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Abstract— This paper introduces a new notion of chaotic The chaos theory we consider is Devaney’s topologi-
algorithms. These algorithms are iterative and are based on cal| chaos. In addition to being recognized as one of the
so-called chaotic iterations. Contrary to all existing stulies best mathematical definition of chaos, this theory offers a

on chaotic iterations, we are not interested in stable stateof
such iterations but in their possible unpredictable behavrs. By
establishing a link between chaotic iterations and the notin of
Devaney'’s topological chaos, we give conditions ensuringpat
these kind of algorithms produce topological chaos. This ks
to algorithms that are highly unpredictable. After presenting
the theoretical foundations of our approach, we are intereted
in its practical aspects. We show how the theoretical algotiims
give rise to computer programs that produce true topologica
chaos, then we propose applications in the area of informatin
security.

framework with qualitative and quantitative tools to ewaf!
the notion of unpredictability. As an application of our
fundamental results, we are interested in the area of infor-
mation security. We propose in this paper a new approach of
security which is based on unpredictability as it is defined
by Devaney’s chaos.

The paper begins by introducing the theoretical foundation
of the new approach. We recall the definition of Devaney’s
topological chaos as well as the definition of discrete abaot

| INTRODUCTION iterations. Althoggh these definitions are dis.tipct fromf.e.a
other, we establish a link between them by giving conditions
The use of chaos in various fields of information securityinder which chaotic discrete iterations generate a Devaney
such as data hiding, hash functions, or pseudo-random nugpological chaos. Because chaotic iterations are vetgdui
ber generators is almost always based on the conception of @r computer programming, this link allows us to generate
gorithms that include known chaotic maps such as the legistbevaney’s chaos topological in the computer science field.
map. The goal is to obtain an algorithm which preserveafter having studied the theoretical aspects of our apgroac
the chaotic properties of the included chaotic functior®. F we focus on practical aspects. The important question is how
example, in [13] and [12], a watermal¥ is encrypted in to preserve the topological chaos properties in a set of @ fini
W, by using the bitwise exclusive oWe = W® X, whereX  number of states. This question is answered by introducing
is a logistic map. Then, pixels of the carrier image designegl concept we calbecure chaotic information machin€his
to embed these bits are selected with the 2-D Arnold’s ca a Mealy machine generating chaos as defined by Devaney
map. A similar use of chaotic maps for watermarking cagSection IV). We also give some applications of our approach
be found in e.g. [15], [10], [7], [3] and [4]. In the domain of chaos, in the domain of information security. Algorithms
of hash functions, the use of chaotic maps is seen in eigitended for information security and based on this new
[6], [11], [14] and [8]. However, without rigorous proof it approach are explained in Section V, in the hash function
is not indisputable that an algorithm that includes chaotigomain
functions preserves chaos properties: for example, usiag t
logistic function with other “obvious” parameters does not The rest of this paper is organized as follows. In Section
guarantee that the algorithm is chaotic. Moreover, evengf t ||, the definitions of Devaney’s chaos and discrete chaotic
algorithm obtained by the inclusion of chaotic maps is ftseliterations are recalled. A link between these two notions
chaotic, the implementation of this algorithm on a maching established and sufficient conditions to obtain Devaney’
can cause it to lose its chaotic nature. This is due to thepological chaos from discrete chaotic iterations aremgiv
finite nature of the machine numbers set. These issues @ection Ill. In Section 1V, the question on how to apply the
discussed in this document. theoretical result is raised and applications in the comput
In this paper we don’t simply integrate chaotic maps hopscience field are given in Section V. The paper ends with a
ing that the security algorithm remains chaotic, we coreeivconclusion in which our contribution is summarized and the
algorithms for computer security that we mathematicallplanned future work is discussed.
prove chaotic. We raise the question of their implementatio
proving in doing so that it is possible to design a chaotic

algorithm and a chaotic computer program. Il. BASIC RECALLS
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This section is devoted to basic definitions and terminolo-
gies in the field of topological chaos and in the one of chaotic
iterations.



