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Abstract—Tree automata turned out to be a very convenient systems [5]. When processing and analysing XML documents,
framework for modeling and proving properties on infinite  queries exploit the membership problem f6AGEDs. This
systems like communication protocols, Java programs and also problem being NP-complete foTAGEDs, we propose an
in the context of XML programming. Unfortunately, these works fficient SAT-based di f th ’ bershi bl f
are not always supported by efficient verification and validation etncien -base enco_ Ing of the membership probiem for
tools. TAGEDs, and we show its correctness and soundness. The

This paper investigates the use of two SAT solvers — challenge is to evaluate queries over tree automata when con
M ni SAT2 and pi coSAT — to evaluate queries over tree au- sidering both equality and disequality constraints. Wesene

tomata with global equality and disequality constraints (TAGEDs me experimental r | howing the inter f h an
for short). Unlike general tree automata, TAGEDs allow to Z;pr(ca)aihpe ental results showing the interest of such a

express constraints useful for e.g., evaluating queries over XM . .
documents, like ’in the document, two nodes do not have the same Layout of the papeiThe paper is organised as follows. After
key'. These queries being based on the membership problem presenting a motivating example in Section Il, preliminary

which is NP-complete for TAGEDs, we propose an efficient notions on terms and tree-automata are given in Sect. IIl.
SAT encoding of the membership problem forTAGEDs and We ~ gaction |V presents the main contribution — the SAT-based
show its correctness and soundness. The paper reports on the . .
experimental results, and implementation details are given. anodlng of the membership pmblem.fﬁAC’EDS’ and states .
its correctness and soundness. Section V reports on experi-
|. INTRODUCTION mental results showing the feasibility and the interesthef t
Tree automata turned out to be a very convenient way fproposed approach, and gives implementation detailsll¥;ina
modeling and proving properties on infinite systems like consection VI concludes and presents related work.
munication protocols [1]-[3], multi-threaded Java byteleo I
programs [4], [5], etc. Moreover, numerous recent works on '
analysis of structured XML-like documents and on validatio -
of their transformations [6]-[9] exploit tree automata fbeir P€ used to analyse the structure of XML files.
encoding. Let us con_S|der an _XML documen_t descr_lbmg_the_members
For all above-mentioned applications, it is important t8F @ University. In this context, aini versity is viewed
express constraints like ’in the term, two subterms do n8f 2 list of research teams. Eatleamis affiliated to a
have the same leaf. For example, when evaluating querfé?eam" abor atory and is composed of researc.hers, called
over XML documents, it is important to express constrainf€Mbers. To simplify the tree automaton encoding, we as-
like "in the document, two nodes do not have the same keptMe that in the university there are two teams, at least, and
Unfortunately, tree automata are in general not expresshi@t there are two members in each team, at least . Therefore,
enough to express this kind of constraints. To this end soff¢ corresponding XML documents are to be conformed to the

extensions of tree automata have been proposed, let us gigtewing DTD.

hedge tree automata [10], visibly tree automata with memo«y ELEMENT uni versity (team team)>

and constraints [11], rigid tree automata [12], tree autama<' ELEMENT team (nenber, menber +, | abor at ory) >

with global equality and disequality constrainfBAGEDs for :: E::Eﬁg 'rr;‘ggreft ?LéC(DK_Fr’S)DéTA) >

short) [13]. Although these recent works provide theosdtic

results promising w.r.t. practical applications, they a@ Such XML documents are classically encoded by terms: the

supported by efficient verification and validation tools. binary symbol fteam encodes the list of eans, and the
This paper investigates the use of two SAT solvers -binary symbolgteam is a constructor for eacheam Its first

M ni SAT2 and pi coSAT — to evaluate queries overargumentis the list of teamenber s and its second argument

TAGEDs. Unlike general tree automatdAGEDs allow ex- is thel abor at or y managing the team. The list of members

pressing constraints useful e.g., for evaluating querie= 0is encoded using the binary symb@inembd. Finally, each

XML documents TAGEDs are also useful for security protocolletter of the alphabet is a unary symbol encoding itself.r&éhe

verification [12], and for LTL model-checking of infinite $&& is a unique constant symbal. For instance, the following

M OTIVATING EXAMPLE
This section illustrates on a toy example h®&GEDs can



XML file represents twot eans of the Computer Scienceon a termt € 7(X) is a functionp : Pos(t) — @ such
(CS) Laboratory: the first team hasy@nber s whose names that p(p) = ¢ for all p € Pos(t), whereq € Q andt|, =
areJS, JD and RKT, and the secontleam consists of two f(t1,...,tn), ar(f) =n, f(p(p.1),...,p(pn)) = g€ A. A

nmenber s, calledWH and JFL. run is successfuif p(e) € F.

