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Abstract. In the domain of discrete dynamical systems, many works are
focused on sufficient conditions for stability. On the contrary, this work
takes place into situations where instability is awaited. These situations
occur when discrete dynamical systems are used in the computer science
security field. A first formalization of instability is introduced, which is
called “divergence”. Then, some necessary conditions for divergence are
established and illustrated through a running example.

1 Introduction

Chaotic iterations have been introduced on the one hand by Chazan, Miranker [5]
and Miellou [7] in a numerical analysis context and on the other hand by
Robert [11] and Pellegrin [8] in the discrete dynamical systems framework. In
both cases, the objective was to derive conditions of convergence of such itera-
tions to a fixed state.

Contrary to previous studies on chaotic iterations (CIs), the goal in [2] was
to derive conditions under which chaotic iterations admit a chaotic behavior in a
rigorous mathematical sense: convergence or stability is avoided. More precisely,
we have established in [2] a link between the concept of chaotic iterations on a
finite set and the notion of topological chaos, as it is defined by Devaney [6].
This formal definition of chaos allows us to apply the approach to the criti-
cal domains of security, particularly in cryptographically, secure pseudo-random
number generators [4], steganography and digital watermarking [3], etc.

In this paper, this new approach is deepened by studying the divergence of
CIs under the numerical analysis point of view. More precisely, two new conver-
gence results are given, the second shows the first one in a different light. Two
corollaries rewrite these theorems in terms of divergence. These properties are
the main contributions of this paper. As a conclusion, a better understanding of
the manner to use CIs in an unpredictable way is given, reinforcing by doing so
the topological study formerly proposed in [2].

The rest of this paper is organized as follows. The Section 2 formalizes syn-
chronous discrete dynamical systems. A running example is proposed for easy
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understanding. Additionally, new definitions concerning convergence and diver-
gence in parallel and chaotic modes are proposed. In Sect. 3 some necessary
conditions for divergence are given and proven. Particularly, two new theorems
of convergence are proven and their contrapositions lead to necessary setups for
divergence. The paper ends with a conclusion section where the contribution is
summed up and the planned future work is discussed.

2 Formalization

This section formalizes synchronous iterations of discrete dynamical systems
(DDS) as sketched in introduction. It is a particularization of [1] to iterations
without delay transmission. It furthermore introduces the running example and
formalizes the convergence and divergence in the context of DDS allowing the
document to be self-contained.

2.1 Algebraic View of Discrete Dynamical Systems

First of all, formalisation developed along the following lines needs often quan-
tifiers. For conciseness reasons, quantifications are postfixed with their universe
of interpretation: ∀U (resp. ∃U ) denotes the universal (resp. existential) quantifi-
cation over elements taking values into the universe U . Next, let us recall that
Nk denotes the set {0, 1, . . . , k}, for k ∈ N.

A DDS is a collection of n components. Each component i , 1 6 i 6 n, takes
its value Xi among a finite domain Ei . Let E be the space product E = Πn

i=1Ei .
A configuration of the system at discrete time t (also called at iteration t) is the
vector

X (t) = (X (t)
1 , . . . ,X (t)

n ) ∈ E .

The dynamic of the system is described according to a function F : E → E
such that:

F (X ) = (F1(X ), . . . ,Fn(X )).

In the sequel, the strategy (J (t))t∈N is the sequence of characteristic functions
of components that may be updated at time t . Practically, each J (t) is repre-

sented as a n×n diagonal matrix such that J (t)
ii = 1 if and only if it is allowed to

modify Xi ∈ Ei at time t . Moreover, the strategy (J (t))t∈N is pseudo-periodic if

for each component i , the set {t ∈ N | J (t)
ii = 1} is infinite. With these notations,

the finite sequence J (1); . . . ; J (t′) is called the first pseudo-period, if t ′ is the
smallest integer of the set

{t ∈ N | ∀N∗n i . ∃N∗ k . k 6 t ∧ J (k−1)
ii = 1}.

Let I be the identity matrix of size n, and X 0 = (X 0
1 , . . . ,X 0

n ) an initial
configuration. The synchronous iterations modes (including pure parallel mode,
sequential mode, and chaotic modes) are defined for times t = 0, 1, 2, ..., by:

X (t+1) = (I − J (t))X (t) + J (t)F (X (t)) (1)
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Indeed:

– pure parallel iterations constrain J (t) to be equal to the identity matrix for
any t : all the elements are updated at each iteration;

– sequential iterations constrain J (t)
ii to be null, except for i equal to

1 + (t mod n), where it is 1;
– chaotic iterations do not constrain (J (t))t∈N.

