4P} The state/” is al tibl

that X C x4 C XM. The set of atomic propositions .ho ice that(, 7A{q0) e slalay, 1S always compatible

APT = {mycounter € {0}, TryCounter € 1..2} is included with any state ol becausel” (qy) = {}.

in APA = {Trycounter € {0}, TryCounter € 1..2,State €

{welcome}, State € {put_down}, State ¢ {welcome, put_down}}.

Thus TP is compatible with A and A is compatible with M.
OM \ {Hangup}

OM \ {Hangup} OM \ {Hangup}
0 {Trycounter # 0}

OM \ {Hangup}

VI. SET OF ABSTRACTION PREDICATESDEFINITION

In this section, we present how we define a set of abstraction
predicates from a test purpose TP and a behavioral model M.
To compute the abstraction, we ueneSysi8]. It requires
that a set of symbolic states is defined by a set of predicates.
This is a kind of predicate abstraction [15], [16], [12] th&es
a first-order theorem prover on the set theory.

We consider in this section a test purpose TP defined as an
LTS and a behavioral model M defined as a guarded action
system according to Def. 4. We call state predicate of TP a
B. SynChronization of an Abstraction and a Test Purpose set of atomic propositions that labels a state of TP.

We synchronize two compatible LTSs as in [14]: an ab- The set of abstraction predicates is defined w.r.t. the state
straction A and a test purpose TP. This synchronization ispeedicates and the actions appearing in TP. We propose to
particular synchronized product of LTSs (see Def. 5), inalihi define this set of in two steps:

qo0 5 q2

q4 as

Fig. 4. A Test Purpose for Qui-Donc

« extraction of the subset# of the variables ofX™ that Let n, be the number of EGA of the actiam The set of
are used in the state predicates of TP or modified by teab-domainsS D7, is defined as:
actions explicitly fired in TP,

« partition of the domains of these variables according to SD7, = U {zeV|z eV =
their use in the state predicates and in the actions of TP. 0€OP il ..n,
The set of abstraction predicates is defined from a TP that is sp(z € DM (z), TM (XM, X"M)}.

an LTS compatible with the semantics of M. In our example
the action names in the TP of Fig. 4 arell andHangup. The
state predicates are about the state variayteounter.

" For example, the strongest postcondition for the precondi-
tion state € DM (state) of the only EGA ofcall is the predicate
State’ € {welcome}.

A. Extraction of the Variable Names So we haves D5, ,USD5, = {z € Vi,x € Va,...,z € V,, }.

We defineOF (C OM) as the set of the actions explicitlyWhen the sub-domain; intersect, we partition them. If the
fired in TP, i.e. the ones that appear at least once in thedab®t 0f sub-domains do not overlap the whole domainzof
of the graphical representation of TP without being subéeic We add as the last sub-domain the complement of the union
from OM . We haveOF = {HangUp, Call} with Fig. 4. of the sub-domains. So the set of sub-domai3” of any

The set of variablest4(= X4 U X2) of the abstraction Variablex of X4 is the smallest partition oD/ () w.r.t. the
A is the union of the set of variables of M that are used #€tSD5, U SDg, whose cardinal is:. Let F1(1..n) be the
the state predicates of TP, denoted Ky!, and the set of Set of non empty finite parts of the sétn andC, be the
variables modified by all the actions of TP, denoted)bg): complementary set of in 1..n. The partition is defined as:

. XSAp; c p{lE|$€ViS in Lp(q)}, T =~ g -

. X2, = {:r?| f%r anyoin OF the definitionTM (XM, X'M) 5P Je]FE-(Jl..n){x © (JQ, Y \ig} Vi

contains a predicate’ = e wheree # z}. o

For the example of Fig. 4, the set of variables abstracting {z € (DT (=) \ U Vi)}
the Qui-Donc isX“ = {TryCounter, State }. TryCounter (€ Xﬁ)) . o _ Jeln
is used in the state predicates anae (¢ X2) is modified ~ Finally, the set of sub-domains is defined as:

by bothcall andHangup (see Fig. 3) in the TP of Fig. 4. sp = U $D®
B. Partition of the Variable Domains zeXA
To define the set of sub-domains of the variablesXof, =~ For example, the state variable has three sub-