For instance the following XML document c) Positive TAGEDs: A TAGED [16] is a tuple A =
<uni versit y> (Ea Aa Q7 F7 A 7%4)' Where(27 Qa Fa A) iS a tree automaton
<t eanp overy:, =4C @ x @ is a binary reflexive symmetric relation on
<member > JS </ nenber > a subset of) and#4C Q x Q is a symmetric relation o) ),
<menber> JD </ menber > The tree automatofQ, F, A) is denotedta(A). A successful
smenber > RKT </ menber > faTAGEDA = (%, A, Q, F,= t T(s

<l aborat ory> CS </ abor at ory> runora = (3,A,Q, »—A7%A)'0na erm € ( )
</t eany is a successful rup of ta(.A) ont satisfying: for all positions
<t ean> p1, p2 € Pos(t), (1) if (p(p1), p(p2)) €=a thent|,, = tlp,,
<nenber > W/ menber > and (2) if (p(p1), p(p2)) €4 thentl,, # t],.

<menber > JFL </ nenber>
<| aboratory> CS </| aborat ory>
</teanr

For TAGEDs, the membership problem is NP-complete [16].
Emptiness is known to be decidable for restrictive cases,

</ uni versity> whereas universality is undecidable [16, Proposition 5}- F

. lowing the respective definitions of runs, it is straightfor
is encoded by the termfteam(tl,¢2), where ¢l = \arq that for every positvdAGED A, L(A) C L(ta(A)).
gteam(h1,n2) and 2 = gteam(h3,h4) with hl = pyamples of TAGEDs and of a successful run are given in
Jfmemb(J(S(L)), fmemb(J(D(L)), R(IK(T(L)))), ha = gection VII.

C(S(L)), hs = fm@m_b(W(H_(l))v J_(F(L_(l))) and hy = d) Boolean formulas:Let ¢ be a boolean formula over
C(S(L)). Note that this term is depicted in Section VII. 5 get 4 of atomic propositions. An interpretation of variables

Now, assuming that XML files result from a request prog 4 functions from A into {True, False}. An interpretation

viding all teams of a given laboratory, and that a researchgigaiisfies the formulay, denoted! |= o, if ¢ is true for the
cannot be affiliated to two different teams, the Spedﬁerm’aqnterpretationI of the variables.

to check whether the given document satisfies the DTD and

these two constraints. Such verifications can be done using a IV. ENCODING
extended kind of tree automata, callBAGEDs and introduced
in the next section. Th& AGED corresponding to the example
is provided in Section VII.

This section presents our propositional encoding of the
membership problem, and we informally justify it step bypste
We shall also illustrate our sub-formulee as we go along by
1. PRELIMINARIES instantiating them on a small example. For this purpose we

) ) will use the followingTAGED 4 and termt:
Comprehensive surveys can be found in [14], [15] for tree o
e

automata and tree language theory, and in [16]TTAGEDs. A= E={a,f}, Q={ag,d4,9r}, F={qs},
a) Terms: Let X be a finite set of symbols, associated A, G=4d d4447)
with an arity functionar :  — N and let7 (%) denote the set o » 749 974 91)
of terms. A positiorp for a termt is a word ovelN. The empty ~ WhereA = {f(4,4) — ar, f(¢.9) — ¢, f(a,9) — 4,
sequence: denotes the top-most position. The $eis(t) of
positions of a ternt is inductively defined byPos(t) = {¢}
if t € X and byPos(f(t1,...,tn)) = {efU{ip|1<i< g aff
n andp € Pos(t;)} otherwise. Ifp € Pos(t), thent|, denotes

a4 —dq, a_>qAa}

1 — 0

- def pp9 = a2

the subterm oft at positionp. We also denote by(p) the t=Jfe 0
symbol occurring int at positionp. ~ 4 — 21
b) Tree automata:Let @ be a finite set of symbols, of 2T ad

arity 0, calledstatessuch thaty Ny = 0. 7(X U Q) is called

the set ofconflguratlgnsA transitionis a rewrite rulec — ¢, ' assical non-regular language. Hetg is redundant and
wherec € T(XU Q) is of the forme = f(q1,...,qn), f €5, j5eq purely for illustrative purposes. In the term, sulpssri
ar(f) =n, andqy, ..., qn € Q e are positions and superscripts are unique references to the

