
FPGA Implementation of Diffusive Realization for a
Distributed Control Operator

G. Goavec-Merou∗, Y. Yakoubi†, R. Couturier‡, M. Lenczner∗, J.M. Friedt∗ and F. Yang§
∗FEMTO-ST, Time-Frequency Department, 26, chemin de l’Epitaphe, 25030 Besançon, France
†Laboratoire Jacques-Louis Lions, Pierre et Marie Curie University, 75252 Paris Cedex 05, France
‡University of Franche-Comte, LIFC, IUT Belfort-Montbéliard, rue Engel Gros, 90000 Belfort, France

§Le2i, Bourgogne University, Mirande University, 21000 Dijon, France

Abstract—We focus on the question of real-time computation for
optimal distributed filtering or control applicable to MEMS Arrays. We
present an algorithm for the realization of a linear operator solution to
a functional equation through its application to a Lyapunov operatorial
equation associated to the heat equation in one dimension. It is based
on the diffusive realization, and turns to be well suited for fined
grained parallel computer architecture as Field Programmable Gate
Arrays (FPGA). An effective FPGA implementation has been successfully
carried out. Here, we report the main implementation steps and the final
measured performances.

Keywords-Distributed Control; FPGA; Diffusive Realization; Semi-
decentralized Control; Fine Grained Parallel Computer Architectures.

I. INTRODUCTION

Our concern when developing the method presented in this paper
relates to embedded intensive real time computation based on fine
grained parallel computer architectures as Field-Programmable Gate
Arrays (FPGA). Here we address the general problem of realization
of a linear operator u 7→ z = Pu in infinite dimensional spaces. Our
method is presented and illustrated on the example of the operator
P, solution to the Lyapunov equation,

d2

dx2
Pu+ P

d2

dx2
u = Qu (1)

in ω = (0, 1) for all u vanishing at the boundary of ω, where Q is
another linear operator. It is issued from optimal filtering or control
theory of the heat equation

∂T

∂t
− ∂2T

∂x2
= q in ω.

The method is in the same time fast and suitable for implementa-
tion on semi-decentralized architectures where communications are
mainly between neighbor unit cells. Its formulation relates to an
interesting technique, the diffusive representation, applicable to causal
operator realizations which is well developed in the context of time
operators. One of the main recognized advantages of this approach is
its low computational cost, see the papers of G. Montseny et al., e.g.
[2], and of D. Matignon et al., e.g. [5], for representations of various
pseudodifferential operators and for their approximation. Those of C.
Lubich et al., e.g. [6], apply a similar idea to convolution operators
and they develop optimized numerical methods.

In this paper, we briefly present the diffusive representation of
the solution P to (1) together with algorithms for their approxi-
mation implementable in semi-decentralized architectures. We refer
the interested reader to the general theory shortly introduced in
[3] and detailed in [4]. Then, the core of the paper is devoted to
FPGA implementation using integer computation. We start by a re-
scaling of the algorithms guarantying that all intermediary and final
results be in a prescribed interval. Then we report the results of our
study on the effect of quantization. After these preparation steps,

the FPGA mapping is analyzed for three different possible schemes,
namely: Iterative, Pipelined and Parallel. The Parallel solution has
been implemented in the Spartan3A by Xilinx, and we provide
detailed results regarding resource and time consumptions.

II. DIFFUSIVE REPRESENTATION OF P

We consider the kernel formulation of the operator P ,

Pu(x) =

Z 1

0

p(x, y)u(y) dy,

and the decomposition z = z++z− into causal and anti-causal parts,

z+ =

Z x

0

p(x, y)u(y) dy and z− =

Z 1

x

p(x, y)u(y) dy.

