
Test Generation Based on Abstraction and Test
Purposes to Complement Structural Tests

F. Bouquet, P.-C. Bué, J. Julliand, P.-A. Masson
LIFC - Université de Franche-Comté - 16, route de Gray F-25030 Besançon Cedex, France

Email: {bouquet, bue, julliand, masson}@lifc.univ-fcomte.fr

Abstract—This paper presents a computer aided model-based
test generation method. We propose this approach as a com-
plement to the LTG (Leirios Test Generator) method, which
extracts functional tests out of a formal behavioral model M
by means of static (or structural) selection criteria. Our method
computes additional tests by applying dynamic (or behavioral)
selection criteria (test purposes called TP). Applying TP directly
to M is usually not possible for industrial applications due to
the huge (possibly infinite) size of their state space. We compute
an abstraction A of M by predicate abstraction. We propose a
method to define a set of abstraction predicates from information
of TP. We generate symbolic tests from A by using TP as a
dynamic selection criterion. Then we instantiate them on M,
which allows us play the tests on the implementation the same
way as we play the functional ones. Our experimental results
show that our tests are complementary to the structural ones.

Keywords-Model-Based Testing; Abstraction; Test Purpose;

I. I NTRODUCTION

Model-Based Testing (MBT) is a test generation approach
that automatically computes, from a behavioral model of a
system and selection criteria, a set of tests to be executed on an
implementation of that system (the implementation under test,
IUT). There are model based test generation suites available as
commercial products, such as LTG [1] and TD1, Conformiq2,
SpecExplorer [2], or as research prototypes, such as TGV [3]
and STG [4], AGATHA [5], etc.

Fig. 1. Model-Based Testing Approach

A “standard” MBT approach is illustrated by means of
Fig. 1. A model M describes the behavior of the system by
means of a set of parameterized actions. The test generation
tool, depending on selection criteria, instantiates from Ma set
of tests IT (instantiated tests). The tests in IT are sequences of
action calls where the input parameters and the corresponding
outputs are instantiated. The tests of IT are as abstract as
the model, so a concretization layer CL translates them into
concrete tests (CT), that are executed on the IUT. The verdict
of success or failure of a test is delivered by comparing the
results returned by the IUT with the ones predicted by M.

1LTG and TD are from Smartesting:http://www.smartesting.com
2Conformiq is from Qtronic : http://www.conformiq.com

One advantage of MBT is to have with the behavioral model
an oracle to predict the outputs of the IUT. Another one is the
possibility to achieve different kinds of coverage of the model
(such as state coverage, decision coverage, path coverage)
by varying the selection criteria. But writing the behavioral
model and the concretization layer is costly, and ideally a
large variety of test cases, i.e. achieving a large spectrumof
coverage, should be computed from them.

An MBT tool-supported method, the LTG technology [1],
has been developed in our research team and is now com-
mercialized by the Smartesting company. It ensures structural
coverage of the model by means of static (i.e. structural)
selection criteria. Additionally, we intend to generate test cases
issued from dynamic selection criteria [6], [7]. A test engineer
(thetester) specifies a set of executions that he finds interesting
to test by means of atest purpose(TP). The TP is specified in
a language [7] that allows the tester to describe which actions
to call and which states to reach. Some of the action calls can
be left unspecified, which provides flexibility to the testerfor
expressing his test intention, but requires later these calls to
be made explicit. This is performed by a research amongst the
possible instantiations allowed by the model of the unspecified
action calls, and it can possibly blow up with huge size models.

We propose in this paper to define, based on information
extracted from the TP, a set of predicates from which we
compute an abstraction A (of small size) of a behavioral model
M. We first compute its synchronized product SP with the TP,
and then a set of traces that cover every transition of SP. Each
trace is a symbolic test for which we search an instantiation
on M. This results in a new (w.r.t. the structural ones) set of
instantiated tests IT, that can be executed on the IUT through
the same concretization layer.

Our contributions are to define the set of abstraction predi-
cates based on information of the TP. This makes the resulting
abstraction related to what the tester intends to observe. Also,
M provides an oracle for our new tests, and it is reused as well
as the concretization layer to execute the tests on the IUT. We
have an experimental validation of the method.

We detail our process for generating tests from abstrac-
tions and test purposes in Sec. II. Section III presents the
“Qui-Donc” example that illustrates our approach. We define
labelled transition systems (LTSs, for short) in Sec. IV and
give the syntax of our behavioral models, whose semantics are
LTSs. The abstractions and the test purposes are also defined
as LTSs in Sec. V, where their synchronized product is defined.



The definition from the TP of a set of abstraction predicates is
detailed in Sec. VI. This set is the basis for the computation
of the abstraction, as explained in Sec. VII, where we also
explain how to generate symbolic tests out of it. Experimental
results are presented and discussed in Sec. VIII. Section IX
concludes the paper, compares our approach to related works
and gives some future research directions.

II. T EST GENERATION PROCESS FROMDYNAMIC

SELECTION CRITERIA AND ABSTRACTIONS

Let us present our motivations, and our process for gener-
ating tests from dynamic selection criteria and abstractions.

A. Problem and Motivations

In our approach, the validation engineer describes by means
of an hand-written test purpose TP how he intends to test the
system, according to his know-how. We have proposed in [7]
a language based on regular expressions, to describe a TP as
a sequence of actions to fire and states to reach (targeted by
these actions). The states are described as state predicates.
The actions can be explicitly called by their name, or left
unspecified by means of a generic name. This genericity allows
the tester to describe a situation to reach without specifying
how it should be reached. A regular expression repetition
operator can be applied to the unspecified action call. This
means in the tester’s mind: leaving all possibilities to the
system to reach a target state. The drawback is a combinatorial
explosion of the number of executions of M in which to look
for an instantiation of the action calls that reach the target
state. The search should be guided to avoid that problem.