A bottom-up non-determ|rj|st|c finite tree automatgree structure of subterms. For instantecorresponds tg(a, a),
automaton for short) oveE is a tuple A = (3,Q, F, A), which appears at positiorisand 2.

FI gt Q an;é IS a flnc;te s;tbofAtra;njt.lor&s. T?edfwrmng Let us enumerate the conditions which must be satisfied in
relation on7 (XU Q) induced byA o IS denotet—a OF = 4 der for our termt to be accepted byl through a rurp, and

—.4. The tree languaggt € 7(X) | ¢ —7 ?} is def““ed break them down in sub-conditions until we can encode them.
L(A,q) and called thetree language recognised by in q.

The languageecognisedy A, denotedZ(A), is the language  wyoice that in [16], this relation is supposed to be irreffexiln this
quF L(A,q). A run of a tree automatotd = (X,Q, F, A)  paper, it is not required.

This small TAGED accepts{ f(t,t)/ t € T(F) }, which is



1. The runyp is a successfurun for the underlying tree For instance, on our small example this Would(pﬁqff/\X;A

automatond’ = (X, A, Q, F). XZIWVIXSAXIAXZIVIXEAXIAXZ) A A (XZPV XZ2).
(a) The runp is a function mapping positions @fto Note that if ®=(¢) satisfies {b), then clearlyp must be a
states ofA. total function (L(a)iii), since at every positiom € Post),
i, pC Post) x Q we must be_ ?n some statgresulting frqm the application of
i. Yo € Post),p £ q € Q, (a,p) € p = SOme transition rule. Note also that if bofh., and ®°(t)
(a,q) ¢ p are satlsf]gd S|multaneou_sly, then exactly one rule ap}aﬁes.
iii. Vo € Pogt),3q € Q, (a,q) € p each position. The last thing we need to encode an accepting

run for a tree automaton, is to specify that the run must end
up in a final state at the root of the terrhc); this is directly
translated intd/ . » X7. Now we must add further restrictions
i ) - to ensure compatibility with the global equality and disaiy
2. It must satisfy the global equality constraints=a. constraints 2 and 3). The variables we have already defined
3. It must satisfy the global disequality constraints#a.  are not sufficient to translate statements of the form “such
Condition (L(a)i) guides the choice of the building blocks ofsubtree does (or does not) evaluate to such state”; therefor
our formula: they will be variables of the form, say;", which we need to introduce new variables to link states and sukterm
will have the intuitive meaning that at a positionc Pos(t), by a relation. Let us usé? to denote “the subterm evaluates
we end up in the statg e @. This corresponds to the statemento ¢”, for any v < t andq € Q. Of course, we need to “glue”
“p exists andp (o) = ¢". Let us now encode, using the abovehese new variables to the old ones: if we are in a certaie stat
variables, the fact that is a partial function 1(a)ii), that is ¢ at a position, then it follows that the subterr{ , evaluates
to say, giveno € Pog(t) andp # g € Q, we cannot haveX;)  to ¢: this is straightforwardly translated into the next foraul
and X' at the same time:

(b) The runp must be compatible with the transition
rules of A.
(c) The runp must beacceptingie. p (¢) € F'.

Definition 1V-.5 (Structural glue©<).
Definition 1V-.1 (Partial function constrain®_.).

