
Adapting Component Behaviours using Interface Automata

Samir Chouali, Sebti Mouelhi, Hassan Mountassir
Laboratory of Computer Science, LIFC

University of Franche Comté, Besançon, FRANCE
Email: {schouali,smouelhi,hmountassir}@lifc.univ-fcomte.fr

Abstract

One of the principal goal of Component-Based Soft-
ware Engineering (CBSE) is to allow the reuse of compo-
nents in diverse situations without affecting their codes. To
reach this goal, it is necessary to propose approaches to
adapt a component with its environment when behavioural
mismatches occur during their interactions. In this pa-
per, we present a formal approach based on interface au-
tomata to adapt components in order to eliminate possible
behavioural mismatches, and then insure more flexible in-
teroperability between components.

1. Introduction

The idea of component based software engineering [13,
5] is to develop software applications not from scratch but
by assembling various library components. This devel-
opment approach allows software reuse without changing
components code. A component is a unit of composition
with contractually specified interfaces and explicit depen-
dencies [13]. An interface may describe component infor-
mation at the level of signature (method names and their
types), behavior or protocol (scheduling of method calls),
semantic (method semantics) without disclosing the compo-
nent implementation. The success of applying the compo-
nent based approach depends on the interoperability which
holds between two components when their interfaces are
compatible. Usually interoperability is not guaranteed when
we reuse and assemble components. This is due to possible
mismatches that may occur, between components, at differ-
ent levels cited above [4]. In this case, components adapta-
tion should be performed in order to eliminate the resulting
mismatches.

In this paper 1, we focus on adapting components, de-
scribed by interfaces which are specified by interface au-

1This work has received support from the French National Agency for
Research , ANR-06-SETI-017 (TACOS).

tomata [1]. This formalism has the ability to model a tem-
poral order of, both the input requirements (input actions),
the output behavior (output actions) of a component, and
the local events of a component. The composition of two
interfaces is achieved by synchronizing their shared output
and input actions. An interesting verification approach was
also proposed in [1], to detect interface incompatibilities
that may occur when, from some states in the synchronized
product, one automaton issues a shared action as output
which is not accepted as input in the other. We say that
those states are illegal. Our purpose is to generate auto-
matically an adaptor (interface in the middle) for exactly
two component interface automata according to a mapping
that establishes a number of rules relating the component
actions. It allows the elimination of mismatches at the sig-
nature and the protocol levels.

One of the aims of this paper is to bring together the
notion of adaptability of interface automata and their opti-
mistic approach of composition. The latter makes the two
interface automataA1 andA2 compatible if there is an envi-
ronment that prevents their synchronization to enter illegal
states. The composition approach of the other automata-
based interface formalisms are considered pessimistic.

2. Interface Automata

Interface automata have been introduced by L. Alfaro
and T. Henzinger [1], to model the temporal behavior of
software component interfaces. Every component interface
is described by one interface automaton.

Definition 1 (Interface Automata). An interface automa-
ton A = 〈 SA, IA, ΣIA, ΣOA , ΣHA , δA 〉 consists of: a finite set
SA of states; a subset of initial states IA ⊆ SA. Its cardi-
nality card(IA) ≤ 1 and A is called empty if IA = ∅; three
disjoint sets ΣIA,Σ

O
A and ΣHA of inputs, output, and hidden

actions; a set δA ⊆ SA × ΣA × SA of transitions between
states.

In this article, we use the formalism of interface au-
tomata (IAs) defined by L. Alfaro and T. Henzinger without

any extension, except that the set of hidden actions of an in-
terface may contain the special action epsilon ε that symbol-
izes the no-operation event. We redefine, as consequence,
the composability condition of interface automata. Two in-
terface automata A1 and A2 are composable if ΣIA1

∩ ΣIA2

= ΣOA1
∩ ΣOA2

= ΣHA1
\ {ε} ∩ ΣA2 = ΣHA2

\ {ε} ∩ ΣA1 = ∅.
All the notations used and the specificities of the optimistic
view of interface automata composition are detailed in the
reference article of the formalism [1].