B. Test Generation Process by Abstraction

A small size state-transition graph, that symbolically models
the executions of the system, can be obtained by computing
an abstraction A of M. We propose to perform a synchronized
product between A and the automaton that is the semantics
of the TP, and to use paths of the synchronized product as
guides for the instantiation of the TP on M.

Fig. 2. Generating Tests from Test Purpose by Abstraction

Our approach is depicted in Fig. 2. From a behavioral
model M and the state variables of a TP, we define a set
SD of abstraction predicates. SD stands for sub-domains (of
the state variables). The details of this definition are given
in Sec. VI. TheGeneSysttool [8] produces an abstraction
A of M based on the predicates of SD. The synchronized
product, defined in Sec. V-B, of A with the TP results in
a model SP. The executions of SP are the executions of A

X =̂ {HandSet, TryCounter, State}
I =̂ HandSet ∈ {hang, unhook} ∧

TryCounter ∈ 0..2 ∧
State ∈ {welcome, enter num, find urgency,
find num, put down, busy} ∧
(State = put down ⇔ HandSet = hang) ∧
(State = put down ⇒ TryCounter = 0)

init =̂ HandSet = hang ∧ TryCounter = 0 ∧
State = put down

Call =̂ HandSet = hang ∧
HandSet′ = unhook ∧
TryCounter′ = TryCounter ∧
State′ = welcome

HangUp =̂ (HandSet = unhook ∨ State = busy) ∧
(HandSet′ = hang ∧ TryCounter′ = 0
∧ State′ = put down)

Fig. 3. A fragment of the Behavioral Model of the Qui-Donc System

that match the TP. An implementation [9] of the Chinese
Postman algorithm is applied to SP to cover its transitions.
The result is a set of abstract symbolic tests AST. These tests
are instantiated from M, which allows for re-using the same
test execution environment (i.e. the concretization layerCL
and the test execution tools) as of Fig. 1: the new instantiated
tests IT (of Fig. 2) complement the ones of Fig. 1. Notice the
dashed arrow in Fig. 2 from SP to the “instantiation” box. This
is because, to instantiate the abstract symbolic tests, we use
the reflexive transitions of SP that were ignored to generate
AST. This point is explained in Sec. VII-B.

III. T HE QUI-DONC EXAMPLE

Our approach is illustrated by means of the Qui-Donc
example [10]. It is a reverse phone book service. When the
user contacts the service, he gets a welcome message followed
by an invitation to enter the number he searches for. When he
has done so, the service possibly answers that the number is
an emergency one, or is invalid, or is unknown, otherwise the
answer is the name and address of the owner of the number.
In case the user forgets to provide an input, or provides an
unexpected one (such as an unauthorized key), the service
invites up to twice the user to provide its input again and
finally closes the communication if needed.

We have designed a behavioral model of the Qui-Donc.
Let us introduce its variables and some actions, which appear
in a forthcoming example of test purpose. TheCall and
HangUp actions allow respectively to call the service and to
close the communication. TheDelay action simulates that the
user remains inactive during a fixed delay. TheHandSet ∈
{hang, unhook} variable stands for the state of the handset.
The TryCounter ∈ {0, 1, 2} variable counts how many times
the user has provided an unexpected (or void) input. TheState

variable indicates in which state the service is. Amongst the
six possibleState values arewelcome (when the service is ready
to listen to a new input from the user) andput down (when the
communication has been closed). A fragment of its model is
expressed w.r.t. the syntax of Def. 4 in Fig. 3.

IV. B EHAVIORAL MODELS AND THEIR SEMANTICS

We define Labelled Transition Systems (LTSs) and present
a syntax, inspired from the guarded commands [11], [12], to



describe the behavioral models.

A. Labelled Transition Systems

The state transition graph of the behavioral models, their
abstractions as well as the test purposes are formalized as
LTSs (see Def. 1). Notice that we only consider LTSs with
finite state spaces in this paper, which is usual with models
for the test.

Definition 1 (Labelled Transition System):An LTS is de-
fined by a tuple〈O, Q, Q0, ∆, AP, L, Qf 〉, where

• O is a finite set of action names,
• Q is a finite set of states,
• Q0(⊆ Q) is a set of initial states,
• ∆(∈ Q × O × Q) is a labelled transition relation,
• AP is the set of atomic propositions,
• L(∈ Q → 2AP ) is a state labelling function which maps

each state to the set of atomic propositions that hold in
this state,

• Qf (⊆ Q) is a set of final states.
We write q

o
→ q′ instead of (q, o, q′) ∈ ∆ for the

sake of simplicity. An executionσ of an LTS is a finite
sequence of transitions represented by a sequence of pairs
σ = (⊥, q0), (o1, q1), . . . (on, qn) whereoi is an action name
and qi a state.σ is such thatq0 is an initial state ofQ0 and
for every i in [0, n-1], qi

oi+1

→ qi+1 andqn ∈ Qf .
The set of atomic propositionsAP is defined over a set of

state variablesX and their domains by relational operators.
Any x ∈ X has a domain denoted byD(x). Let v be a value
of D(x) and V be a sub-domain ofD(x) (V ⊆ D(x)). An
atomic proposition is either in the shape ofx = v in a concrete
LTS where the states are valuated, or in the shape ofx ∈ V
in an abstract LTS where the states are symbolic. Notice that
we unify the notations and denotex = v by x ∈ {v}. When
necessary, we use an upper-script notation to indicate the name
of the LTS to which we refer.

An LTS A is compatible with an LTS M (see Def. 2) if its
action names are in M, its set of state variables is included
into that of M, and the atomic propositions ofAPA partition
the domains of the variables of the subset of state variablesof
M that also are state variables of A into several sub-domains.