0. % A {X;* — 71 }

tla
def o o a€Pos(t)
0. = /\ Xy = /\ Xy a€Q
acPos(t) PER .
9€Q p7a On our example, we havefX: = Ty} A {X§ = T4} A

Applied to our minimalist example this yields\s = [~X £ A {Xg = Tzqf}j A ANXGE = T’} where the subscript

=X} A XS = [PXEA XTI A A {ng = [ﬁng/\ “2" of T3 designates the subtrge(f(a,a), f(a,a)), as given

-X22]}. We also neegh to be compatible with the transitionin the definition ofz. Now different kinds of variables being
2’1}

rules of A’ (1b). Let us translate the fact that a transition rulénked, let us encode the equality constraint. Supposiragnag
applies at a given position by: that p (a) = g, for the run to be compatible with the equality

o o . constraint, it must be such that no subterm different frgm
Def_|n|t|on IV-.2 (Rule application constramﬂf‘l(_r_)). We  can evaluate tp, wherep =4 ¢. Note that=4 is reflexive by
define, for anya € 7ogt), and any transition rule gefinition, so this includes itself.
flay, - an) = g €A, Lo

N Definition 1V-.6 (Compatibility with =4: ©-,).
(03 d f « a.R
U (flar, - an) = q) EXEN N\ Xook.

oL A | = A A

This is fairly straightforward: we are stating that the rule aePos(t) peQ udt

flq1,---,q,) — q € A applies at positionv. Therefore we 9€Q Pl

have p (o) = ¢" as a result of the application of the rule,gq, instance{ X = [~TAA-TI}A{X I = [<T§ A=T3]} A
and thek" direct subterm is accepted by the stateas the ... {X22 = [-T§ A —T{]}. There remains to encode the

transition rule requires. Now, in order to express the mod  compatibility with the disequality constraint. Let us dedth

position in the term, a transition rule applies. in [16]), or the states involved are different. Suppose that
Definition IV-.3. For any f € X, we denote byA; = are at positionv, and thaty («) = ¢; then we cannot have any
{f(...) = --- € A} the set of transition rules which applySubterm¢|, evaluate to any, whenp 7, g.

to f. Definition 1V-.7 (Compatibility with #4 (p # q): O,).

Definition 1V-.4 (Rules compatibility constrain®d©(t)).

()= N l \VAR A

acPos(t) Lr€Ai(a)

def a
0. N |xp = A-TI
acPos(t) PEQ

q€Q pFAq
P#£q




For instance{ X§ = ﬂTzqf}/\{ng = —TJhA--- /\{Xq2f2 = of negations of the formT}] occur inO-, and©.,, wheng
—T¢}. However, for the needs of our test examples, we choisein the domain of eithet, or =4. It follows that literals of
to alter the definition of£4 by removing its irreflexivity. The the formT? can only alter the satisfiability ah 4 (¢) wheng
idea is to be able to write statements suchpagy p, with is in dom (#4) Udom (=4). Thus we can reduce the formula
the meaning that no t\{vdist@nct subtrees whic.h _evaIuaFe toto O = /\aeNt,qeaga)m(dom(;eA)udom(:A))[X;” = Tfla].
p may be structurally identical. Formally, satisfies#4 iff The same observations can be made @g,, Q. and
Va, 3 € Pos(t), (a # BAp(a) Zp(B) = t|, # tlz- ©=. In the case of©_,, we can also argue that in the
This cannot be done solely i@..,, because the formula will subformula,, 4 ..., —T7 it is unnecessary to write:7
not differentiate between two distinct subterms and theesamhen we know that the subtree cannot possibly eval-
subterm, taken twice, which is why the case where, ¢ uate to the statep. This is clearly the case if the root
must be dealt with separately. Indeed, as we do not yet hawenbol «(c) is not used in any transition rule leading
any means for linking subterms with positions, a new kingh p. Thus we letr(q) def {fex]| 3f(...) > qge A} be
of variables is needed, of the fori¥, which encodes the the set of symbols which a subterm may be rooted in,
statement “the subterm is rooted ina”. The above property given that it evaluates to the statg and we lighten the
is then encoded using this variable, as follows: above §ubformula intq’\uﬁt:#t‘mu(s)ef(m —TP. !_astly,ain
Definition 1V-8 (Compatibility with %, (non-irreflexive; "¢ 'evised formuldl,,, it is clear that the variablesy
24q): ). serve no purpose whatsoever when the subtree inan-
174 7 not %vfaluate to a state such thatq #4 ¢. Thus we let
Q,, & TN {Xc? AXP = 59 } 1(q) :e {aePost)| t(a) € 7(¢q)} be the set of positions
acPost)  atBePost) s at which the subtree may evaluate to the stateand re-

a#aq duce the first part of the subformula ., S
We can now state our main result: S