Let d denotes the vectorial distance defined for any (X ,Y ) ∈ E 2 by [12]:

d(X ,Y ) =

 δ1(X1,Y1)
...

δn(Xn ,Yn)

 ,

where δi , 1 6 i 6 n, is the discrete distance on Ei . This vectorial distance
satisfies the axioms below, ∀(X ,Y ,Z ) ∈ E 3:d(X ,Y ) = 0⇔ X = Y ,

d(X ,Y ) = d(Y ,X ),
d(X ,Z ) 6 d(X ,Y ) + d(Y ,Z ).

Let us now recall the definition of a contracting map in this context.

Definition 1 F is a contracting map if there exists a matrix M whose spectral
radius is zero and where

∀E2(X ,Y ) . d(F (X ),F (Y )) 6 Md(X ,Y )

is established.

2.2 Running Example

We consider five elements taking their value in the set {0, 1}. Thus, a config-
uration is an element of {0, 1}5, i.e., a binary number between 0 and 31 (for
example (1, 0, 0, 1, 1) = 19). Let X ∈ {0, 1}5 and consider the map:

F (X ) =


f1(X1,X2,X3,X4,X5) = X1X2 + X1X2

f2(X1,X2,X3,X4,X5) = X1 + X2

f3(X1,X2,X3,X4,X5) = X3X1

f4(X1,X2,X3,X4,X5) = X5

f5(X1,X2,X3,X4,X5) = X3 + X4

where a, sum, and product are the classical Boolean operators. It associated
connection matrix is

B =


1 1 0 0 0
1 1 0 0 0
1 0 1 0 0
0 0 0 0 1
0 0 1 1 0


The connection graph is given in Figure 1. It contains five cycles.

LIFC
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2.3 Convergence or Divergence of a Discrete Dynamical System

Definition 2 (Convergence, Divergence) Let be given a strategy (J (t))t∈N.
If any sequence (X (t))t∈N such that{

X (0) ∈ E
X (t+1) = (I − J (t))X (t) + J (t)F (X (t))

satisfies the following property:

(∃N n . (∀N t . t ≥ n ⇒ X (t) = X (n))),

then iterations of F are convergent w.r.t. the strategy (J (t))t∈N. Otherwise iter-
ations of F are divergent.

This definition has the advantage to group both definitions of parallel mode
convergence and chaotic mode convergence.

Running example. In the running example, if we take n = 5 and if we consider
a strategy corresponding to pure parallel iterations, we have for t > 5 and

X (0) ∈ E , X (t) =


1
0
0
1
1

. So F is convergent in pure parallel mode.

In what follows and for brevity reasons, configurations are represented as
decimal numbers instead of binary numbers. The graph of parallel iterations is
given in Figure 2. Starting from any configuration, the network converges to the
fixed point corresponding to the decimal number 19.

An extract of the graph of chaotic iterations is given in Figure 3. Arc label is
the characteristic function of activated elements (i.e., the matrix J (t)) expressed
as a decimal number. It allows us to shortly represent the strategy. For instance,
in this graph we only consider the pseudo-periodic strategy that alternately
activates both the first two elements and the last four elements. This is formalized

as J 2p =


1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 and J 2p+1 =


0 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

, p = 0, 1, 2, . . .. The former

matrix is represented as 24 and the later as 15.
Iterations do not converge for this strategy: for instance, starting from the

configuration 3 (resp. configuration 7), the network goes to the configuration 11
(resp. configuration 15) and goes back to the configuration 3 (resp. configuration
7) by applying the strategy depicted above.

3 Necessary Divergence Conditions

In this section, we present necessary conditions for divergence, by making the
contraposition of new theorems of convergence.

RR 2010–4
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3.1 Convergence under the Contracting Condition

What follows is the first convergence scenario of this paper.

Theorem 1 (Contraction) If F is a contracting map, then for each pseudo-
periodic strategy, each chaotic iteration converges at most in n pseudo-periods.