3. Behavioural Mismatch in IAs

The behavioural mismatch of IAs cannot be detected by
applying the synchronized product between two compos-
able interface automata as it was defined in [1], because
the case where the action names do not correspond leads
to make them absent in the set of shared actions. Thus, all
of mismatched actions do not synchronize and they are in-
terleaved asynchronously in the product. To solve this con-
straint, we define a set of rules called a mapping which pro-
vides the minimal specification of the adaptor of two adapt-
able components. These rules define correspondences be-
tween the mismatched actions.
Definition 2 (Rules and Mappings). A rule α for two
composable interface automata A1 and A2, is a tuple
〈L1, L2〉 ∈ (2ΣO

A1 × 2ΣI
A2) ∪ (2ΣI

A1 × 2ΣO
A2) such that

(L1 ∪ L2) ∩ Shared(A1, A2) = ∅ and if | L1 | > 1 (or
| L2 | > 1) then | L2 |= 1 (or | L1 |= 1). A mapping
Φ(A1, A2) for two composable interface automata A1 and
A2 is a set of rules αi, for 1 ≤ i ≤ | Φ(A1, A2) |2.

According to the Definition 2, a rule in our approach deals
with one-to-one and one-to-many correspondences between
actions. More clearly, the adaptation may in general re-
late either an action or a group of actions of one automa-
ton with one action in the other. The adaptability of inter-
face automata permits to make sense to the synchronization
of some non-shared actions between two composable in-
terface automata A1 and A2 according to a fixed mapping
Φ(A1, A2). We denote the set of the mismatched actions by
MismatchΦ(A1, A2) = {a ∈ ΣextA1

∪ΣextA2
| ∃ α ∈ Φ(A1, A2)

. a ∈ Π1(α) ∨ a ∈ Π2(α)}3.
We call that two interface automataA1 andA2 are adapt-

able if they are composable, their mapping Φ(A1, A2) is not
empty, and there exists an adaptor for them which is com-
patible with both A1 and A2. We distinguish two principle
cases: (i) if the generated adaptor is empty then A1 and A2

cannot be adapted (ii) Otherwise, if A1 ‖ Ad ‖ A2 is non
empty, then A1 and A2 are compatible after their adapta-
tion.

2| S | is the cardinality of some set S.
3Π1(〈a, b〉) = a and Π2(〈a, b〉) = b are respectively the projection on

the first element and the second element of the tuple 〈a, b〉.

4. Adaptor Specification

We present the adaptor specification of two composable
interface automata A1 and A2. Some preliminaries have
to be introduced before. Given an interface automata A,
we denote by ΘSA(s) ⊆ S∗A the set of successor finite runs
θ = s1a1s2a2...sn such that s1 = s, sn is the initial state
or a state that have no outgoing transitions, and for all
1 ≤ i < n, there is a transition (si, ai, si+1) ∈ δA. We
denote by ΘPA(s) ⊆ S∗A the set of predecessor finite runs θ
= s1a1s2a2...sn is defined exactly as ΘSA(s) except s1 = i
where i ∈ IA and sn = s. The set ΘA of all finite runs of
A equals to ΘSA(i) where i ∈ IA. We say that a succession
of transitions s1a1s2a2...sn (for n > 2) is included in a run
σ in ΘSA(s) or ΘPA(s) (denoted by the operator v), if all
transitions of s1a1s2a2...sn are transitions of σ.