we define(i) the set of sub-domains issued from the sta@omains: state € {welcome}, State € {put_down},
predicates of TP andii) the sub-domains of the symbolicState € {enter_num, find_urgency, find_num, busy} ~ (shortly
states targeted by the actions of TP. Then we split these s@fte ¢ {welcome, put_down}). They are obtained as follows.
domains into parts so as to realize the smallest partiton bfe variable state is not used in the state predicates

domains of each variable Gt 4. (SDS®® — {}). The variablestate is modified by every
The setSD?, for item (i) is the union of the atomic action appearing in TPCEl, HangUp). State & {welcome}
predicates, on the variable that label the states of TP: IS the strongest postcondition of the actiomal and
o p State € {put_down} is the strongest postcondition of the action
Sp:,= | J{zeV]zeVisinLF(g)}. HangUp. State ¢ {welcome, put_down} is the complement of the
a€Q” domain of the variablstate.
We obtain for example the two following sub-domains for the We can obtain the predicates that define the sub-domains
variableTryCounter of the TP in Fig. 4: by constraint solving. This requires all the domains of the
s p™eaunter = (TryCounter = 0, TryCounter = 0}. variables to be defined as finite sets, which is usual in a model
Let X be a set of variables. To distinguish between %r the test. _ _ _
variablez and the others in\, we defineZ = X \ {z}. The abstraction predicates define a set of symbolic states

The set of sub-domains issued from the actions (itgm as the cartesian product of the sets of the abstract domains

for a variablez is the set of strongest postconditions off any variable ofX RC obtain for our example the set
every EGAa of every action used in TPe(OF) from the of abstraction predicates shown in the following table.sThi
preconditionp = = € DM (). It is denoted bysp(p, a) with defines six symbolic states. Only five of them are reachable

sp(z € DM (z),a) = 2’ € V such that and appear in the abstraction computed GgneSystand
shown in Fig. 5.
¢ eV e Ir-3Z-37" Variable Sub-domains
M ’ M M TryCounter TryCounter = 0, TryCounter # 0
(/\ (Z €D (Z) Nz eD (Z)) NaNzeD (‘r)) S State = welcome, State = put_down,
2€Z tate State ¢ {welcome, put_down}
4Notice that we have simplified the writing of the predicatbattshould In PrOPOSition 1, we prove that with the assumption that the

have been denoted BiyyCounter € {0} and TryCounter € 1..2. tester designs a TP compatible with M, this definition of tee s

of abstraction predicates SD makes that the TP is compatiBle Generation and Instantiation of the Symbolic AbstrastSe
with an abstraction A computed from them. Wi h bolic ab | q
Proposition 1: Consider a TP compatible with M and an e compute the symbolic abstract tests as selected execu-

abstraction A computed from the set of abstraction prediz:alt'ons o_f the abstraction, by funning an |mplement_at|on 0] o
SD. Then the TP is compatible with A. the chinese postman algorithm on the synchronized product

Proof: By assumption, the test purpose TP is compatib%P of the abstraction with the TP _(_see Fig. 2_). This provides a
with M. Hence the three following conditions hold: set of paths such that every transition of SP is covered at lea
. OP C OM once. Every path is a symbollc abstract test that termmgtes
P XM, in a final state of SP. It is a sequence of non parameterized
* =t . i action calls. We still have to instantiate the tests, i.e. to
o for any 2 in X" and for any atomic proposition € {v} g parameter values that make these sequencings of actions
in fFl,P , there exists an atomic propositian€ V' in ssible according to the behavioral model M. We proceed by
AP" such thaw € V. a symbolic animation of the tests on M. It is possible that a
By definition of X in this section,X” C X# and X* C sequence can not be instantiated as it is: an action migfterot
XM, By definition of SD in this section, it is a partition of theenabled on a given instance of a symbolic state. Thus we will
domains of the variables ok * and SD = AP“. Moreover yse a version of SP augmented with its reflexive transitions t
04 = OM. Let SDy, be the union ofS D%, for anyz in X". complete the instantiation. Indeed, these transitions iwag
By definition of SD,,, AP = SD,,. Then, by definition of to another instance of the same symbolic state, from which
SD, the predicates of D, are redefined ir6 D from some the action could be enabled. As a result, we insert bounded
predicate ofSD,, in such a way that the predicates 800 sub-sequences of (reflexive) action calls into the original
define a domain partition of any variable &f. Hence for any sequence. We have implemented this instantiation proeedur
predicater € V4 in AP that concerns a variable of XP, Although naive and incomplete (invoking reflexive trarwit
there exists a predicatec VP in APP such thatV4 C VP. s not always sufficient, sometimes cycles are necessauy), o
Therefore TP is compatible with A. B algorithm gave satisfactory instantiation results on oasec
studies, as shown in Sec. VIII.
VIl. ABSTRACTION AND TEST GENERATION