Definition 2 (Compatible LTSs):Let M and A be two
LTSs. A is compatible with M if:

• OA ⊆ OM (A uses only actions of M),
• the set of variablesXA on which is definedAPA is a

subset ofXM on which is definedAPM ,
• for any atomic propositionx ∈ V M in APM such that

x is in XA, there exists a propositionx ∈ V A in APA

such thatV M ⊆ V A.
Two statesqA andqM are compatible (see Def. 3) ifqA is

an abstract state that includes the more concrete stateqM .
Definition 3 (Compatible States):Let A be an LTS com-

patible with an LTS M. A stateqA is compatible with a state
qM if for any atomic propositionx ∈ V A in LA(qA) there
exists a propositionx ∈ V M in LM (qM ) with V M ⊆ V A.

We say that(qA, qM ) is a compatible pairwhen qA is
compatible withqM .

B. Model syntax and semantics

Our work does not necessitate that we specify a particular
modelling syntax. We only consider a model as being defined
on a set of variables, and as being specified by means of an
initial condition and a transition relation. They are specified
syntactically as first-order logic predicates. The relation sym-
bols form the atomic predicates. The expressions are definedin
the data set theory, as it is for example the case in B [13]. The
main data structures are sets, functions and relations. Some
relation and function symbols may have fixed interpretations,
such as=, 6=,≤,∈, +, etc.

Definition 4 (Behavioral Model):A behavioral model is
defined by a tuple〈X, I, init, O, OP 〉where:

• X is a finite non-empty set of state variables. Each
variablex ∈ X has a finite or infinite domain of values,
denoted byD(x),

• I is an invariant specified as a predicate onX ,
• init is an initial condition specified as a predicate onX

such thatinit ⇒ I,
• O is a set of guarded action labels,
• OP is the transition relation, specified by the definition of

every guarded action (labelled by o) by an equationo =̂
To(X, X ′), whereTo(X, X ′) is a before-after predicate
onX∪X ′. X ′ is a set of “next-state” variables that is in 1-
1 correspondence withX . It is such thatI∧To(X, X ′) ⇒
I ′, whereI ′ denotes the invariant in which the variables
of X ′ replace the ones ofX .

The semantics of a behavioral model is an LTS.Q is
the subset of the cartesian product of the domains of the
variablesX that satisfy the invariant conditionI. The value of
a predicatee in a stateq is denoted bye(q). It can be defined
by induction on the syntax of the predicates. A stateq is an
initial state inQ0 iff init(q) = true. The transition relation is
defined as follows: there is a transitionq

o
→ q′ iff To(q, q

′) is
true. The state labelling functionL is defined as follows: for
each atomic predicatex = v, we have thatx ∈ {v} is in L(q)
iff v is the value ofx in q. Any state is a final state:Qf = Q.

Figure 3 models a fragment of the Qui-Donc example3. Each
action in a behavioral model is made of one or many elemen-
tary guarded actions (EGA) in the shape ofG ∧ X ′ = f(X),
that assign all the state variables ofX when a guardG is
true. Each of the two actionsCall and HangUp in Fig. 3 is
made of only one EGA, but there can be several of them in
an operation, as it is the case for theDelay operation. We denote
by Toi

(X, X ′) the ith EGA of an actiono.

V. A BSTRACTION, TEST PURPOSE, SYNCHRONIZATION

In this section, we define the abstractions, the test purposes
and their synchronization as LTSs.

A. Abstraction, Test Purpose

An abstraction A of a behavioral model M is an LTS defined
on a subset of the variables of M,XA ⊆ XM . It is compatible
with the semantics of M. It uses the same set of action names

3Its LTS can be seen on:http://lifc.univ-fcomte.fr/∼testAndAbs/index.html



as M. Each variable ofXA has an abstracted domain of
values which is a partition of its domain in M. The state
spaceQA is the subset of the cartesian product of the set
of the abstracted domains of the variablesXA that satisfy the
invariant conditionIM . Any state is a final state.APA is the
set of atomic predicates defined onXA and their abstracted
domains. An atomic proposition on A is denoted byx ∈ V A

whereV A is one of the elements ofDA(x) which is a sub-
domain ofDM (x). Figure 5 shows an example of abstraction
of the Qui-Donc model.

A test purpose TP defined w.r.t. a behavioral model M
(whose abstraction is A) is an LTS, where there is only one
initial state inQP

0 . This LTS is defined as follows. The labels
of the transitions are actions names of M. WithLP , any state
of the setQP is labelled by a set of atomic predicates defined
w.r.t. a subset of the variables ofXM . The set of final states
QP

f is a subset ofQP which is defined by the tester. We
assume that the tester defines test purposes that are compatible
(see Def. 2) with the LTS semantics of M.

In our context, the sets of atomic predicates of a TP
compatible with the semantics of M are subsets of atomic
predicates of the abstraction A of M. By construction in our
method, the set of symbolic states of A is a partition of the
set of symbolic states of TP (see definition of SD in Sec. VI).

Figure 4 shows the automaton representation of a TP for
the Qui-Donc. Its aim is to test that the try counter, once
incremented, gets back to 0 in case of a correct entry from the
user. For readability purposes, in the graphical representations
of the LTSs of Fig. 4 and 5, some transitions are labelled with
a set of labels: this means that there are as many transitions
in the LTS as there are labels in the set. Notice that the
tester does not have to draw the automaton to express a
TP: he would rather use the language of [7]. The automaton
would be its semantics. In our example, TP is compatible both
with the semantics of M and with A. By construction, A is
also compatible with the semantics of M. The sets of action
names satisfy the conditionsOP ⊆ OA and OA = OM .
The set of state variablesXM =̂ {HandSet, TryCounter, State},
XA =̂ {TryCounter, State} and XP =̂ {TryCounter} are such
that XP ⊆ XA ⊆ XM . The set of atomic propositions
APP =̂ {TryCounter ∈ {0}, TryCounter ∈ 1..2} is included
in APA =̂ {TryCounter ∈ {0}, TryCounter ∈ 1..2, State ∈
{welcome}, State ∈ {put down}, State /∈ {welcome, put down}}.
Thus TP is compatible with A and A is compatible with M.