Definition 3 (Adaptor). Given two composable interface
automata A1, A2, and a mapping Φ(A1, A2), an adaptor
for A1 and A2 according to the mapping Φ(A1, A2) is an
interface automata Ad = 〈 SAd, IAd, ΣIAd, ΣOAd, ΣHAd, δAd〉
such that

• ΣIAd = {a ∈ ΣOA1
∪ ΣOA2

| a ∈ MismatchΦ(A1, A2)};
ΣOAd = {a ∈ ΣIA1

∪ ΣIA2
| a ∈ MismatchΦ(A1, A2)};

ΣHAd ⊆ {ε}; δAd ⊆ SAd × ΣIAd ∪ ΣOAd ∪ {ε} × SAd;

• Shared(Ad,A1) =
⋃
α∈Φ(A1,A2) Π1(α);

Shared(Ad,A2) =
⋃
α∈Φ(A1,A2) Π2(α);

• For all s ∈ SAd and σ ∈ ΘP
Ad(s), if there ex-

ist r1a1...rnans v σ and α ∈ Φ(A1, A2) such
that Πi(α) ⊆ ΣOAi

for i ∈ {1, 2} and Πi(α) ⊆⋃
k∈1..n{ak}, then for all ρ ∈ ΘS

Ad(s), there exists
sb1...bmtm v ρ such that Π3−i(α) ⊆ ΣIA3−i

and
Π3−i(α) ⊆

⋃
l∈1..m{bl}.

Property 1 An adaptor Ad for two composable interface
automata A1 and A2 according to a mapping Φ(A1, A2) is
composable with A1 and A2.

The property can be easily verified according to Def-
inition 3 and the definition of the interface automata
composability.

Example 1. Given the two composable interface au-
tomata Client and Server shown in Figure 1 and a mapping
Φ(Client,Server) = {〈{login!}, {usr?,pass?}〉, 〈{req!},
{query?}〉, 〈{arg!}, {value?}〉, 〈{ack?}, {service!}〉
〈{ok?}, {connected!}〉}. As the reader can conclude, Client
and Server are adaptable since their adaptor Ad (cf. Fig-
ure 1) is composable and compatible with both of them and
it satisfies all the items of Definition 3. The composite in-
terface automaton (Client ‖ Adaptor) ‖ Server is non empty.

1 2 3

45

login!

error?
ok?

req!

arg!

ack?

Client

login

ok

ack

req

arg

error

1 2 3 4

56

7 8

usr? pass?

Server

connected!

value?

query?

service!

admin-mode?
usr?

error!

usr

pass

value

query

service

admin-md connected error

α β γ δ ε

ζηθϑι

κ

login? usr!

Adaptor

pass! connected?

ok!

req?arg?value!query!
service?

ack!

login

usr

pass

req

arg

value

query

service

ack connectedok

Figure 1. The adaptor Ad for a variant of a client/server system

Consequently, Client and Server are compatible after their
adaptation by Adaptor. Our proposed algorithm presented
in section 5 is supposed to generate the same interface au-
tomaton as Adaptor.

5. Adaptor Construction

The adaptor construction is splited into two algorithms.
The result of the first one (Algorithm 1) is illustrated in Fig-
ure 2. It traverses the two interface automata A1 and A2

to be adapted, according to a mapping Φ(A1, A2), by ex-
ploring alternatively the states and the transitions as far as
possible along the branches of each of them. It updates as
one goes along the set of states S and the set of transitions
T initially set to the empty set. Red states represents states
that from where the output actions of a given rule α in the
mapping are not followed by all their corresponding input
ones. These states are called blocking.

To satisfy the last condition of Definition 3, Algorithm 2
removes all the fragments of runs leading to the blocking
states. It traverses the resulting graph of Algorithm 1
using a loopback starting from blocking states until states
which have at least one outgoing transition leading to a
non marked state by the loop. If there is no remaining
state then the adaptor is not defined between A1 and A2.
We introduce the set PREDdT (B) (B ⊆ S) by { λ ∈ S\B.
λ ∈ PredT (µ) ∧ µ ∈ B ∧ (degoT (λ)4 = 1 ∨ (degoT (λ) >
1 ∧ SuccT (λ)⊆ B))} where PredT (λ) and SuccT (λ) are
respectively the sets of predecessor and successor of λ ∈ S
in T .