A. Generation of the Abstraction VIIl. E XPERIMENTAL RESULTS

We useGeneSysto generate an abstraction from a behav-
ioral model M and a set of symbolic states. This abstraction\We have applied our method to three various cases of reac-
is an LTS that is an over-approximation of M: it simulate§ve systems: a reverse phone book service (Qui-Donc [10]),
all the executions of M, but adds new on&eneSystries to an automatic conveying system (Robot [17]) and an eleatroni
prove automatically the feasibility or not of transitioretlveen purse (DeMoney [18]). Tests have been generated for each of
the symbolic states. It proceeds by weakest preconditiom cothem from two TPs, on a 2.8GHz Pentium with 1GB of RAM.
putations and satisfiability evaluations over first ordegidal The first two parts of Table | show the size of the behavioral
formulas [8]. GeneSystakes B specifications [13] as input.models and the TPs. The symbgf ‘tmeansnumber of “Act.”
The weakest precondition of a statemehthat leads to the stands forActions and “Trans.” stands folfransitions For
abstract state’ is defined by the B substitution calculus. It iexample, the TP of Fig. 4 (in bold font in Table I) is made
denoted by[S]a’. A transition from an abstract stateto o’ is of 6 states, 8 transitions, 2 explicit action calls and twam no
feasible ifa A [S]a’ is satisfiable. Ifa = —[S]a’ is valid then empty sets of atomic predicates. The behavioral model of the
the transition is not feasible. On the contrary, when theoproQui-Donc is made of 4 actions, with a total of 20 EGAs. It
of 3X - (a A [S]a’) succeeds, the transition— o’ is added is 122 lines long and it defines 13 states from three variables
to the LTS. It is also added when this proof is inconclusiveyvhose average domain size is 3.66.
although it is possibly infeasible. This makes the abswact
more over-approximated. A

Thus, some of the symbolic tests that we generate from the
abstraction may not be possible to instantiate as executibn The last two parts of Table | are about the abstraction gener-
the behavioral model. This would result in a bad coverage afion and the synchronous product (SP) computeneSyst
the abstraction by the instantiated tests. It is possiblestoan failed to prove from 66% up to 90% of the transitions. We
interactive prover to try to get rid of the proof failures. Wave have checked, with success on our examples, the satigfjabili
chosen another alternative: using constraint solvingrtiegles of the unproved POs by means of a constraint solver [19] (see
makes it possible to automatically check the feasibility dhe Filter. columns in Table I). Thédiltered transitionsare the
the unproved transitions when the state space is finite. Téwees really unsatisfiable. There are only few of them (from
applicability of this technique depends on the size of th2% up to 18%), with the exception of DeMoney. Filtering is
domains, as it proceeds by partial consistency checking aalchost immediate for Qui-Donc and the Robot, modelled with
domain enumeration. We will assess the practical impact wdriables enumerated on small domains. But it takes one hour
the instantiation problem on some examples in Sec. VIIl. for DeMoney, whose model has some numerical variables.

Abstraction Generation and Synchronous Product

Behavioral Model Test purpose Abstraction generation SP
Case studigs rot [sEGA AERUMIANT fines s StateStateg Trans| gAct | e tateg Trans| #PO Co?n‘:gtmg uU_;;;:ﬁo;ed ”iir';’:_d Figfﬂ”e”g #State$4 Trans| “s'rgi’:
Qu-Done | 4 | 20 [3666) 0 | 122| 8 |y T TS W TR T T, TS
R o o i e e Bt e) (i e
Dettoney | 11 | 42 | 39) | © | 530 [10%0 S s ST Gz s 9 "[T5 a2 |50
TABLE |