The kernel p is the unique solution to the boundary value problem

−∆p = q in the square (0, 1)× (0, 1),

and p = 0 on the square boundary (0, 1)× (0, 1), (2)

where q is the kernel of Q. The realization of z+ and of z− may be
formulated thanks to the diffusive representation, see [3] and [1], in
the form

z+(x) =

Z
R
µ+(x, ξ)ψ+(x, ξ) dξ

and z−(x) =

Z
R
µ−(x, ξ)ψ−(x, ξ) dξ, (3)

where both ψ+ and ψ− store a part of the history of the input data u.
They are respectively solution to the forward and backward ordinary
differential equation in x,

∂xψ
+(x, ξ) + θ+(ξ)ψ+(x, ξ) = u(x)

with ψ+(0, ξ) = 0, (4)

and ∂xψ−(x, ξ)− θ−(ξ)ψ−(x, ξ) = u(x)

with ψ−(1, ξ) = 0, (5)

where ξ is a real parameter. We emphasis that they are independently
of a specific operator P . Conversely, the coefficients µ+ and µ−,
called diffusive symbols, depend on P but not on u. The functions
ξ 7→ θ+(ξ) and θ−(ξ) parameterize two closed paths in the complex
plane, satisfying the cone condition, and enlacing the singularities of
the Laplace transform P± defined hereafter. The diffusive symbol
derivation requires several steps. The two functions

y 7→ p(x, x− y) and y 7→ p(x, x+ y), (6)

corresponding to the causal part and the anti-causal parts of the
impulse response, are analytically extended to R+. We assume that
their Laplace transforms P+ and P− are well-defined in C+, and



that they admit holomorphic extensions vanishing at infinity. The
Diffusive symbols are then given by

µ±(x, ξ) = −θ
±′(ξ)

2iπ
P±

`
x, θ±(ξ)

´
. (7)

III. APPROXIMATIONS AND ALGORITHMS

We introduce the variational formulations for p+ and p− and we
approximate their solutions by using convenient Galerkin base. The
paths −θ± are chosen so that to enlace, by the right, the poles of
Laplace transforms of the basis functions, and the approximations
µN± of µ± are then given by the counterpart of the formula (7)
applied to the Laplace transform of the impulse response approx-
imations. Once the diffusive symbols are available, a numerical
approximation of the integrals in (3) must be derived. The diffusive
realization z(x) = z+(x) + z−(x) is evaluated at some points
(xn)n=0,..,N ∈ (0, 1), thanks to a trapezoidal rule by

zn = hξ

MX
k=−M

µN+
n,kψ

+
n,k + µN−n,k ψ

−
n,k, (8)

for a M ∈ N∗, where hξ > 0 is the step size (distance between
two consecutive integration point), µNn,k and ψn,k are some discrete
values of µN and ψ at the points xn and ξk. Such quadrature rule
is similar to this encountered in the inverse Laplace transform in the
paper of J. A. C. Weideman and L. N. Trefethen [7]. These authors
have optimized the parameters of two different classes of contours,
typically a parabola

−θ± (ξ) = θp (iξ + 1)2 for ξ ∈ R, (9)

and a hyperbola

−θ± (ξ) = θh (1 + sin (iξ − α)) for ξ ∈ R, (10)

for some positive real numbers θp, θh and α the hyperbola asymptotic
angle. Our computation are based on the same optimized paths.

In the FPGA, the data are allocated to processing units according
to a mapping from the set of space locations {xn | n = 0, ..,N}
to the set of processing units. For real time computation, the dif-
fusive symbols are computed in a preprocessing step, and only the
computation of ψ+

n,k and of ψ−n,k, and then of zn through (8), remain
to be done at each time step. The summation (8) is clearly a local
(in space) operation, and the resolution of the Cauchy problems (4,
5) requires operations between neighbors nodes only. Indeed, we
use the forward and backward recurrence relations associated to a
discretization method with piecewise constant interpolation of u,

ψ+
n+1,k = ψ+

n,ke
−θ+(ξk)(xn+1−xn)+

e−θ
+(ξk)(xn+1−xn) − 1

−θ+(ξk)
u(xn),with ψ+

0,k = 0,

and ψ−n,k = ψ−n+1,ke
−θ−(ξk)(xn+1−xn)−

e−θ
−(ξk)(xn+1−xn) − 1

−θ−(ξk)
u(xn),with ψ−1,k = 0, (11)

easy to establish, see [4]. Clearly, the approximation ψ+
n+1,k (resp.

ψ−n,k) at a node xn+1 (resp. xn) is derived from the approximation
ψ+
n,k (resp. ψ−n+1,k) at the previous node xn (resp. next node xn+1)

for all k. Finally, we present the algorithms in a compact form, where
h = xn+1−xn is the spatial discretization step, α±k = e−θ

±
k
h, β±k =

α±
k
−1

−θ±
k

, γ±k =
α±

k

−θ±
k

, and θ±k = θ±(ξk) for convenient discretization
points ξk.