Algorithm 2 Adaptor Constructor
Input: The resulting sets S and T of Algorithm 1
Initialisation: B0={ν ∈ S . ν est bloquant}.

1. For all k > 0, let Bk+1 = Bk ∪ PREDd
T (Bk);

2. Back to the step 1 while Bk ⊆ Bk+1 ;
Output: The adaptor Ad of A1 and A2 according to Φ(A1, A2) tel que
- SAd = { ν ∈ S \ Bk} and
- δAd = {(ν, a, ν′) ∈ SAd × ΣAd × SAd such that ν, ν′ ∈ T \ {
(µ, b, µ′) ∈ T | µ, µ′ ∈ S \ Bk }} .

4For a state s, we define by dego
T (s) the number of transitions which

have s as origin in a set of transitions T.

〈11, ∅, ∅〉

〈21, {1ogin}, {usr,pass}〉

〈22, {1ogin}, {pass}〉 〈17, ∅, ∅〉

〈27, {1ogin}, {usr,pass}〉〈23, ∅, ∅〉

〈13, ∅, ∅〉 〈24, {conn}, {ok}〉

〈14, {conn}, {ok}〉 〈34, ∅, ∅〉

〈44, {req}, {query}〉

〈54, {req,arg}, {query,value}〉

〈55, {req}, {query}〉

〈56, ∅, ∅〉

〈51, {service}, {ack}〉

〈28, {1ogin}, {pass}〉

〈21, {1ogin}, {pass}〉

〈11, {1ogin}, {pass}〉

login?

usr!

ε;

pass!

ε; connected?

connected?

ε;

ok!

req?

arg?

value!

query!
service?

ack!

usr!

ε;

ε;

ε;

login?

Figure 2. The result of Algorithm 1 for the
client/server system of Example 1

By applying Algorithm 2 to the transition system pre-
sented in Figure 2, we obtain our desired adaptor shown in
Figure 1. It performs a loop back from the blocking states
〈11, {1ogin!}, {pass?}〉 and 〈14, {connection!}, {ok?}〉 un-
til states which have more than one outgoing transitions.
Given two interface automata A1 and A2, Algorithm 1 has
the complexity O(|SA1 × SA2 |.(|δA1 |+ |δA2 |)). The com-
plexity of Algorithm 2 is in linear time on the number of
states in S.

6 Related Works

Many papers about component adaptation are based on
the work presented in [15], where the authors proposed an
interesting approach, based on finite state machine, to adapt

components specified by interfaces describing component
protocol and action signatures. This approach deals with
one-to-one relations between actions. In [7], the authors
propose the Smart Connectors approach which allows the
construction of adaptors using the provided and required in-
terfaces of the components in order to resolve partial match-
ing problems in COTS component acquisition. In [14], the
authors have developed the tool PaCoSuite to edit visu-
ally components, and to generate adaptors using signature
and protocols interfaces. In [12], Schmidt and Reussner
presented a particular adaptation approach as a solution to
synchronisation problems between concurrent components.
The approach addresses for instance situations where one
component is accessed simultaneously by two other com-
ponents. The proposed method was implemented in the
CoConut/J tool suite [11], where the authors introduce the
concept of parameterized contracts and a model for compo-
nent interfaces. They also present algorithms and tools for
specifying and analyzing component interfaces in order to
check interoperability and to generate adapted component
interfaces.

Others approaches for the generation of adaptor proto-
cols from component behavioral interfaces and composition
contracts based on process algebra were proposed in [3, 6].
In [10], the authors developed a game-theoretical approach
to find out whether incompatible component interfaces can
be made compatible by inserting a converter between them
which satisfies specified requirements. In [2], the authors
proposed an approach based on transition systems and mes-
sage sequence charts, for automatic synthesis of failure-free
coordinators (adaptor) for COTS component based systems.
In [8], the authors proposed a model of adaptors expressed
in the B formal method, allowing to define the interoper-
ability between components.