{} {} {TryCounter 6= 0}

{}

{TryCounter = 0} {}

q0 q1 q2

q3

q4 qf

Call OM
OM \ {HangUp} OM \ {HangUp}

HangUp

OM \ {HangUp}

OM \ {HangUp}

Fig. 4. A Test Purpose for Qui-Donc

B. Synchronization of an Abstraction and a Test Purpose

We synchronize two compatible LTSs as in [14]: an ab-
straction A and a test purpose TP. This synchronization is a
particular synchronized product of LTSs (see Def. 5), in which

{TryCounter = 0,
State = put down}

{TryCounter = 0,
State = welcome}

{TryCounter 6= 0,
State = welcome}

{TryCounter = 0,
State /∈ {welcome, put down}}

{TryCounter 6= 0,
State /∈ {welcome, put down}}

Call
HangUp

Delay

Enter

HangUp

Enter Enter

Delay

Enter

Delay

HangUp

HangUp

Delay

Enter

Enter
Delay

Delay

Fig. 5. An Abstraction of the Qui-Donc System

the transitions that have the same label are synchronized when
their source and target states are compatible and when they
are not reflexive in the abstraction. The reflexive transitions
of A are not considered for the synchronized product because
they do not help in progressing towards a target state of the
TP. But they are essential for the instantiation of the abstract
tests. Consequently, the input SP of the instantiation function
of Fig. 2 is defined as in Def. 5, except that this time the
reflexive transitions of A are taken into account. It is defined
from Def. 5 by suppressing the conditionqA 6= q′A of the
fourth item.

Definition 5 (Synchronized Product of two compatible LTSs):
The synchronized product between a test purpose
〈OM , QP , QP

0 , ∆P , APP , LP , QP
f 〉 with a compatible

LTS 〈OM , QA, QA
0 , ∆A, APA, LA, QA

f 〉 of an abstraction is
an LTS 〈OM , Q, Q0, ∆, APA, L, Qf〉, where:

• Q(⊆ QP × QA) is the subset of compatible pairs
(qP , qA) of the cartesian productQP × QA,

• Q0(⊆ QP
0 ×QA

0 ) is the subset of compatible pairs of the
cartesian productQP

0 × QA
0 ,

• for any state(qP , qA) ∈ Q, L((qP , qA)) = LA(qA),
• for any pair of pairs of compatible states

((qP , qA), (q′P , q′A)), (qP , qA)
o
→ (q′P , q′A) if

qP o
→ q′P , qA o

→ q′A andqA 6= q′A,
• Qf = {(qP , qA) | (qP , qA) ∈ Q∧qP ∈ QP

f ∧qA ∈ QA
f }.

Notice thatQP
0 = {qP

0 }. The stateqP
0 is always compatible

with any state ofQA
0 becauseLP (qP

0 ) = {}.

VI. SET OF ABSTRACTION PREDICATESDEFINITION

In this section, we present how we define a set of abstraction
predicates from a test purpose TP and a behavioral model M.
To compute the abstraction, we useGeneSyst[8]. It requires
that a set of symbolic states is defined by a set of predicates.
This is a kind of predicate abstraction [15], [16], [12] thatuses
a first-order theorem prover on the set theory.

We consider in this section a test purpose TP defined as an
LTS and a behavioral model M defined as a guarded action
system according to Def. 4. We call state predicate of TP a
set of atomic propositions that labels a state of TP.

The set of abstraction predicates is defined w.r.t. the state
predicates and the actions appearing in TP. We propose to
define this set of in two steps:



• extraction of the subsetXA of the variables ofXM that
are used in the state predicates of TP or modified by the
actions explicitly fired in TP,

• partition of the domains of these variables according to
their use in the state predicates and in the actions of TP.

The set of abstraction predicates is defined from a TP that is
an LTS compatible with the semantics of M. In our example,
the action names in the TP of Fig. 4 areCall andHangUp. The
state predicates are about the state variableTryCounter.

A. Extraction of the Variable Names

We defineOP (⊆ OM ) as the set of the actions explicitly
fired in TP, i.e. the ones that appear at least once in the labels
of the graphical representation of TP without being subtracted
from OM . We haveOP =̂ {HangUp, Call} with Fig. 4.

The set of variablesXA(=̂ XA
sp ∪ XA

op) of the abstraction
A is the union of the set of variables of M that are used in
the state predicates of TP, denoted byXA

sp, and the set of
variables modified by all the actions of TP, denoted byXA

op:

• XA
sp =̂

⋃
q∈QP{x | x ∈ V is in LP(q)},

• XA
op =̂ {x| for anyo in OP the definitionT M

o (XM , X ′M )
contains a predicatex′ = e wheree 6= x}.

For the example of Fig. 4, the set of variables abstracting
the Qui-Donc isXA =̂ {TryCounter, State}. TryCounter (∈ XA

sp)
is used in the state predicates andState (∈ XA

op) is modified
by bothCall andHangUp (see Fig. 3) in the TP of Fig. 4.

B. Partition of the Variable Domains

To define the set of sub-domains of the variables ofXA,
we define(i) the set of sub-domains issued from the state
predicates of TP and(ii) the sub-domains of the symbolic
states targeted by the actions of TP. Then we split these sub-
domains into parts so as to realize the smallest partition of
domains of each variable ofXA.

The set SDx
sp for item (i) is the union of the atomic

predicates, on the variablex, that label the states of TP:

SDx
sp =̂

⋃

q∈QP

{x ∈ V | x ∈ V is in LP (q)}.

We obtain for example the two following sub-domains for the
variableTryCounter of the TP in Fig. 44:

SDTryCounter
sp =̂ {TryCounter = 0, TryCounter 6= 0}.