A. Devaney’s chaotic dynamical systems In other words, at the'" iteration, only theS"-th cell is
Consider a metric space(d) and a continuous function terated”. Note that in a more general formulaticsf, can
frX— X, be a subset of components ahgk™1)s» can be replaced by

f(X)sn (Wherek < n - 1), describing for example delays
Definition f is said to betopologically transitiveif, for any  transmission (see e.g. [1]). For the general definition ehsu
pair of open setd),V c X, there existk > 0 such that chaotic iterations, see e.g. [9].

f\u)NV £ 2.
[1l. CHAOTIC ITERATIONS AS DEVANEY'S
Definition An element (a point)x is a periodic element CHAOS

(point) for f of periodn € IN*, if f"(x) = x. The set of

A. Th topological
periodic points off is denotedPer(f). © new fopological space

In this section we will put our study in a topological
Definition (X, f) is said to beregular if the set of periodic context by defining a suitable metric space where chaotic
points is dense i, iterations are continuous.
1) Defining the iteration function and the phase space:
Vx € X, ¥e>0,3p e Per(f),d(x. p) < &. Let 6 be thediscrete boolean metrjas(x,y) =0 & x =.
Definition f hassensitive dependence on initial conditionsGiven a functionf, define the function:
if there existso > O such that, for anyx € X and any F;: [LNJxBY — BN

neighborhoodv of x, there existsy € V andn > 0 such (KE) +— (E'.é(k i)+ f(E)k-m)
that|f"(x) — f"(y)| > 6. 6 is called theconstant of sensitivity ' I " jelINg
of f. where + and . are the boolean addition and product opera-

- . .__tions. Consider the phase space:
Let us now recall the definition of a chaotic topological P P

system, in the sense of Devaney [5]: X = [L;N]N x BN,

Definition f: X — X is said to bechaoticon X fif, and the map defined ok:
1) f _has sensn_lve depent_jt_ance on initial conditions, Gt (S,E) = (o-(S), F1(i(S), E)), @)
2) f is topologically transitive,
3) (X, f) is regular. where ¢ is the shift function defined byc(S"pen €

, ) , S — (S™new € S and i is the initial function
Therefore, quoting Robert Devaney: “A chaotic map pos;. (SMnew € S —> S° € [1;N]. Then the chaotic iterations

sesses three ingredients: unpredictability, indecompisa  yefined in (11-B) can be described by the following iteraton
and an element of regularity. A chaotic system is un-

predictable because of the sensitive dependence on initial { xifx )
conditions. It cannot be broken down or decomposed into X = G(XY).

two subsystems, because of topological transitivity. And, With this formulation, a shift function appears as a com-
the midst of this random behavior, we nevertheless have gdnent of chaotic iterations. The shift function is a famous
element of regularity, namely the periodic points which argxample of a chaotic map [5] but its presence is not sufficient
dense.” Fundamentally different behaviors are thus ptessibenough to claimG; as chaotic. In the rest of this section
and occur in an unpredictable way. we prove rigorously that under some hypotheses, chaotic
iterations generate topological chaos. Furthermore, ol tieet
suitability of chaotic iterations for computer programipine

In the sequelS" denotes then™ term of a sequenc&, also prove that this is true in the computer science field.

Vi denotes thé™ component of a vectoV and f* = f o 2) Cardinality of X: By comparingS andRR, we have the
..o f denotes th&™ composition of a functiorf. Finally, result.

the following notation is used[1;N] = {1,2,...,N}. Let
us consider asystemof a finite numbem of elements (or
cells), so that each cell has a boolestate Then a sequence
of length N of boolean states of the cells corresponds to a  Proof: Let ¢ be the map which transforms a strategy
particular state of the systemA sequence which elementsinto the binary representation of an element in 1) as
belong to[1;N] is called astrategy The set of all strategies follows. If the n'" term of the strategy is 0, then th& associ-

is denoted bys. ated digit is 0, or else it is equal to 1. With this construatio

Definition The setB denoting{0, 1}, let f : BN — BN be a ¢ : ILNI™ — [0.1] is surjective. But J01[ is isomorphic