Algorithm 1 Diffusive Realization of z+(x)

1: Offline Computation of diffusive symbol µN+(x, ξ)
2: Online Computation
3: for n = 0, ...,N do
4: for k = −M, ...,M do

5: ψ+
n+1,k = α+

k ψ
+
n,k + β+

k un, ψ+
0,k = 0,

6: end for

7: z+
n+1 = hξ

PM
k=−M µN+

n+1,k

“
α+
k ψ

+
n,k + γ+

k un
”

8: end for

Algorithm 2 Diffusive Realization of z−(x)

1: Offline Computation of diffusive symbol µN−(x, ξ)
2: Online Computation
3: for n = 0, ...,N do
4: for k = −M, ...,M do

5: ψ−n,k = α−k ψ
−
n+1,k − β

−
k un, ψ−N ,k = 0,

6: end for

7: z−n = hξ
PM
k=−M µN−n,k

“
α−k ψ

−
n+1,k − γ

−
k un

”
8: end for

IV. SCALING AND VALUE ENCODING

In this section we explain how we proceed to prepare Algorithm 1
before its implementation in a FPGA. Since Algorithm 2 is very
similar to that one we only considered the former.

With the MATLAB implementation of Algorithm 1, all values are
encoded with floating point type. More precisely, the MATLAB code
uses complex numbers encoded with floating points. By default, the
FPGA uses only a bit vector for coding integers and the use of floating
points requires many logical cells on the FPGA. So, for many kinds
of FPGA, the use of floating is not recommended. In this work, in
order to be efficient, one of our constraints was to compute only
with integers. In order to scale the values of the variables involved
in the computation, we started by analyzing the algorithm. Doing
this, we observed that the following variables could be scaled: β,
γ, µ and u. Since β and γ depend on α, we do not scale alpha
which is almost naturally scaled without doing anything. So, for γ,
µ and u, we compute the maximum values, respectively called γmax,
µmax and umax. Then we compute the scaled variables, respectively
called βscaled, γsclaed, µscaled and uscaled with βscaled = β/γmax,
γscaled = γ/γmax, µscaled = µ/µmax and uscaled = u/umax. It
should be noticed that as β and γ depend on α we chose to scale
those variables by γmax which is larger than βmax.

So in Algorithm 1, we can deduce that ψ (line 5) is automatically
scaled since its computation involves scaled variables. Likewise, the
computation of z (line 7) is scaled and involves the products of
variables scaled by µmax, γmax and umax so in order to obtain the
final result, we need to multiply the result by umax×βmax×µmax.
Thus, z = zscaled × umax × βmax × µmax

To be efficient on FGPA architecture, one must avoid, when
possible, floating point computation. So, next we tried to convert
floating point values into integer. Using integers encoded on 32
bits, results of the computation are very similar to the ones using
floating points. Nevertheless, the smaller the number of bits used to
code integer in the FPGA architecture is, the less numerous are the
logical cells used, so the more parallelism capabilities we obtain.



That is why, next we made some experiments using MATLAB to
determine the influence of the number of bits to code integer. During
the computation some variables take values greater than one even if
they were all scaled before the computation. So we had to measure
the number of bits required to be added in order to take this into
account. In practice, for the experiments we performed, only two
bits were sufficient. Likewise, as the FPGA is only ableto manipulate
vector of bits representing positive integer, we had to add one more
bit for negative numbers. In Figure 1, we compare the results for the
causal diffusive realization with floating points, with integers encoded
on 16 bits and with the exact solution. The three curves seem very
similar even with the computation using integers.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

8
x 10

-3

Diffusive representation
Diffusive representation with integer
Exact solution

Fig. 1. Results obtained by the exact solution of the problem and by the two
different approximations (one with floating points and the other with integers
encoded on 16 bits).

In Table I, we can compare the maximum error and the relative
error between different integer computations encoded with different
numbers of bits and the exact solution. We can see that the best
number of bits is 16 and that the second best is 14 instead of what
we should have expected with 15.