?“a.
In its second part, we arbitrarily order positions and re-
Definition IV-.9 (SAT encoding ofTAGED membership prob- group couples of implications with th% same premises:
lem A4 (1)), Let A= (3, A,Q, F, =4, #4) be aTAGED and  Aw<pep(a)amd Xo N X§ = ~8¢ A8 ] Note that

t € T(X); then we define reducing ®_. is much more probleﬁmatic, but it is possible
def to simply do away with this part of the formula altogether
Au(t) TOLNP ()N N XTAOL AOL A Q. if one replaces\/, . X by A, . —X:, provided that the
qer term is accepted by the underlying tree automaton. This can

Theorem IV-.1 (TAGED membership, correctness and sound?® checked separately by other, less expensive means, since
ness) There exists a successful rynof the TAGED A on a the membership problem for tree automata is polynomial.
termt iff A4 (t) is satisfiable. Moreover, if = A 4 (t), then Of course in that case the second result of theorem IV-.1
for any a € Pog(t) we havep (a) = ¢ <= I |= X does not apply anymore. While computationally inexpensive,
) o ) these simplifications can yield significant savingsToxGEDs
The above encoding has been simplified, implemented agdy, o\ density and where few states are involved in the
tested. This is the matter of the next section. global constraints, which are fairly reasonable assumptio
V. IMPLEMENTATION AND EXPERIMENTATIONS in the context of XML documents processing. Note that one

could find more drastic simplifications by examining the tree

utomaton more closely; for instance one could remove, at
&ach position, any state which cannot appear in a successful
run. Simplifications of this kind would certainly yield bett
results on sizeable and compl@ACGEDs, but it is not certain
L . . "WRat the overhead of implementing and computing them would
”."al in the size of our input automa_ton a”‘;' the2tern°t: the be compensated by the SAT solving performance gains. For
size of A4 (t) (as number of literals) is @(¢[" |Q|"). In prac- our tests we implemented the static simplifications desdrib

tice however, this can often be trimmed glown ConSICIerabIXbove, which divided the size of the generated formula®y
Let p be a successful run of the underlying tree automat 0 the case of our Laboratory example automaton
A ont, and consider for instance the structural gl@e; = |

Naen, qeqX§ = T} ]. The formula considers all possi- In order to test our encoding, we have been developing
ble couples(«, ¢), but in general this is unnecessary because tool which takes as input &AGED (in a syntax close
not all states are obtainable at any given position. In otderto that of Ti mbuk [17]) and a term, and generates the
ever haveX, that is to sayp () = ¢, there must be some corresponding formula\ 4 (£). However, most modern SAT
transition rule of the form () (...) — g in A, at least. Thus solvers take input in thél MACS CNF format, and naive
we leto («) be the set opossibly obtainable states at positionconversion to Conjunctive Normal Form could lead to an
a: o (@) &« {qe @/ It(a)(...) = g€ A} and, given a po- explosion of the size of the formula. In order to avoid
sition «, we only need to deal with € o(«). Another obser- running into this problem we used an existing tool to handle
vation which can be made priori is that the only occurrenceslinear-size conversion to CNF and generation RfMACS

In the first part of this section we will quickly go over som
ways in which the formula can be lightened through simp
observations, before discussing some of our experimentati
in the second part.