Ty s : :
function andS € S be a strategy. Then, the so-callelthotic o R (x _e]O, 1['__> tan?(?T(X —3))isan |somorph|sm),_ S0 the
iterationsare defined by® e BN andvn e IN*, cardinality of [1;N]" is greater or equal to the cardinality of

RR. As a consequence, the cardinality of the Cartesian product

, x1-1 if SN i X = [L;N]N x BN is greater or equal to the cardinality of
vi e ILNLX ={ (foey), its=i. @ R =

B. Chauotic iterations

theorem 1 The phase spac¥ has, at least, the cardinality
of the continuum.



remark 1 This result is independent from the number of « If £ <1, thendk e IN, 10X > £ > 10D, But dg(S", S)
cells of the system. converges to 0, so

3) A new distanceWe define a new distance between two

_ /e d An, € N, VN > ny, dg(S", S) < 10 *+2),
pointsX = (S,E),Y = (S,E) € X by
d(X. Y) = de(E E) +dg(S é) thus aftemy, thek+ 2 first terms ofS" andS are equal.
— Ue ] S ] ’
As a consequence, the+ 1 first entries of the strategies
where N of G;(S",E") and G¢(S, E) are the sameQ; is a shift of
de(E,E) = Z 5(Ex, B, strategies) and due to the definitiondyf the floating part of
' e the distance betweerst, E") and S, E) is strictly less than
- 9 & |Sk- sk| 100D < g,
A(S.8) = Z .
In conclusion,

If the floor value|d(X,Y)] is equal ton, then the systems
E, E differ in n cells. In addition,d(X, Y) — [d(X,Y)] is a
measure of the differences between strate§iesdS. More
precisely, this floating part is less than @ and only if the
first k terms of the two strategies are equal. Moreover, if the
k" digit is nonzero, then th&" terms of the two strategies Gt is consequently continuous. n
are different. In this section, we proved that chaotic iterations can be
4) Continuity of the iteration function:To prove that modeled as a dynamical system in a topological space. In
chaotic iterations are an example of topological chaos én tithe next section, we show that chaotic iterations are a case

Ye > 0,3dNp = maXng, Nz, N2) € IN, ¥n > Np,

d(G(S"E";G(S.E)) <&

sense of Devaney [5[3¢+ must be continuous in the metric of topological chaos, according to Devaney.

space X, d).
theorem 2 Gy is a continuous function.

Proof: We use the sequential continuity. L&"( E™)new
be a sequence of the phase spatewhich converges to
(S.E). We will prove that(G¢(S", E“))ne]N converges to

(Gt(S.E)). Let us recall that for alln, S" is a strategy,
thus, we consider a sequence of strategiesd sequence of
sequences).

As d((S", EM); (S, E)) converges to 0, each distand£E", E)
anddy(S", S) converges to 0. Bull,(E", E) is an integer, so
Ang € IN, de(E", E) = 0 for anyn > ng

In other words, there exists a threshaigle IN after which
no cell will change its state:

dnp e IN,n>

In addition, ds(S",S) — 0, so dn; € IN,ds(S",S) < 107!
for all indexes greater than or equal 9. This means that
for n > ny, all the S" have the same first term, which 8°:

Ny, SS = So.

no=>E”=E.

vn >

Thus, after themaxno, n;)™ term, states ofE” and E are

identical and strategieS" and S start with the same first
term.

Consequently, states &¢(S", E") and G:(S, E) are equal,
so, after themaxno, n1)" term, the distancd between these
two points is strictly less than 1.

We now prove that the distance betwe(e@}f(S”, E”)) and

(G+(S. E)) is convergent to 0. Let > 0.

. If £ > 1, we see that distance betwe(@ﬂf (s", E“)) and

(Gf(S, E)) is strictly less than 1 after theaxng, ny)™"
term (same state).