Let X be a set of variables. To distinguish between a
variablex and the others inX , we defineZ = X \ {x}.

The set of sub-domains issued from the actions (itemii)
for a variable x is the set of strongest postconditions of
every EGA a of every action used in TP (∈ OP ) from the
preconditionp =̂ x ∈ DM (x). It is denoted bysp(p, a) with
sp(x ∈ DM (x), a) =̂ x′ ∈ V such that

x′ ∈ V ⇔ ∃x · ∃Z · ∃Z ′·

(
∧

z∈Z

(z ∈ DM (z) ∧ z′ ∈ DM (z)) ∧ a ∧ x ∈ DM (x)).

4Notice that we have simplified the writing of the predicates that should
have been denoted byTryCounter ∈ {0} andTryCounter ∈ 1..2.

Let no be the number of EGA of the actiono. The set of
sub-domainsSDx

op is defined as:

SDx
op =̂

⋃

o∈OP ,i∈1..no

{x ∈ V | x′ ∈ V =

sp(x ∈ DM (x), T M
oi

(XM , X ′M ))}.

For example, the strongest postcondition for the precondi-
tion State ∈ DM (State) of the only EGA ofCall is the predicate
State′ ∈ {welcome}.

So we haveSDx
sp∪SDx

op = {x ∈ V1, x ∈ V2, . . . , x ∈ Vn}.
When the sub-domainsVi intersect, we partition them. If the
set of sub-domains do not overlap the whole domain ofx,
we add as the last sub-domain the complement of the union
of the sub-domains. So the set of sub-domainsSDx of any
variablex of XA is the smallest partition ofDM (x) w.r.t. the
set SDx

sp ∪ SDx
op whose cardinal isn. Let F1(1..n) be the

set of non empty finite parts of the set1..n and ∁J be the
complementary set ofJ in 1..n. The partition is defined as:

SDx =̂
⋃

J∈F1(1..n)

{x ∈ (
⋂

j∈J

Vj \
⋃

i∈∁J

Vi)} ∪

{x ∈ (DM (x) \
⋃

j∈1..n

Vj)}.

Finally, the set of sub-domains is defined as:

SD =̂
⋃

x∈XA

SDx

For example, the State variable has three sub-
domains: State ∈ {welcome}, State ∈ {put down},
State ∈ {enter num, find urgency, find num, busy} (shortly
State /∈ {welcome, put down}). They are obtained as follows.
The variable State is not used in the state predicates
(SDState

sp = {}). The variableState is modified by every
action appearing in TP (Call, HangUp). State ∈ {welcome}
is the strongest postcondition of the actionCall and
State ∈ {put down} is the strongest postcondition of the action
HangUp. State /∈ {welcome, put down} is the complement of the
domain of the variableState.

We can obtain the predicates that define the sub-domains
by constraint solving. This requires all the domains of the
variables to be defined as finite sets, which is usual in a model
for the test.

The abstraction predicates define a set of symbolic states
as the cartesian product of the sets of the abstract domains
of any variable ofXA. We obtain for our example the set
of abstraction predicates shown in the following table. This
defines six symbolic states. Only five of them are reachable
and appear in the abstraction computed byGeneSystand
shown in Fig. 5.

Variable Sub-domains
TryCounter TryCounter = 0, TryCounter 6= 0

State
State = welcome, State = put down,

State /∈ {welcome, put down}

In Proposition 1, we prove that with the assumption that the
tester designs a TP compatible with M, this definition of the set



of abstraction predicates SD makes that the TP is compatible
with an abstraction A computed from them.

Proposition 1: Consider a TP compatible with M and an
abstraction A computed from the set of abstraction predicates
SD. Then the TP is compatible with A.

Proof: By assumption, the test purpose TP is compatible
with M. Hence the three following conditions hold:

• OP ⊆ OM ,
• XP ⊆ XM ,
• for anyx in XP and for any atomic propositionx ∈ {v}

in APM , there exists an atomic propositionx ∈ V in
AP P such thatv ∈ V .

By definition of XA in this section,XP ⊆ XA and XA ⊆
XM . By definition of SD in this section, it is a partition of the
domains of the variables ofXA andSD = APA. Moreover
OA = OM . Let SDsp be the union ofSDx

sp for anyx in XP.
By definition of SDsp, AP P = SDsp. Then, by definition of
SD, the predicates ofSDsp are redefined inSD from some
predicate ofSDop in such a way that the predicates ofSD
define a domain partition of any variable ofXP. Hence for any
predicatex ∈ V A in APA that concerns a variablex of XP,
there exists a predicatex ∈ V P in AP P such thatV A ⊆ V P.
Therefore TP is compatible with A.

VII. A BSTRACTION AND TEST GENERATION

A. Generation of the Abstraction

We useGeneSystto generate an abstraction from a behav-
ioral model M and a set of symbolic states. This abstraction
is an LTS that is an over-approximation of M: it simulates
all the executions of M, but adds new ones.GeneSysttries to
prove automatically the feasibility or not of transitions between
the symbolic states. It proceeds by weakest precondition com-
putations and satisfiability evaluations over first order logical
formulas [8]. GeneSysttakes B specifications [13] as input.
The weakest precondition of a statementS that leads to the
abstract statea′ is defined by the B substitution calculus. It is
denoted by[S]a′. A transition from an abstract statea to a′ is
feasible ifa ∧ [S]a′ is satisfiable. Ifa ⇒ ¬[S]a′ is valid then
the transition is not feasible. On the contrary, when the proof
of ∃X · (a ∧ [S]a′) succeeds, the transitiona → a′ is added
to the LTS. It is also added when this proof is inconclusive,
although it is possibly infeasible. This makes the abstraction
more over-approximated.