Proof. Since F is a contracting map, we have the following inequality due
to [12, Proposition 3.1]:

∀E2(X ,Y ) . d(F (X ),F (Y )) 6 B(F )d(X ,Y ),

where B(F ) is the connection matrix associated to F . This matrix is strictly
lower triangular since F is a contracting map (by swapping the variable, if nec-
essary). Hence, there exists p ∈ N such that B(F )p = (0). Due to [12, Proposition
3.4], we have B(F p) 6 B(F )p 6 (0), i.e., F p is a constant map. Thus, there
exists X ∗ ∈ E such that for all X ∈ E , F p(X ) = X ∗. Moreover we have

F p+1(X ∗) = F p(F (X ∗)) = X ∗
= F (F p(X ∗)) = F (X ∗).

So X ∗ is a fixed point of F . Additionally, d(F (X ),X ∗) 6 B(F )d(X ,X ∗). The
strict triangular form of B(F ) leads to:

1. δ1(F (X ),X ∗) = 0,

2. ∀N∗n i . i > 2⇒ δi(F (X ),X ∗) 6
i−1∑
j=1

δj (X ,X ∗).

So, if the length of the first pseudo-period is t , then X (t)
1 = X ∗1 . After n

pseudo-periods, all of the components will be activated in the right order, to set

the sum

i−1∑
j=1

δj (X ,X ∗) to 0. If X (t′) denotes the vector after n pseudo-periods,

then d(X (t′),X ∗) = 0, and thus X (t′) = X ∗. Lastly, X (t′+1) = (I −J (t′))X (t′) +
J (t′)F (X (t′)) = (I −J (t′))X (t′) +J (t′)X (t′) = X (t′) = X ∗. An immediate induc-
tion concludes the proof of this theorem.

It can be noticed that this theorem is an extension of a well-known result
(see [12, Proposition 13.5]): Indeed, Robert setup to one the number of ele-
ments allowed to be modified at each iteration whereas we accept any subset of
{1, . . . ,n}.

3.2 Local Convergence Result under Weaken Contracting Condition

We can weaken the contracting condition to give a local version of the previous
theorem.

Theorem 2 (Local Condition) Let V ⊆ E and X ∗ ∈ E . If

LIFC
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1. X ∗ is a fixed point of F ,
2. V is stable for any chaotic iteration of F , and
3. by eventually swapping variables, there exists a strictly lower triangular ma-

trix K in B(n,n) such that for each X ∈ V :

d(F (X ),X ∗) 6 Kd(X ,X ∗), (2)

then for each pseudo-periodic strategy, each chaotic iteration which starts in V
converges to X ∗ at most in n pseudo-periods.

Proof. Let X be a configuration in V . As K is a strictly lower triangular
matrix:

1. δ1(F (X ),X ∗) = 0,

2. ∀N∗n i . i > 2⇒ δi(F (X ),X ∗) 6
i−1∑
j=1

δj (X ,X ∗).

For p, 1 6 p 6 n, let kp be the smallest number of iterations leading to p
pseudo periods and k ′p be the smallest number s.t. (J (k ′p−1))pp = 1 and kp−1 <
k ′p 6 kp . In other words, k ′p is the smallest date where the element p is activated

inside the pth pseudo period. To achieve the proof, let us consider the following
lemma.

Lemma 1 Under the hypotheses of the previous theorem, for p, 1 6 p 6 n, and
for any X ∈ V , we have

∀N∗ t . t > kp ⇒ δp(X (t),X ∗) = 0 (3)

Proof of Lemma. For the first step (i.e., p = 1), since V is stable for any chaotic
iteration of F , starting with X ∈ V leads to X (t) ∈ V for any t , t ∈ N∗. Since
δ1(F (X ),X ∗) is null, X ∗ is a fixed point, and due to the equation (1), the result
is established.

For the induction step, let us suppose the result to be established until
some p − 1, 1 6 p − 1 < n. Let t be k ′p , then δp(X (k ′p),X ∗) is equal to

δp(F (X (k ′p−1)),X ∗), which is lesser than or equal to

p−1∑
j=1

δj (X (k ′p−1),X ∗). Due

to the induction hypothesis, this sum is null. To conclude the proof of lemma,

one notice that for a t that is greater than k ′p , X (t)
p is either equal to X (t−1)

p or

equal to Fp(X (t−1)), i.e., X ∗p for similar reasons.
Finally, the theorem is a direct consequence of this lemma.

3.3 Necessary conditions for divergence

The following corollaries give the counterpart results in terms of divergence.