B. Discrete chaotic iterations as topological chaos

To prove that we are in the framework of Devaney’s
topological chaos, we have to find a boolean functicsuch
that G¢ satisfies the regularity, transitivity and sensitivity
conditions. We will prove that the vectorial logical negati
2 XN) 3

fo(X]_,...,XN)Z(X_l,...

is a suitable function.
1) Regularity:

theorem 3 Periodic points of G, are dense inX.

Proof: Let (S,E) € X ande > 0. We are looking for
a periodic point §, E) satisfyingd((S, E); (S,E)) < &. As ¢
can be strictly lesser than 1, we must cho&se E. Let us
defineky(e) = [logio(€)] + 1 and consider the set

St ey = |S € 5/5 = K vk < ko(e))

Then, VS € Sz d(SE;GE) < =
It remains to chooseS €  Sgy such that
(S,E) = (S,E) is a perlodlc point for Gy,. Let
J = [iell..NJ/E #E, where §E) =G{(S,E)},

io = card(¥) and 11 < j2 < ..
Then,S € Sg ) defined by
. §k Sk, if k < ko(e),
o S5 = ik if ke {ko(e) + 1 ko(€) + 2, .... ko(€) + o},
« and Sk = SI, wherej < ko(&) + io is satisfyingj =
k (modko(e) + i), if k> ko(e) + io,
is such that §, E) is a periodic point, of periodo(e) + o,
which ise—closed to §, E).
As a conclusion, X, Gy,) is regular.

< Ji, the elements of7.



2) Transitivity: on the initial conditions, unpredictability, indecompbaity,

theorem 4 (X, Gy,) is topologically transitive. and uniform repartition.

Proof: Let us defineS : X — BN, such thats(S, E) = Two major problems typically oceur when trying 0 Qe—
E. Let B = B(Xa, Ia) andBg = B(Xs, I's) be two open balls velop a computer program with chaotic behavior. First,
of X, with X = (S’A Ea) andXg = (S;; Eg). We are looking computers have a finite number of states, so the computations

for X = (S, E) in Ba such thatin, € N, G™(X) € B always enter into cycles. Second, the properties of chaotic
’ A 0 o & algorithms are inherited from a real chaotic sequence (like

_ ok ok a logistic map) and this behavior is lost when computing
Ea. Letk ZUOQ}O(M) + 1. Thgnvvs €s, if k? = Sp. Yk < floating-point numbers (unlike real numbers, floating-poin
ko, then ©, E) € Ba. Let us notice §, E) = G(Sa.Ea) and 1 ;mpers have a finite decimal part). These two problems are

C1, -, G the elements of the séite [[1, NJ/Ei # &(X8)i}. SO solved in this paper due to the two following ideas:
any pointX of the set

X must be inBa andra can be strictly lesser than 1, §o=

1) Chaotic iterations are Mealy machines. At each iter-

{(S,Ea) € X/Vk < ko, SK = 5/'; andVk € [1, k], S¥** = ¢} ation, data corresponding to the current strategy II-B
are taken from the outside world, then computations are
is satisfyingX € Ba andS(Glifkl(X)) = Eg. Lastly, let us realized into the memory (the updates of the finite state
definek, = [log;q(rs)] + 1. ThenX = (S, E) € X defined by: of the system). The last state is returned after a desired
1) X = Ea, number of iterations. Contrary to the existing points of
2) Wk < ko, Sk = Sk, view,_baseq on a Moore machine, this mac_hine can pass
3) Vke [L k], S = g, two tlr_nes in a same state, w@hogt conu_num_g th(_e same
4) Vk e N, Skotkatk — sk, evolution. Section 1V-B explains in detail this original
. ~ Kotk /T contribution, which allows the realization of true chaos
is such thatX € Ba andGfO (X) € Bg. ] in computers.
3) Sensitive dependence on initial conditions: 2) As mentioned above, the strate@ydefined in II-B
theorem 5 (X, Gy,) has sensitive dependence on initial con- will not depend on real numbers, but on integers taken

ditions. from the outside world. We work with the s&tdefined

in Subsection IlI-A.1 which has the cardinality of the
continuum. Section IV-C discusses the consequences
of dealing with finite strategies in practice.