Thus, some of the symbolic tests that we generate from the
abstraction may not be possible to instantiate as executions of
the behavioral model. This would result in a bad coverage of
the abstraction by the instantiated tests. It is possible touse an
interactive prover to try to get rid of the proof failures. Wehave
chosen another alternative: using constraint solving techniques
makes it possible to automatically check the feasibility of
the unproved transitions when the state space is finite. The
applicability of this technique depends on the size of the
domains, as it proceeds by partial consistency checking and
domain enumeration. We will assess the practical impact of
the instantiation problem on some examples in Sec. VIII.

B. Generation and Instantiation of the Symbolic Abstract Tests

We compute the symbolic abstract tests as selected execu-
tions of the abstraction, by running an implementation [9] of
the chinese postman algorithm on the synchronized product
SP of the abstraction with the TP (see Fig. 2). This provides a
set of paths such that every transition of SP is covered at least
once. Every path is a symbolic abstract test that terminates
in a final state of SP. It is a sequence of non parameterized
action calls. We still have to instantiate the tests, i.e. to
find parameter values that make these sequencings of actions
possible according to the behavioral model M. We proceed by
a symbolic animation of the tests on M. It is possible that a
sequence can not be instantiated as it is: an action might notbe
enabled on a given instance of a symbolic state. Thus we will
use a version of SP augmented with its reflexive transitions to
complete the instantiation. Indeed, these transitions maylead
to another instance of the same symbolic state, from which
the action could be enabled. As a result, we insert bounded
sub-sequences of (reflexive) action calls into the original
sequence. We have implemented this instantiation procedure.
Although naive and incomplete (invoking reflexive transitions
is not always sufficient, sometimes cycles are necessary), our
algorithm gave satisfactory instantiation results on our case
studies, as shown in Sec. VIII.

VIII. E XPERIMENTAL RESULTS

We have applied our method to three various cases of reac-
tive systems: a reverse phone book service (Qui-Donc [10]),
an automatic conveying system (Robot [17]) and an electronic
purse (DeMoney [18]). Tests have been generated for each of
them from two TPs, on a 2.8GHz Pentium with 1GB of RAM.

The first two parts of Table I show the size of the behavioral
models and the TPs. The symbol “♯” meansnumber of, “Act.”
stands forActions, and “Trans.” stands forTransitions. For
example, the TP of Fig. 4 (in bold font in Table I) is made
of 6 states, 8 transitions, 2 explicit action calls and two non
empty sets of atomic predicates. The behavioral model of the
Qui-Donc is made of 4 actions, with a total of 20 EGAs. It
is 122 lines long and it defines 13 states from three variables
whose average domain size is 3.66.

A. Abstraction Generation and Synchronous Product

The last two parts of Table I are about the abstraction gener-
ation and the synchronous product (SP) computing.GeneSyst
failed to prove from 66% up to 90% of the transitions. We
have checked, with success on our examples, the satisfiability
of the unproved POs by means of a constraint solver [19] (see
the Filter. columns in Table I). Thefiltered transitionsare the
ones really unsatisfiable. There are only few of them (from
3% up to 18%), with the exception of DeMoney. Filtering is
almost immediate for Qui-Donc and the Robot, modelled with
variables enumerated on small domains. But it takes one hour
for DeMoney, whose model has some numerical variables.



Case studies
Behavioral Model Test purpose Abstraction generation SP

♯Act. ♯EGA
♯Enum. ♯Num.

♯Lines ♯States♯States♯Trans.♯Act.
♯State

♯States♯Trans.♯PO
Computing ♯Unproved ♯Filtered Filtering

♯States♯Trans.
♯Filtered

Var. Var. Pred. time Trans. Trans. time Trans.

Qui-Donc 4 20 3 (3.66) 0 122 13
3 3 2 0 5 24 180 2 min. 16 (66.7 %) 2 (12.5 %)

≤ 1 sec.

9 36 3
6 8 2 2 5 18 147 1.5 min. 12 (66.7 %) 2 (17.7 %) 12 54 8

Robot 9 10 6 (3) 0 107 372
6 7 3 2 6 37 452 5 min. 32 (86.5 %) 1 (3.1 %) 17 106 3
7 14 0 4 8 50 557 8 min. 37 (74 %) 0 (0 %) 23 214 0

DeMoney 11 42 3 (9) 6 530 1030
3 4 2 0 3 148 1138 35 min. 133 (89.8 %)49 (36.8 %)

1 h.
7 332 111

4 5 2 2 7 228 9690 1 h. 30 min.188 (82.4 %)56 (29.8 %) 18 422 90

TABLE I
METRICS ONBEHAVIORAL MODEL, ABSTRACTIONGENERATION AND SIZE OF SYNCHRONOUSPRODUCT

Model
LTG Test Generation

Test generation
Instantiation of the SP tests without Filtering Instantiation of the SP tests with Filtering

from M

♯Tests
AverageStandard

♯Tests
Average♯Symbolic Average♯Instant.Average ♯Instant. tests /

Time
♯Symbolic Average♯Filtered ♯Instant.Average ♯Instant. tests /

Time
length deviation length tests length tests length ♯Symbolic tests tests length Trans. tests length ♯Symbolic tests

Qui-Donc
20 3.65 1.02 23 9.3 10 5.3 4 3 4/10 (40%) ≤ 1 sec. 10 4.9 2 6 3.8 6/10 (60%) ≤ 1 sec.
9 2.66 0.81 26 8.3 15 8 5 5.6 5/15 (33%) ≤ 1 sec. 11 8.2 2 6 7.8 6/11 (55%) ≤ 1 sec.

Robot
19 4.10 1.36 71 149.3 12 11.1 7 21 7/12 (58%) 3 min. 11 11.18 1 7 23.7 7/11 (64%) 2 min.
24 4.25 1.21 808 32.2 23 9.1 8 23.1 8/23 (35%) 5 min. 23 9.1 0 8 23.1 8/23 (35%) 5 min.