METRICS ONBEHAVIORAL MODEL, ABSTRACTIONGENERATION AND SIZE OF SYNCHRONOUSPRODUCT

Test generatiop

LTG Test Generation from M Instantiation of the SP tests without Filtering Instantiation of the SP tests with Filtering
Model #Test Averagd Standar(i Test Averagd i Symbolid Averagd fi Instant[Averagd #Instant. tests Time #SymbolidAveragd tiFiltered fInstant]Averagd fiInstant. tests |/ Time
length |deviation| length| tests | length| tests | length|#Symbolic test; tests | length| Trans. | tests | length|#Symbolic test}
Qui-Don 20 3.65 1.02 23 9.3 10 5.3 4 3 4/10 (40%) |< 1 sec] 10 4.9 2 6 3.8 6/10 (60%) [< 1 sec]
9 2.66 0.81 26 8.3 15 8 5 5.6 5/15 (33%) [< 1 sec] 11 8.2 2 6 7.8 6/11 (55%) [< 1 sec]
Robot 19 | 410 | 1.36 | 71 | 1493 12 11.1 7 21 7712 (58%) | 3 min. 11 11.18 1 7 23.7 | 711 (64%) | 2 min.
0bo 24 | 425 | 121 | 808 | 32.2 23 9.1 8 231 | 8/23 (35%) | 5 min. 23 9.1 0 8 23.1 | 8/23(35%) | 5 min.
DeMon: 26 1.57 0.53 R 32 10.88 0 - 0/32 (0%) 2 h. 19 10.78 49 0 - 0/19 (0%) 2 h.
13 1.07 0.14 42 10.2 0 0/32 (0%) 2 h. 18 10.1 56 17 12.48 | 17718 (94%) 1h.
TABLE I
TESTGENERATION FROMSTATIC AND DYNAMIC CRITERIA, TESTSINSTANTIATION STATISTICS
B. Symbolic Test Generation and Complementarity the filtered transitions from the abstraction. From 35% up

We have presented in [6] a technique to build a nel 94% of tests have been instantiated, except with one TP

behavioral model synchronized with a TP, from which LT DeMoney. There are two reasons why with filtering, the

generates tests. The results in the first part of Table Il hal@dio of instantiated tests grows. There are less tramsifio

been obtained with this technique. We also have tried (sk&!S 1SS symbolic tests. Moreover, the former symbolitstes

the second part of Table II) to first synchronize directly th@°ing through infeasible transitions are replaced by ots,

LTS semantics of the behavioral models with the TPs, witho@PSSibly instantiable. For example, with the second TP of
using abstractions, and then to generate the tests witmasgi D€Money, the first transition of every symbolic test gerediat
postman walk. Although it has been possible to do so williithout filtering is infeasible, so that no test is instabtéa In

Qui-Donc and the Robot, it failed with DeMoney due t&ontrast, with filtering, this transition is replaced by adible
the size of the resulting étate space. This shows the utilfy}€ and 94% of the tests become instantiable. Notice that eve

of using abstractions to apply this test generation methdtithout unproved POs, the abstraction computedseneSyst
The complementarity with the LTG tests has been studi&yStill an over-approximation and may produce uninstatgia
in [6]. It also appears in our results. LTG covers every EGJEStS: Our study shows that except in one case, this has a
and the chinese postman walk covers every transition. FBpited practical impact on our examples.
example with the first TP of the Robot, 80 test steps have
been generated by LTG to cover every EGA, and more than
10500 tests have been generated to cover every transition. We have presented in this paper an MBT process based on

The tests in the last two parts of Table Il have been obtain#te use of an abstraction A of a model M. A is generated from
(in less than one second) by a chinese postman walk on theet of abstraction predicates that are defined based on the
synchronized product SP between an abstraction and a $Rite variables involved and modified by a test purpose TP.
The tests of the third part have been obtained without filteri A and TP are synchronized into a model SP made of all the
the unfeasible transitions by constraint solving, whemedbe sequences of A that match TP. By covering all the states and
fourth part they have been filtered. Although the transgtioh transitions of SP we get a set of symbolic abstract testgeSin
the without filtering version of the abstraction are a supiersA is an abstraction that models more executions than M, whose
of the ones of the with filtering version, the “without filteg” states and transitions are over-approximated, it is plesttiat
tests are not a superset of the “with filtering” ones. Theat the end, the instantiated test suites do not cover allttttess
cannot be compared as the chinese postman algorithm daed all the transitions of SP. But Sec. VIII shows that th@orat
not necessarily covers the same traces of the two absmactiof instantiated tests is satisfactory in practice, althowg use

o a naive and incomplete algorithm.