Proof: Bankset al. proved in [2] that having sensitive
dependence is a consequence of being regular and topologi-
cally transitive. [ ]

4) Devaney’s Chaosin conclusion, &, Gy,) is topolog-
ically transitive, regular and has sensitive dependence on i )
initial conditions. Then we have the following result; B. A chaotic Mealy machine

The algorithms considered chaotic usually follow the prin-
ciple of a Moore machine. After having received its initial
states, the machine works alone with no interaction with
remark 2 We have proven that the sét of the iterate the outside world. Its outputs only depend on the different
functions f so that(X,Gs) is chaotic (according to the states of the machine. The main problem is that when a
definition of Devaney), is a nonempty set. In future work, weachine with a finite number of states reaches a same state
will deepen the study @f, among other things, by computingtwice, the two following evolutions are identical. Such an

theorem 6 Gy, is a chaotic map orn(X,d) in the sense of
Devaney.

its cardinality and characterizing this set. algorithm always enters into a cycle. This behavior is highl
predictable and cannot be set as chaotic. Attempts to define
IV. CHAOS IN A FINITE STATE MACHINE a discrete notion of chaos have been proposed, but they are
A. The approach presented in this paper not completely satisfactory and are less recognized than th

In the section above, it has been proven that discrepeonon of Devaney’s topological chaos. This problem does

chaotic iterations can be put in the field of discrete dynainicnOt occur in a Mealy machine. Thls. finite state transducer
systems: generates an outp@ computed from its current state and

%0 the current value of an inpus (Fig. 1). By this accord,
eX . - ;
{ XL = Gy (xY), (4) even |f the machme reaches the same state twice, t.he corre-
sponding following evolutions may be completely different
where (X,d) is a metric space an; is a continuous depending on the values of the inputs. The method presented
function. Thus, it becomes possible to study the topolodiere is based on such a machine. Indeed, chaotic iterations
ical behavior of those chaotic iterations. Precisely, it haare a Mealy machine: at each iteration, the computatiores tak
been proven that if the iterate function is based on thieto account new inputs (strategies) which are obtained, fo
vectorial logical negatiorfy, then chaotic iterations generateexample, from the media on which our algorithm applies.
chaos according to Devaney. Therefore chaotic iteratiams, Roughly speaking, as the set of all media is infinite, we
Devaney’s topological chaos, satisfy: sensitive depeoelenobtain a finite state machine which can evolve in infinite



(E,S) € X is said to beperiodic but finite if its strategyS
is periodic but finite.

= For example, (12,1,2,1,2,1,2) (p=2) and (22,2) (p=1),
— o are periodic but finite. This definition can be interpreted as
S V=01 the analogous of periodicity definition on finite strategies
Following the proof of regularity (Section 111-B.1), it can
Fig. 1. Mealy machine for chaotic algorithms. be proven that the set of periodic but finite points is dense
on X, hence obtaining a desired element of regularity in
finite sets, as quoted by Devaney ([5], p.50): “two points
ways, thus making it possible to obtain a true chaos igrbitrary close to each other could have completely differe
computers. behaviors, the one could have a cyclic behavior as long as
the system iterates while the trajectory of the second could
‘}y.isit’ the whole phase space”. It should be recalled that th
fegularity was introduced by Devaney in order to counteract
The Mealy machine we used in this document will be theéne effects of sensitivity and transitivity: two points séoto
chaotic iterations wittGy, as iterate function. Because thesesach other can have fundamentally different behaviors.
chaotic iterations satisfy the Devaney’s definition of chao
as stated in Section 111-B.4, we can conclude that our Mealy. HASH FUNCTIONS BASED ON TOPOLOGICAL

machine is a chaotic machine. CHAOS

X = {01

Definition A Mealy machine is said to be chaotic if this
machine has a chaotic behavior, as expressed by Devane