Number of bits Maximum error Relative error
16 9.21e-5 1.05%
15 2.08e-4 2.51%
14 1.38e-4 1.51%
13 4.82e-4 6.79%
12 6.87e-4 9.23%
11 1.4e-3 18.69%

TABLE I
INFLUENCE OF THE NUMBER OF BITS ON THE ERROR COMPARED TO THE

EXACT SOLUTION.

In Figure 2, we highlight the most significant errors due to the
influence of the small number of bits used to encode integers with
the diffusive representation. We can see the observation highlighted
in Table I concerning the number of bits.

V. FPGA

FPGA unlike to CPU has no predefined functionalities. This allows
to have a finer granularity to implement algorithms.

The FPGA used for this work is a Xilinx Spartan3A ([11]) with:

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

4.5

5

5.5

6

6.5

7

7.5

x 10
-3

D.R. with 11 bits
D.R. with 12 bits
D.R. with 13 bits
D.R. with 14 bits
D.R. with 15 bits
D.R. with 16 bits
Exact solution

Fig. 2. Comparison of different Diffusive Representation (noted D.R.) with
integers encoded with different numbers of bits with the exact solution. The
figure is zoomed where the errors are the most significant.

• 200 k gates,
• 16 multipliers with 18 bits input and 36 bits output
• 16 RAM blocks of 16 kbits each,
• a 100 MHz clock.
Several implementations of a given algorithm are possible thanks

to the flexibility of this type of component:
• a classical iterative implementation, as done in a general purpose

computer. This solution is not efficient because for many treat-
ments, waiting the last processing step to be completed before
starting the next is needed, but the FPGA gate area use is low,

• a pipeline solution. With this strategy, the next treatment can
be started on the next clock event. This type of implementa-
tion exhibits better global time performances since each new
treatment only adds one clock period, but requires more gate
area than the iterative technic since registers are needed to store
temporary results.

• parallel processing. Many independants treatments could be
made in the same time. This type of implementation has the
advantage to reduce the global time and the critical time is equal
to the longest treatment.

VI. POSSIBLE SOLUTIONS OF IMPLEMENTATION TO FPGA

In this section, we explain how we implemented 1 on an FPGA.
The implementation choices are directly linked to constraints of the
equations (variable dependencies) and FPGA capabilities.

Figure 3 illustrates the relationships between ψ, u(xn), and ξk.
As presented in Figure 3, for a same ξ, ψ(xn+1, ξ) is dependent

on ψ(xn, ξ) value. It is not possible to start the next calculation step
before having finished the previous one. However, the computation
of ψ for different ξ are independent.

Figure 4 shows the relation between the contribution of P (un):
there are fewer constraints than ψ because it is possible to add a new
value to an existing one or make every addition before to store the
result.

The other aspect to be considered is the FPGA ressource avail-
ability. For example, if an equation needs to do 50 multiplications
with a FPGA containing only 16 multiplier blocks, pipelining the
computation to be impossible. The pipeline needs to have at least



u0 u1 u2 u(0..N)

...

...

...

...

M

...
ψ(0, 3)

ψ(0, 2) ψ(1, 2)

ψ(1, 1) ψ(2, 1)

ψ(0, 0)

ψ(2, 3)

ψ(0, 1)

ψ(1, 3)

ψ(1, 0)

ψ(2, 2)

ψ(2, 0)

ξ3

ξ1

ξ2

ξ0

Fig. 3. Dependency for ψ computation

Pu(1,2)

Pu(1,1)

Pu(1,0)

Pu(1,3)

Pu(2,2)

Pu(2,1)

Pu(2,0)

Pu(2,3)

u0 u1 u2 u(0..N)

...

...

...

...

M

Pu(0,2)

Pu(0,1)

Pu(0,0)

Pu(0,3)

Pu(1) Pu(2)

... ... ...

Pu(0)

ξ3

ξ1

ξ0

ξ2

Fig. 4. Contribution for P (un), with P (n, k) = hξµn,kψn,k

as many multipliers as required multiplications. The same problem
arises for memory management (RAM) and multiplier, a scarce
resource on FPGA.

These constraints are important because they guide choices in
terms of possible solutions, and the manner to implement them.
For example, because the value of ψ(xn, ξk) is needed for start
the computation of ψ(xn+1, ξk), it is not possible to use a pipeline
solution in this direction.