Corollary 1 Let F : E → E be an iterated function, X (0) be a configuration
in E and σ be a strategy. If chaotic iterations following the equation (1) do not
converge, then either F is not a contracting map, or σ is not pseudo-periodic.

RR 2010–4
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Now we take benefit of Theorem 2 to make the divergence possible, when a
pseudo-periodic strategy is given.

Corollary 2 Let V ⊆ E and X ∗ ∈ E . If there is a pseudo-periodic strategy σ
such that chaotic iterations starting in V do not converge to X ∗, then at least
one of the following condition is true:

1. X ∗ is not a fixed point of F ,
2. V is not stable with respect to σ,
3. for all strictly lower triangular matrix K ∈ B(n,n), there exists X ∈ V such

that d(F (X ),X ∗) > Kd(X ,X ∗).

We can remark that if V = E , then the three conditions can be replaced by
“F is not a contracting map”, thus obtaining the Corollary 1. Indeed, conditions
1 and 3 imply that F is not a contracting map.

Running example. In the running example, F is not a contracting map, so
convergence is not necessarily the sole behavior of the system. However, this
lack of contraction is not sufficient to ensure divergence and the study must be
deepened. Considering the same strategy (an alternating of integers {24,15}), at
least three cases of divergence can be stated as early depicted in Fig. 3.

In this scenario, divergence is related to 2-cycles: the set V of Corollary 2
is equal to this 2-cycle and is stable for the strategy. However, in this situation,
∀X ,X ∗ ∈ V , d(F (X ),X ∗) = (0), and a matrix satisfying the third item cannot
be found. So, only the first item of this corollary is satisfied.

In our understanding, a 2-cycle is a kind of weak divergence. A stronger
divergence is obtained when cycles are as long as possible (cycles containing all
of the nodes of the graph are desired). To achieve a kind of unpredictability
when iterating, an idea is to increase the number of these edges among the
graph, hoping by doing so the emergence of new paths. In our previous example,
we have considered a strategy where the length of the pseudo-period is equal
to 2, and we have obtained a 2-cycle. To increase the number of edges into
the graph, we now consider a strategy where the length of the pseudo-period
is 3: {24, 15, 20, 24, 15, 20, ...}, where the number 20 is associated to the matrix

J20 =


1 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

 . We thus obtain the following 3-cycle: 7, 15, 31. We can

obtain a 6-cycle with the following strategy : {24, 3, 15, 3, 20, 24, 3, 15, 3, 20, 3, ...}.
It can be noticed that to obtain a 6-cycle, a strategy where the length of the
pseudo-period is 6 has been used. After having studied various examples, it
appears that the lengths of cycles and pseudo-periods are strongly linked. This
point will be deepen in a future work.

If we focus on the set V of the corollary, we can remark a structural change
in the graph. The nodes which compose V are not the same depending on the
length of the pseudo-period. Indeed if the length is equal to 2 or 3, the set of

LIFC
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nodes {3, 11, 4, 12, 7, 15} is found in the different cycles. But if the length is equal
to 4, 5, or 6, this set becomes to {5, 6, 13, 14, 29, 30}. This modification will be
studied in a future work.

4 Conclusion and Future Work

In this paper is explained how to obtain instability in discrete dynamical systems
(DDS) with synchronous iterations. This instability, denoted by “divergence” in
this paper, is required when DDS are used to produce algorithms in the computer
science security field, such as pseudo-random generator [4], hash functions [2],
or information hiding [3]. This work enlarges the topological approach presented
in [2] with a numerical analysis point of view.

Convergence under the hypotheses of contracting maps acting with pseudo-
periodic strategies has been recalled in a more general framework. Additionally,
a new theorem of convergence under some local hypotheses has been proved.
These two theorems have led to two necessary conditions of divergence, namely
the Corollaries 1 and 2.

Pseudo-periodic strategies play an important role in these corollaries: with-
out this hypothesis, new local fixed points can appear. The consequences of this
fact in terms of divergence will be studied in a future work. Additionally, trap
domains and attractors introduced in [10,9] will be used to obtain a better under-
standing of the conditions under which a given DDS becomes unpredictable. We
plan to express new links between divergence and graphs of chaotic iterations,
of connection in terms of graph theory. Lastly, we will deepen the study of the
necessary conditions under which divergence is obtained, and discuss about the
consequences concerning potential applications in the computer science security
field recalled above.
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