DeMoney
26 1.57 0.53

-
32 10.88 0 - 0/32 (0%) 2 h. 19 10.78 49 0 - 0/19 (0%) 2 h.

13 1.07 0.14 42 10.2 0 - 0/32 (0%) 2 h. 18 10.1 56 17 12.48 17/18 (94%) 1 h.

TABLE II
TESTGENERATION FROMSTATIC AND DYNAMIC CRITERIA, TESTSINSTANTIATION STATISTICS

B. Symbolic Test Generation and Complementarity

We have presented in [6] a technique to build a new
behavioral model synchronized with a TP, from which LTG
generates tests. The results in the first part of Table II have
been obtained with this technique. We also have tried (see
the second part of Table II) to first synchronize directly the
LTS semantics of the behavioral models with the TPs, without
using abstractions, and then to generate the tests with a chinese
postman walk. Although it has been possible to do so with
Qui-Donc and the Robot, it failed with DeMoney due to
the size of the resulting state space. This shows the utility
of using abstractions to apply this test generation method.
The complementarity with the LTG tests has been studied
in [6]. It also appears in our results. LTG covers every EGA
and the chinese postman walk covers every transition. For
example with the first TP of the Robot, 80 test steps have
been generated by LTG to cover every EGA, and more than
10500 tests have been generated to cover every transition.

The tests in the last two parts of Table II have been obtained
(in less than one second) by a chinese postman walk on the
synchronized product SP between an abstraction and a TP.
The tests of the third part have been obtained without filtering
the unfeasible transitions by constraint solving, whereasin the
fourth part they have been filtered. Although the transitions of
the without filtering version of the abstraction are a superset
of the ones of the with filtering version, the “without filtering”
tests are not a superset of the “with filtering” ones. They
cannot be compared as the chinese postman algorithm does
not necessarily covers the same traces of the two abstractions.

C. Test Instantiation

Using abstractions require the generated tests to be in-
stantiated from the concrete model. But our abstractions are
over-approximations, and they contain unproved transitions
potentially infeasible. The results of the “without Filtering”
part in Table II are for abstractions where every unproved
transition has been kept. From 35% up to 58% of the tests
have been instantiated, except with the two TPs of DeMoney
for which no test have been instantiated. In contrast, for the
results of the “with filtering” part of Table II, we have removed

the filtered transitions from the abstraction. From 35% up
to 94% of tests have been instantiated, except with one TP
of DeMoney. There are two reasons why with filtering, the
ratio of instantiated tests grows. There are less transitions,
thus less symbolic tests. Moreover, the former symbolic tests
going through infeasible transitions are replaced by othertests,
possibly instantiable. For example, with the second TP of
DeMoney, the first transition of every symbolic test generated
without filtering is infeasible, so that no test is instantiable. In
contrast, with filtering, this transition is replaced by a feasible
one and 94% of the tests become instantiable. Notice that even
without unproved POs, the abstraction computed byGeneSyst
is still an over-approximation and may produce uninstantiable
tests. Our study shows that except in one case, this has a
limited practical impact on our examples.

IX. CONCLUSION, RELATED AND FURTHER WORKS

We have presented in this paper an MBT process based on
the use of an abstraction A of a model M. A is generated from
a set of abstraction predicates that are defined based on the
state variables involved and modified by a test purpose TP.
A and TP are synchronized into a model SP made of all the
sequences of A that match TP. By covering all the states and
transitions of SP we get a set of symbolic abstract tests. Since
A is an abstraction that models more executions than M, whose
states and transitions are over-approximated, it is possible that
at the end, the instantiated test suites do not cover all the states
and all the transitions of SP. But Sec. VIII shows that the ratio
of instantiated tests is satisfactory in practice, although we use
a naive and incomplete algorithm.

Our method helps in finding executions of M that match
TP. SP brings the following information to help the search
for TP executions that exist in M: the predicates that define
the symbolic states and the instantiation of the generic action
calls. Our first experimental results indicate that the method
should provide a valuable help in practice. We have shown
in [6] the complementarity of our tests with the LTG ones.

Other works are about the generation of tests from ab-
straction. We make a predicate abstraction as in [16]. T. Ball
uses it to generate structural tests of a program. He computes



a boolean abstraction from a set of predicates which is the
set of all the control-flow conditions of the program. We
use an abstraction to generate functional tests in an MBT
approach. We compute abstractions from a set of predicates
defined from a test purpose as presented in Sec. VI. These
two abstraction methods are based on weakest precondition
and strongest postcondition computations, but by considering
a model instead of a program, our method benefits from
invariant properties to obtain a finer abstraction. Moreover, as
we are in an MBT context, we are able to compute an oracle.
Both methods aim at maximizing the ratio of the number of
instantiated tests to the number of symbolic tests. We compute
an over-approximation and we experimentally show that this
ratio is between 35% and 94% on our case studies (except
in a particular case that is explained in Sec. VIII-C) using
an incomplete algorithm. In [16], Ball presents a method to
compute a lower bound of the set of reachable states. Then
he only generates instantiable tests which cover this set. Our
LTS should be extended in Tri-Modal Transition System [20]
to make this lower bound computation possible.

The method implemented in the tool Agatha [5] also com-
putes an abstraction from a model, but by applying a symbolic
execution technique. This abstraction approach on data of
models is very different from predicate abstractions. In [5],
Agatha does not make use of test purposes.