The above SAT encoding, though sizeable, remains poly



CNF files: the BAT® [18], which implements an efficient rejected terms. The size of the terms designates the nurhber o
CNF conversion algorithm [19]. Experiments were run on amodes of the tree. Both solvers display similar performance
2.53GHz Intel Core2 Duo machine with 2Gb of RAM runnindor this experiment, wittM ni SAT2 being about twice as fast
Linux. Figure 1 shows the respective running times of the twas pi coSAT on accepted terms. On rejected terms however
SAT solverspi coSAT andM ni SAT2 on an implementation both solvers show roughly the same performances, and take
of our Laboratory example. Accepted trees of varying sizésss time than on accepted terms, by a factor qfi3c(SAT)
have been generated with random members names of randord 5 M ni SAT2) on large terms.
length. In the figure the size of the generated trees is givenlt would have been interesting to increase the size of our
in terms of the number of teams in the university; the size terms until both solvers timed out, but we were unfortunatel
terms of the number of nodes is proportional to these datimited by the software we used. Our own tool is not optimised
The test shows that while both solvers perform very well dior speed, and CNF conversion with BAT took aboub
times as much time as formula generation. Moreover, BAT
P — , , , fails with a stack overflow when the input formula becomes
o4 |MERTSATZ rreeeen /| too large. Despite these practical setbacks, the resutiaine
fairly encouraging, as the current bottleneck lies on tlastle
1 computationally expensive parts of the process: both the
1 generation of the formula and the conversion to CNF are
guadratic in the worst case. On the other hand, SAT solving
proves quite efficient, even on fairly large formulee: theeord
41 of magnitude of the largest tested formulee is of approxiipate
70’000 variables, 120’000 clauses and250'000 literals (in
CNF), for a solving time well under one second.

SAT solving time (s)

* VI. CONCLUSION AND RELATED WORK

This paper proposes the encoding of the membership prob-
lem for a class of extended tree automata, callédsEDs,
Number of elements in a SAT formula. Therefore, the paper shows that using
SAT-solvers allows to successfully handle this NP-congplet
decision problem useful for practical applications in ségu
] ) ] protocol verification, Java byte code program analysis,iand
this query,M ni SAT2 tends to outperfornpi cOSAT as the XML document processing. The paper also proposes several
terms grow, which suggests that the heuristic used for SAEristics to reduce the size of generated formulas, arattep
solvi_ng may significantly impact the overgll efficier_my_ofroupn the experimental results for some of them. The work
queries. Figure 2 shows the same experiment, this time WitBntinues on the implementation of proposed heuristics. We
also intend to go further by exploiting the proposed SATeoas
approach for larger XML documents.

Fig. 1. CNF solving time, Laboratory example

0.5

T T T T T

T T T
picoSAT (accepted) =——t=—

(
045 0 i00sAT (rojonted) e 1 Related WorkUsing SAT-solvers for verification purposes
) 4 | MinisAT2 (reJected) 1 was introduced in [20]: practical experience shows thatyman

bugs in programs occur on small length executions. The idea

N 0% 1 isthen to prove the correctness of a system for bounded execu
403 S 1 tions. In this context, verification problems are frequgiNP-
& o2sft S { complete and can be solved using SAT-solvers. For instance,
% N | this approach was successfully used in [21] for hardware
S N verification, in [22] for program analysis, in [23], [24] for
IR B 1 security protocol verification, in [25] for LTL model-cheicig,

L N g1 etc.

vost S e A Tree automata were intensively studied in the literatuee, n

tably for program verification, where they provide absiact
0 2000 4000 6000 8000 10000 12000 14000 16000  based approximations of program configurations. In this di-
Size of term rection, several classes of extended automata were defined i
Fig. 2: CNF solving time{ f(t,t)/ t € T(F)} order to hav_e finer approx_lmatlons. _In partlcu!ar, |_t appear
that comparing subtrees is a crucial modelling issue that

. . leads to the definition of several classes of tree automata
the smallTAGED acceptin t,t)/ t € T(F)} (introduced ™! . .
pting{ f(t. 1)/ (#)} ( th constraints. In [26], [27], the authors studied a class

at the beginning of section V), and for both accepted arYﬁ , i
of automata that allows comparing subterms during runs.

(@Bit-level Analysis Tool, version 0.2 Unfortunately, in this framework, the emptiness problem is




undecidable. However, several subclasses with the ddeidgts]

emptiness problem were pointed out (see [14] for more detail
In order to verify security protocols, a class of tree auttama

with memory was introduced in [28]. For a similar clasg§l7]

of applications, [12] introduces the class mdid automata

which is a subclass of thAGEDclass [16]. In order to [ig

model data base applications, tree automata with Presburge
constraints were used in [29]. In this direction, the receH!
work [30] investigates unranked tree automata with eq,ualifzo]
and disequality constraints. Several works have also beee d

on tree automata with equality modulo an equational theor[gzl]

[31] focuses on associative-commutative theories, w8 [

tackles more general cases.