C. Test Instantiation Our method helps in finding executions of M that match

Using abstractions require the generated tests to be TR. SP brings the following information to help the search
stantiated from the concrete model. But our abstractiops dor TP executions that exist in M: the predicates that define
over-approximations, and they contain unproved transtiothe symbolic states and the instantiation of the generiomct
potentially infeasible. The results of the “without Filteg” calls. Our first experimental results indicate that the méth
part in Table Il are for abstractions where every unprovestould provide a valuable help in practice. We have shown
transition has been kept. From 35% up to 58% of the tests[6] the complementarity of our tests with the LTG ones.
have been instantiated, except with the two TPs of DeMoneyOther works are about the generation of tests from ab-
for which no test have been instantiated. In contrast, fer tistraction. We make a predicate abstraction as in [16]. Tl Bal
results of the “with filtering” part of Table Il, we have renexy uses it to generate structural tests of a program. He commpute

IX. CONCLUSION, RELATED AND FURTHER WORKS

a boolean abstraction from a set of predicates which is thé the method, from a practical point of view. It seems

set of all the control-flow conditions of the program. Wdecessary to reduce the time for generating the abstraction
use an abstraction to generate functional tests in an MBJr example by using syntactic abstraction as defined in.[12]

approach_ We Compute abstractions from a set of predicaﬁgo, a finer combination of the proof and constraint Solving

defined from a test purpose as presented in Sec. VI. Thégehniques may significantly help to remove the transitions
two abstraction methods are based on weakest preconditidat really cannot be instantiated from SP. Our valuation
and strongest postcondition Computationsl but by Con’szer&'QOfithm also needs to be improved. This will provide adrett

a model instead of a program, our method benefits frog@neration of the instantiated tests.

invarian_t properties to obtain a finer abstraction. Morepae REFERENCES
we are in an MBT context, we are able to compute an oracle.

Both methods aim at maximizing the ratio of the number 0]{1] E. Jaffuel and B. Legeard, “LEIRIOS Test Generator: Anéted test

. X N generation from B models,” il3’2007, Tool Sessignser. LNCS, vol.
instantiated tests to the number of symbolic tests. We coenpu 4355. Springer, 2007, pp. 277-280.

an over-approximation and we experimentally show that thig] M. Barnett, K. Leino, and W. Schulte, “The spec# prograimgrsystem:

ratio is between 35% and 94% on our case studies (except g\g i\ée_rgéew, in CASSIS'0d ser. LNCS, vol. 3362. Springer, 2005,

in a particular case that is explained in Sec. VIII-C) usings] c. Jard and T. Jeron, “TGV: theory, principles and aitjons,” Software
an incomplete algorithm. In [16], Ball presents a method to Tools for Technology Transfevol. 7, no. 1, pp. 297-315, 2005.

B. Jeannet, T. Jéron, V. Rusu, and E. Zinovieva, “Syntb@lst selection
compute a lower bound of the set of reachable states. Théf based on approximate analysis,” TACAS'05 ser. LNCS, vol. 3440,

he only generates instantiable tests which cover this set. O 200s5.
LTS should be extended in Tri-Modal Transition System [20]5] N. Rapin, C. Gaston, A. Lapitre, and J.-P. Gallois, “Bebeal unfolding

: : : of formal specifications based on communicating extendednzata,”
to make this lower bound computation pOSSIble. in ATVA'03, Automated Technology for Verification and Analy2003.

The method implemented in the tool Agatha [5] also comse] J. Julliand, P.-A. Masson, R. Tissot, and P.-C. Bué, r&ating tests
putes an abstraction from a model, but by applying a symbolic from B specifications and dynamic selection criteri&AC, Formal

: ; ; : Aspects of Computin®2009, to appear (accepted manuscript). Revised
execution technique. This abstraction approach on data of and extended version of a paper from the ABZ'08 conference.

models is very different from predicate abstractions. Ih [5 [7] J. Julliand, P.-A. Masson, and R. Tissot, “Generatingusigy tests in
Agatha does not make use of test purposes. addition to functional tests,” iMST'08 ACM Press, 2008, pp. 41-44.

; ; : [8] D. Bert, M.-L. Potet, and N. Stouls, “Genesyst: a tool &ason about
The methods in [21] Implemented in STG [4] use an ab behavioral aspects of B event specifications,ZB'05, ser. LNCS, vol.

straction defined by the user and modelled by an IOSTS (Input 3455, 200s5.