C. The practical case of finite strategies A. Introduction

It is worthwhile to notice that even if the set of machine The use of chaotic maps to generate hash algorithms
numbers is finite, we deal in practice with thwinite set of has seen several developments in recent years. In [6] for
strategies that have finite but unbounded lengths. Indeed, @ample, a digital signature algorithm based on an elliptic
suggested before, it is not necessary to store all the terfidrve and chaotic mapping is proposed to strengthen the
of the strategy in the memory. Only it$" term (an integer Security of an elliptic curve digital signature algorith@ther
less than or equal tt\) has to be stored at the" step, €xamples of the generation of a hash function using chaotic
as it is illustrated in the following example. Let us suppos&1aps can be found ie.g.[11], [14] and [8]. However, as
that a given text is input from the outside world into thefor digital watermarking, the use of any chaotic map does
computer character by character and that the current term 3t guarantee that the resulting hash function would behave
the strategy is computed from the ASCII code of the currerghaotically too. To our knowledge, this point is not dis@ds
stored character. Since the set of all possible texts of tti these referenced papers, however it should be considered
outside world is infinite and the number of their character@s important. We define in this section a new way to construct
is unbounded, we work with an infinite set of finite buthash functions based on chaotic iterations. As a conseguenc
unbounded strategies. Of course, the previous example i$kthe theory presented before, the generated hash fusction
simplistic one. A chaotic procedure should to be introducegptisfy the topological chaos property. Thus, variousreesi
to generate the terms of the strategy from the stream Bfoperties in this domain are guaranted by our approach.
characters. For example, the avalanche criterion is closely linked ® th
In the computer science framework, we also have to de&€nsitivity property.
with a finite set of states of the formBN and as stated
before an infinite seS of strategies. The sole difference
with the theoretical study is that instead of being infinite In this section, we explain a new way to obtain a hash
the sequences @& are finite with unbounded length. value of a digital medium described by a binary sequence.
The proofs of continuity and transitivity are independeht olt is based on chaotic iterations and satisfies the topadbgic
the finiteness of the length of strategies (sequence$).of chaos property. The hash value will be the last state of some
Sensitivity can be proved too in this situation. So even ighaotic iterations: the initial staté, finite strategyS and
the case of finite machine numbers, we have the two fundéerate function must then be defined. The initial condition

mental properties of chaos: sensitivity and transitiwtijch Xo = (S, E) is composed by &l = 256 bits sequenck and

Egzge[CSt]Ni)l.)g(l)r;p#\z l;gg;?:r'gagﬂgéoili I&iictzgzzbqtﬁnca chaotic strateg$. In the following sequence, we describe

o . 'G5%etail how to obtain this initial condition from the origil
are of infinite lengths. To obtain the analogous of regujarit ¢

) . . ) edium.
in t_he _contex_t Qf finite sets, we define below the notion O?] 1) How to obtain E:The first step of our algorithm is to
periodic but finitesequences.

transform the message in a normalized 256 bits sequEnce
Definition A strategyS € S is said to beperiodic but finiteif ~ To illustrate this step we state that our original text ishé
S is a finite sequence of lengthand if there exists a divisor original text'. Each character of this string is replaced by its
p of n, p £ n, such thatvi < n—p,S' = S*P. A point ASCII code (on 7 bits). Then, we add a 1 to this string.

B. A chaotic machine for hash functions



10101001 10100011 00101010 00001101 « A circular rotation of one bit to the left is applied to

11111100 10110100 11100111 11010011 D (the first bit of D is put on the end oD). Then the
10111011 00001110 11000100 00011101 new string is split into blocks of 8 bits another time.
00110010 11111000 11101001 The decimal values of those blocks are addedutd. (

« This operation is repeated again 6 times.

So, the binary value (1111000) of the length of this string

(120) is added, with another 1: It is now possible to build the strated.

S0=uw, S"=(U"+2xS"!+n) (mod256)

10101001 10100011 00101010 00001101 S will be highly dependent to the changes of the original
11111100 10110100 11100111 11010011 text, becaus® —— 20 (mod 1) is known to be chaotic as
10111011 00001110 11000100 00011101 defined by Devaney [5].