In [8], tree automata and the rewriting theory have be
used for verifying XML updates. Basically, in the contex

i

of XML programming, types can be viewed as hedge tree
automata [10]. Then, given a set of update operations nmetlel[23]

by rewrite rules, rewriting over languages recognised loge¢h

automata is used to ensure that XML document types are pre-

served along any sequence of updates. Like in our appro
the results exploit the decidability of the membership prob

3

and of the emptiness problem for the considered classes of

tree automata.
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A. TheTAGED Acxa
We present th& AGED used for the example in Section II.

VIlI. APPENDIX B.

Acxa = (Ea A; Qv Fv A, 7%4) where

<

o

Y = {fteam, fmemb,gteam,A,B,C,... Z, 1};
fteam, fmemb and gteam are binary symbols,
A, ..., Z are unary symbols and is a constant;
Q = {qChar,qName,qNames, qLab, gTeam, ¢Teams};
F = {¢Teams};
A is the following sets of rules. First, all strings can be
reduced to stateChar.

- 1L — qChar,

- A(qChar) — qChar </

- B(qChar) — qChar

- Z(qChar) — qChar It
Second, letyLab be the state for the laboratory identifier.
So, there are the rules below:

- A(¢Char) — qLab

- B(¢qChar) — qLab

- Z(qChar) — qLab
Third, each name of team members reducegName.
So, one has the following rules:

- A(¢Char) — qName

- B(gChar) — gName

- Z(qChar) — gName

Now one can encode the list of team members using the J

stateqNames and the rules

- fmemb(¢Name, ¢Name) — qNames

- fmemb(¢Name,qgNames) — gNames
To finish, one has to encode the list of teams by the
following rules:

- gteam(qNames,qLab) — qTeam

- fteam(qTeam, qTeam) — qTeams

- fteam(qTeam, qTeams) — qTeams
At this stage, a term can be reducedqtBeams iff it
encodes an XML document satisfying the DTD.
It remains to encode that all teams are affiliated to the
same laboratory, and that all members are pairwise dif-
ferent. The first constraint is encoded by thg relation:

=41= {(¢Lab, qLab)}.
The second constraint is encoded by herelation:

#1= {(gName,gName)}.

Encoding an XML Document
We consider the following XML document depicted in

Section II.

<uni versity>

<t eane
<nmenber > JS </ menber >
<nmenber > JD </ nenber >
<nmenber > RKT </ nenber >
<l aboratory> CS </| abor at ory>
</teanp
<t eane
<menber > W/ nenber >
<nmenber > JFL </ menber >
<l aboratory> CS </| abor at ory>
</t eanp
uni versity>

is encoded by the following term.

fteam
gteam gteam
a
fmemb C fmemb C
/\
fmemb JJ_ w J S
J R H F L
L D K 1 L
1 T 1
1

Notice that theTAGED used in Section V is slightly differ- C- A Successful Run

ent.

We present a successful run df,, on the term above.



Using transitions

- 1L — qChar,
- A(¢Char) — qChar
- B(¢Char) — qChar

- Z(qChar) — qChar
the term can be rewritten into

fteam

/N

gteam gteam

/NN

fmemb C fmemb C

T AN

J  fmemb w J qChar

A

qChar J R qChar ¢Char

qChar qChar

Now using

- A(¢Char) — qName
- B(gChar) — gName

- Z(qChar) — gName
- A(¢Char) — qLab
- B(qChar) — qLab

- Z(qChar) — qLab

one can obtain

fteam

/N

gteam gteam
fmemb qLab fmemb qLab
qName fmemb qNamegName
qName gName

Using the rules

- fmemb(¢Name, ¢Name) — qNames
- fmemb(¢Name,qNames) — gNames

one obtains

fteam

7N\

gteam gteam

ATV

qNames qLab  gqNames qLab

Using the rules

- gteam(qNames, qLab) — qTeam

- fteam(qTeam,qTeam) — qTeams
allows us to reduce the term t@l'eams, which is the final
state.

It remains to verify that the constraints imposed-hy and
#, are satisfied. In the considered run, all subterms reducing
to gName are distinct; so, the constraint induced By is
satisfied. Now, all the subterms reducingyfoeb in this run are
equal toC'(S(L)): the constraint induced by, is satisfied,
too.