Output Symbolic Transition System). These approaches u$d H. Thimblegy, “The direclted chinese postman problerBpftware:
; ; : : Practice and Experiencevol. 33, no. 11, pp. 1081-1096, 2003.

test purposes Syncmomzeq with abstractions, both deﬁseq 10] M. Utting and B. LegeardPractical Model-Based Testing Morgan

IOSTS. Then the synchronized product allows for generating” kaufmann, 2006.

tests after an optimization step, which consists of a prgmi‘n [11] E. Dijkstra, “Guarded commands, nondeterminacy, amohél derivation

; : ; of programs,"C. ACM vol. 18, 1975.
unreachable states by abstract interpretation. Our apbma [12] K. S. Namjoshi and R. P. Kurshan, “Syntactic progranmgfarmations

very similar in that we also use test purposes and abstre;tio ~ for automatic abstraction,” iI€AV'00, ser. LNCS, vol. 1855, 2000, pp.

as well as synchronization and constraint solving techesda 3] 435—443- h y i

; ; ; ; ; : 13] J.-R. Abrial, The B Book Cambridge Univ. Press, 1996.

InStamlate the SymbO“C tests. The_two following pointplein [14] T. Jéron and P. Morel, “Test generation derived fromdelechecking,”

the differences. First, our abstractions are computed a@mt in CAV, 1999, pp. 108-121.

of predicates that are defined from the test purposes, wherial S. Graf and H. Saidi, “C?nstruction of abstract stataphs with pvs,”
; ; in CAV'97, ser. LNCS, vol. 1254, 1997, pp. 72-83.

the_at?S”"?‘Ct'o_”s used by STG are given by _the user. Seccmd’[IE] T. Ball, “A theory of predicate-complete test coveram® generation,”

optimization is performed by the abstraction computation. in FMCO'04, ser. LNCS, vol. 3657, 20005, pp. 1-22.

consists of using the invariant properties (that do nottéian [17] F. Bouquet, P.-C. Bué, J. Julliand, and P.-A. Massdbérteration de

. . ; tests & partir de criteres dynamiques de sélection eafpsiraction,” in
IOSTS) of the models in the weakest precondition computatio AFADL'09, Toulouse, France, Jan. 2009, pp. 161-176.

for the minimization of the symbolic state space and of thes] rR. Marlet and C. Mesnil, “Demoney: A demonstrative @lenic purse —
feasible transitions. card specification,” Trusted Logic, Tech. Rep. SECSAFE@ONZ, 2002.

; ; 19] F. Bouquet, B. Legeard, and F. Peureux, “CLPS-B: A c@st solver
The approach in our paper dlﬁer_s from t_he one Of_ [2_2]’ to animate a B specificationSoftware Tools for Technology Transfer
where the test purposes are generic and aim at achieving a vol. 6, no. 2, pp. 143-157, 2004.
static coverage of the instructions and the conditions. OI2P] P. Godefroid and R. Jagadeesan, “On the expressivesfeS8svalued

method intends to become integrated into LTG, that alreatjzxi] models,” iNVMCAI'03, ser. LNCS, vol. 2575, 2003, pp. 206-222.

X i ! : J. Calamé, N. loustinova, and J. van de Pol, “Automatiodel-based
achieves such a static coverage, to complete it with testieds
from dynamic criteria. Another difference with [22] is thar
approach relies on abstractions.

As in [23] and [24], it is also possible to describe tegbs)
purposes by means of LTL properties, that specify particula
state sequencings. Our language allows for specifyingmcti

calls in addition to states descriptions.

generation of parameterized test cases using data astta@NTCS
vol. 191, pp. 25-48, 2007.

G. Fraser, M. Weiglhofer, and F. Wotawa, “Coverage Hassting with
test purposes,” iQSIC’'08 2008, pp. 199-208.

P. Ammann, P. Black, and W. Majurski, “Using model chiegkto
generate tests from specifications,” I@FEM’'98. |IEEE, 1998, pp.
46-54.

H. Hong, I. Lee, O. Sokolsky, and H. Ural, “A temporal loghased
theory of test coverage and generation, TIRCAS'02 Springer, 2002,

This work has to be pursued to better assess the contribution pp. 327-341.