The methods in [21] implemented in STG [4] use an ab-
straction defined by the user and modelled by an IOSTS (Input
Output Symbolic Transition System). These approaches use
test purposes synchronized with abstractions, both definedas
IOSTS. Then the synchronized product allows for generating
tests after an optimization step, which consists of a pruning of
unreachable states by abstract interpretation. Our approach is
very similar in that we also use test purposes and abstractions,
as well as synchronization and constraint solving techniques to
instantiate the symbolic tests. The two following points explain
the differences. First, our abstractions are computed froma set
of predicates that are defined from the test purposes, whereas
the abstractions used by STG are given by the user. Second, the
optimization is performed by the abstraction computation.It
consists of using the invariant properties (that do not exist in an
IOSTS) of the models in the weakest precondition computation
for the minimization of the symbolic state space and of the
feasible transitions.

The approach in our paper differs from the one of [22],
where the test purposes are generic and aim at achieving a
static coverage of the instructions and the conditions. Our
method intends to become integrated into LTG, that already
achieves such a static coverage, to complete it with tests issued
from dynamic criteria. Another difference with [22] is thatour
approach relies on abstractions.

As in [23] and [24], it is also possible to describe test
purposes by means of LTL properties, that specify particular
state sequencings. Our language allows for specifying action
calls in addition to states descriptions.

This work has to be pursued to better assess the contribution

of the method, from a practical point of view. It seems
necessary to reduce the time for generating the abstraction,
for example by using syntactic abstraction as defined in [12].
Also, a finer combination of the proof and constraint solving
techniques may significantly help to remove the transitions
that really cannot be instantiated from SP. Our valuation
algorithm also needs to be improved. This will provide a better
generation of the instantiated tests.

REFERENCES

[1] E. Jaffuel and B. Legeard, “LEIRIOS Test Generator: Automated test
generation from B models,” inB’2007, Tool Session, ser. LNCS, vol.
4355. Springer, 2007, pp. 277–280.

[2] M. Barnett, K. Leino, and W. Schulte, “The spec# programming system:
An overview,” in CASSIS’04, ser. LNCS, vol. 3362. Springer, 2005,
pp. 49–69.

[3] C. Jard and T. Jéron, “TGV: theory, principles and algorithms,” Software
Tools for Technology Transfer, vol. 7, no. 1, pp. 297–315, 2005.

[4] B. Jeannet, T. Jéron, V. Rusu, and E. Zinovieva, “Symbolic test selection
based on approximate analysis,” inTACAS’05, ser. LNCS, vol. 3440,
2005.

[5] N. Rapin, C. Gaston, A. Lapitre, and J.-P. Gallois, “Behavioral unfolding
of formal specifications based on communicating extended automata,”
in ATVA’03, Automated Technology for Verification and Analysis, 2003.

[6] J. Julliand, P.-A. Masson, R. Tissot, and P.-C. Bué, “Generating tests
from B specifications and dynamic selection criteria,”FAC, Formal
Aspects of Computing, 2009, to appear (accepted manuscript). Revised
and extended version of a paper from the ABZ’08 conference.

[7] J. Julliand, P.-A. Masson, and R. Tissot, “Generating security tests in
addition to functional tests,” inAST’08. ACM Press, 2008, pp. 41–44.

[8] D. Bert, M.-L. Potet, and N. Stouls, “Genesyst: a tool to reason about
behavioral aspects of B event specifications,” inZB’05, ser. LNCS, vol.
3455, 2005.

[9] H. Thimbleby, “The directed chinese postman problem,”Software:
Practice and Experience, vol. 33, no. 11, pp. 1081–1096, 2003.

[10] M. Utting and B. Legeard,Practical Model-Based Testing. Morgan
Kaufmann, 2006.

[11] E. Dijkstra, “Guarded commands, nondeterminacy, and formal derivation
of programs,”C. ACM, vol. 18, 1975.

[12] K. S. Namjoshi and R. P. Kurshan, “Syntactic program transformations
for automatic abstraction,” inCAV’00, ser. LNCS, vol. 1855, 2000, pp.
435–449.

[13] J.-R. Abrial,The B Book. Cambridge Univ. Press, 1996.
[14] T. Jéron and P. Morel, “Test generation derived from model-checking,”

in CAV, 1999, pp. 108–121.
[15] S. Graf and H. Saı̈di, “Construction of abstract state graphs with pvs,”

in CAV’97, ser. LNCS, vol. 1254, 1997, pp. 72–83.
[16] T. Ball, “A theory of predicate-complete test coverageand generation,”

in FMCO’04, ser. LNCS, vol. 3657, 20005, pp. 1–22.
[17] F. Bouquet, P.-C. Bué, J. Julliand, and P.-A. Masson, “Génération de

tests à partir de critères dynamiques de sélection et parabstraction,” in
AFADL’09, Toulouse, France, Jan. 2009, pp. 161–176.

[18] R. Marlet and C. Mesnil, “Demoney: A demonstrative electronic purse –
card specification,” Trusted Logic, Tech. Rep. SECSAFE-TL-007, 2002.

[19] F. Bouquet, B. Legeard, and F. Peureux, “CLPS-B: A constraint solver
to animate a B specification,”Software Tools for Technology Transfer,
vol. 6, no. 2, pp. 143–157, 2004.

[20] P. Godefroid and R. Jagadeesan, “On the expressivenessof 3-valued
models,” inVMCAI’03, ser. LNCS, vol. 2575, 2003, pp. 206–222.

[21] J. Calamé, N. Ioustinova, and J. van de Pol, “Automaticmodel-based
generation of parameterized test cases using data abstraction,” ENTCS,
vol. 191, pp. 25–48, 2007.

[22] G. Fraser, M. Weiglhofer, and F. Wotawa, “Coverage based testing with
test purposes,” inQSIC’08, 2008, pp. 199–208.

[23] P. Ammann, P. Black, and W. Majurski, “Using model checking to
generate tests from specifications,” inICFEM’98. IEEE, 1998, pp.
46–54.

[24] H. Hong, I. Lee, O. Sokolsky, and H. Ural, “A temporal logic based
theory of test coverage and generation,” inTACAS’02. Springer, 2002,
pp. 327–341.


