(GROUPE DE TRAVAIL MTV?2

Combining Frama-C and PathCrawler for C Program
Debugging

Omar Chebaro!2, Nikolai Kosmatov?!, Alain Giorgetti2’3, and Jacques Julliand?

L CEA, LIST, Laboratoire Siireté des Logiciels, PC 94, 91191 Gif-sur-Yvette France
firstname.lastname@cea.fr
2 LIFC, University of Franche-Comté, 25030 Besangon Cedex France
firstname.lastname@lifc.univ-fcomte. fr
3 INRIA Nancy - Grand Est, CASSIS project, 54600 Villers-lés-Nancy France

Extended Abstract

Software validation remains a crucial part in software development process. Software
testing accounts for about 50% of the total cost of software development. Automated
software validation is aimed at reducing this cost. The increasing demand has motivated
much research on automated software validation. Two major techniques have improved
in recent years, dynamic and static analysis. Traditionally, they were viewed as separate
domains.

Static analysis examines program code and reasons over all possible behaviors that
might arise at run time. It is often necessary to use approximations. Static analysis is
conservative and sound: the results may be weaker than desirable, but they are guaran-
teed to generalize to all executions. Dynamic analysis operates by executing a program
and observing this execution. Dynamic analysis is efficient and precise because no ap-
proximation or abstraction needs to be done: the analysis can examine the actual, exact
run-time behavior of the program for the corresponding test case. It can be as fast as
program execution.

The pros and cons of the two techniques are apparent. If dynamic analysis detects
an error then the error is real. However, it cannot in general prove the absence of errors.
On the other hand, if static analysis reports a potential error, it may be a false alarm.
However, if it does not find any error (of a particular kind) in the overapproximation of
program behaviors then the analyzed program clearly cannot contain such errors.

Recently, there has been much interest in combining dynamic and static methods for
program verification. Static and dynamic analyses can enhance each other by providing
valuable information that would otherwise be unavailable. This paper reports on an
ongoing project that aims to provide a new combination of static analysis and structural
testing of C programs. We implement our method using two existing tools: Frama-
C, a framework for static analysis of C programs, and PathCrawler, a structural test
generation tool.

Frama-C [1] is being developed in collaboration between CEA LIST and the ProVal
project of INRIA Saclay. Its software architecture is plug-in-oriented and allows fine-
grained collaboration of analysis techniques. Static analyzers are implemented as plug-
ins and can collaborate with one another to examine a C program. Let us introduce the
value analysis plug-in based on abstract interpretation. This plug-in computes and stores
supersets of possible value ranges of variables at each statement of the program. Among

217



Deuxiémes journées du GDR GPL — Université de Pau — 10 au 12 Mars 2010

other applications, these over-approximated sets can be used to exclude the possibility
of a run-time error. The value analysis is correct: it emits an alarm for an operation
whenever it cannot guarantee the absence of run-time errors for this operation. The
value analysis memorizes abstract states at each statement and provides an interface for
other plug-ins to extract these states.

Developed at CEA LIST, PathCrawler [2] is a test generation tool for C functions
respecting the all-paths criterion, which requires to cover all feasible program paths,
or the k-path criterion, which restricts the generation to the paths with at most k con-
secutive iterations of each loop. The PathCrawler generation method is similar to the
so-called concolic, or dynamic symbolic execution. The user provides the C source code
of the function under test. The generator’s main loop is rather simple: given a partial
program path 7, the main idea is to symbolically execute it using constraints. A solu-
tion of the resulting constraint solving problem will provide a test case exercising a path
starting with 7. Then concrete execution of the test case allows to obtain the complete
path. The partial paths are explored in a depth-first search.

We present an original combination of static analysis and structural test generation
for validation of C programs, in particular, for detection of run-time errors. The main
idea is to call first a static analysis tool (Frama-C) in order to generate alarms for the
statements for which the absence of run-time errors is not ensured by static analysis.
Second, these alarms are transferred to a structural test generation tool (PathCrawler)
where they guide test generation trying to confirm alarms by activating bugs on some
test cases. Our ongoing implementation of this method, called SANTE, assembles two
heterogeneous tools using quite different technologies (such as abstract interpretation
and constraint logic programming).

We evaluate our method by several experiments on real-life C programs, and com-
pare the results with other methods. Static analysis alone will in general just generate
alarms (some of which may be false alarms), whereas our method allows to confirm
some alarms as real bugs and provides a test case activating each bug. This is done
automatically, avoiding time-consuming alarm analysis by the validation engineer, at
least for confirmed alarms, the task which requires significant expertise, experience and
deep knowledge of source code. Stand-alone test generation, when it is not guided by
generated alarms for some statements, does not detect as many bugs as our combined
method. When guided by the exhaustive list of alarms for all potentially threatening
statements (not filtered by static analysis), test generation usually has to examine more
infeasible paths and takes more time than our combined method (or even times/spaces
out). In all cases, our method outperforms the use of each technique independently.

References

1. Frama-C: A framework for static analysis of C programs (2007-2010) http:/frama-c.cea.ft/.

2. Botella, B., Delahaye, M., Hong-Tuan-Ha, S., Kosmatov, N., Mouy, P., Roger, M., Williams,
N.: Automating structural testing of C programs: Experience with PathCrawler. In: AST’09,
Vancouver, Canada (May 2009)

218