00110010 11111000 11101001 11110001 3) How to construct the digestTo construct the digest,

chaotic iterations are done with initial sta@,

The whole string is copied, but in the opposite directiorisTh f [1,256] - _[[1’ 25@
gives: (Es,...,Ezs9) +— (E1,...,Ezs0),

as iterate function an8 for the chaotic strategy.

10101001 10100011 00101010 00001101
11111100 10110100 11100111 11010011
10111011 00001110 11000100 00011101
00110010 11111000 11101001 11110001
00011111 00101110 00111110 10011001
01110000 01000110 11100001 10111011
10010111 11001110 01011010 01111111
01100000 10101001 10001011 0010101

The result of those iterations is a 256 bits vector. Its compo
nents are taken 4 per 4 bits and translated into hexadecimal
numbers, to obtain the hash value:

63A88CB6AFOB18E3BE828FI9BDA4596A6
A13DFE38440AB9557DA1COC6B1EDBDBD

To compare, if instead of using the texte original text

So, we obtain a multiple of 512, by duplicating this string¥e took ‘the original text, the hash function returns:

enough and truncating at the next multiple of 512. This gtrin
in which the whole original text is contained, is denoted by 33E0DFB5BB1D88C924D2AF80B14FFSAT

D. B1A3DEF9DOE831194BD814C8A3B948B3

Finally, we split our obtained string into blocks of 256 In this paper, the generation of hash value is done with the
bits and apply the exclusive-or function, obtaining a 256 bi vectorial boolean negatiofy defined in eq. (3). Nevertheless,
sequence. the procedure remains general and can be applied with

any function f such thatGs is chaotic. In the following

11111010 11100101 01111110 00010110 subsection, a complete example of the procedure is given.

00000101 11011101 00101000 01110100 C. Application example

11001101 00010011 01001100 00100111 Let us consider the two black and white images of size
01010111 00001001 00111010 00010011 64 x 64 in Fig. 2, in which the pixel in position (40,40) has
00100001 01110010 01000011 10101011 been changed. In this case, our hash function returns:

10010000 11001011 00100010 11001100
10111000 01010010 11101110 10000001
10100001 11111010 10011101 01111101

So, in the context of Subsection V-B|, = 256 andE is the
above obtained sequence of 256 bits.

We now have the definitive length of our digest. Note that
a lot of texts have the same string. This is not a problem
because the strategy we will build depends on the whole
text. Let us now build the stratedy.

2) How to choose S To obtain the strateg$, an inter- (a) Original image. (b) Modified image.
mediate sequencel) is constructed fronD as follows:

« D is split into blocks of 8 bits. Them" is the decimal
value of then" block.

Fig. 2. Hash of some black and white images.



34A5C1B3DFFCC8902F7B248C3ABEFE2C unpredictability of the behavior of the proposed algorithm
9C9538E5104D117B399C999F74CF1CAD The algorithm derived from our approach satisfies important
. properties of topological chaos such as sensitivity taahit
for the Fig. 2(a) and conditions, uniform repatrtition (as a result of the tramii),
5E67725CAA6B7B7434BES57F5F30F2D3D and unpredictability. The results expected in our studyehav
57056FA960B69052453CBC62D9267896 been experimentally checked. The choices made in this first
. study are simple: the aim was not to find the best hash
for the Fig. 2(b). function, but to give simple illustrated examples to prove
the feasibility in using the new kind of chaotic algorithms i

, e : ! éomputer science. In future work, we will investigate other
(256x 256 pixels) in figure 3, in which the grayscale levely,qices of iteration functions and chaotic strategies. We w

of th_e pixel in positi_on (50,50) hgs been transformed fr_on&y to characterize transitive functions. Other properiie-
93 (fig. 3(a)) to 94 (fig. 3(b)). In this case, our hash functioy,ceq by topological chaos, such as entropy, will be expliore

and their interest in the information security frameworlk wi
be shown.

Let us consider now the two 256 graylevel images of Len

¥
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