The approaches described above propose solutions for
the component adaptation based on different specification
formalisms of component interfaces. In our approach, we
propose a solution to adapt particular components that are
specified by interface automata. This formalism is more
general and based on rich notation, allowing to deal with
more complex adaptation scenarios.

7 Conclusion and Future Works

In this paper, we propose a methodology for the au-
tomatic development of component adaptors, allowing the
elimination of behavioural mismatches between interacting
components, described by interface automata. We propose
an algorithm that generates automatically the adaptor for
two adaptable interface automata according to a fixed map-
ping. The generated adaptor allows to eliminate mismatches
at the signature and the protocol levels. The proposed al-
gorithms were implemented in Java in order to validate

them, and we plan to propose a complete tool in the future
works. Actually, we are developing a tool that implements
a framework checking the compatibility between interface
automata at the protocol and the semantic levels [9]. We
plan also to implement the proposed adaptation approach in
our framework.

References

[1] L. Alfaro and T. A. Henzinger. Interface automata. ACM
Press, 9th Annual Aymposium of FSE (Foundations of Soft-
ware Engineering), pages 109–120, 2001.

[2] M. Autili, P. Inverardi, and M. Tivoli. Automatic adap-
tor synthesis for protocol transformation. In proceedings of
WCAT’04, pages 39–46, 2004.

[3] A. Bracciali, A. Brogi, and C. Canal. A formal approach
to component adaptation. Journal of Systems and Software,
74:45–54, 2005.

[4] C.Canal, J. Murillo, and P. Poizat. Software adaptation.
L’OBJET, 12(1):9–31, 2006.

[5] G. Heineman. An evaluation of component adaptation tech-
niques. In the proceeding of ICSE Workshop on CBSE, 1999.

[6] R. Mateescu, P. Poizat, and G. Salaün. Behavioral adap-
tation of component compositions based on process alge-
bra encodings. In ASE ’07, pages 385–388, New York, NY,
USA, 2007. ACM.

[7] H. Min, S. Choi, and S. Kim. Using smart connectors to
resolve partial matching problems in cots component acqui-
sition. LNCS, SV, Berlin, Germany, 3054(40-47), 2004.

[8] I. Mouakher, A. Lanoix, , and J. Souquires. Component
adaptation: Specification and verification. In 11th Inter-
national Workshop on Component Oriented Programming,
2006.

[9] S. Mouelhi, S. Chouali, and H. Mountassir. Refinement of
interface automata strengthened by action semantics. Electr.
Notes Theor. Comput. Sci., 253(1):111–126, 2009.

[10] R. Passerone, L. deAlfaro, T. Henzinger, and
A. Sangiovanni-Vincentelli. Convertibility verification
and converter synthesis: Two faces of the same coin.
In International Conference on Computer Aided Design
ICCAD, pages 132–139. ACM, 2002.

[11] R. Reussner. Automatic component protocol adaptation with
the coconut/j tool suite. Future Generation Comp. Syst.,
19(5):627–639, 2003.

[12] H. W. Schmidt and R. H. Reussner. Generating adapters
for concurrent component protocol synchronisation. In
FMOODS ’02, pages 213–229, Deventer, The Netherlands,
The Netherlands, 2002. Kluwer, B.V.

[13] C. Szyperski. Component software: Beyond object oriented
programming. Addison Wesley, 1999.

[14] W. Vanderperren and B. Wydaeghe. Towards a new compo-
nent composition process. In the proceeding of the ECBS
2001 Int Conf, Washington, USA, pages 322–331, 2001.

[15] D. M. Yellin and R. E. Strom. Protocol specifications and
component adaptors. ACM Trans. Program. Lang. Syst.,
19(2):292–333, 1997.