In the sequel, we detail the three solutions above introduced. This
is not exaust. Only possible solutions according to the constraints of
equations and available ressources are presented.

A. Iterative

The first solution consists in iterating on ξ values. For each value
of ξ, it consists in computing the ψ recurrence. This solution is
economic in logic cells because data accesses are made sequentially, it
is possible to use RAM blocks. But due to the relation between every
ψ for a specific ξk, the total computation time is equal to the time
needed to perform the computation for one value of ψ, multiplied by
the number N of inputs u and the number of lines (iterations needed
for the convergence M ).

B. Pipeline

The second solution is to use a pipeline mechanism. To be able to
use it, it is necessary to compute every ψ(xn, 0) values, and next to
compute ψ(xn, 1), and so on. This solution is better than the first one
because the next start of computation is made one clock period after
the previous one. As in the first solution, it is possible to use block
RAM because data are accessed sequentially. However, this solution
has two drawbacks:
• this solution needs to have the same amount of multipliers than

multiplications in equations,
• it needs Block RAM to store ψ values to make them available

for the next ξ.

C. Parallel

The last solution consists in implementing the computation in
parallel. Because there is no dependency between ψ(xn, 0) and
another ψ for a different ξ, it is possible to achieve every computation
on the same time. This solution is better for the computation time
because the size of ξ has no effect on the global computation time.
However because constants values are needed at the same time, it
is not possible to use RAM. Hence, the resource usage is more
important than for the two previous solutions, and the size for N
and M will be limited by the amount of logical cells available in the
FPGA.

In the following, we only consider the last solution.

VII. IMPLEMENTATION

On the one hand, for any couple of values for xn and ξk, the
calculation of ψ requires 15 multiplications. On the other hand, the
Spartan3A has only 16 multipliers. Consequently, it is necessary to
distribute a subset of multipliers to each computing branch. The
consequence is that it is not possible to dedicate a multiplier to each
multiplication. Each component needs to be used more than once.

In order to do that, the only solution consists in creating a Finite
State Machine (FSM). Equations are split into multiple states, the
number of states depending on the amount of multipliers blocks
available for a branch.

state 1 state 2 state 3 state 4

M

t

...

ψ ∗ α

ψ ∗ α

ψ ∗ α

ψ ∗ α

γ ∗ u
γ ∗ u

γ ∗ u

int∗µ
int∗µ

int∗µ

int∗µ
β ∗ u
β ∗ u

β ∗ u

β ∗ uγ ∗ uξ4

ξ4

ξ4

ξ4

Fig. 5. Example of FSM to implement equations

Figure VII presents a possible solution with 4 multipliers per
branch.

For each state, the output of a multiplier is affected through
addition or substraction to registers, and the next computed values
are affected to the multiplier inputs.

The complete structure is split into two components:

• the first is dedicated to handle state evolution, steering RAM.
• the second is dedicated to load values on multipliers and to store

results.

This structure has been used for following reasons:

• reducing logical cell usage by having only one state machine,
• a RAM or a signal cannot have more than one source. Other

solutions would have arisen problems to handle RAMs.

VIII. AREA USAGE OF FGPA

The chosen solution has the drawback of requiring many logical
cells to store constants. Consequently, with a Spartan3A FPGA, the
maximum size for constants is illustrated in Figure 6 where optimal
values seems to be N = 15 and M = 4 or N = 8 and M = 6.

The evolution curve depends on many parameters:

• the number of significant bit for values, constants and results,
• the magnitude of N and M .



0

20

40

60

80

100

0 2 4 6 8 10 12 14

P
e

rc
e

n
ta

g
e

 u
s
a

g
e

 o
f 

lo
g

ic
a

l 
c
e

lls
 (

%
)

Number of elements

M evolution for N=8
N evolution for M=4

Fig. 6. Percentage of logical cells usage with respect to M and N for a 9
bits integer encoding

In consequence, for any other encoding integer number of bits, the
area usage of logical cells is different.

It evolution of area usage as a function of these parameters
is difficult to predict, and is here considered experimentally. For
example, the increase on area usage is different for 1 bit added for
different M or N magnitude. But, increasing N has a lower impact
than increasing M , since N changes only the size for u (stored in
RAM) and for µ.

On the other hand, increasing M increases the size of every
constant stored with logical cells.

IX. RESULTS

In order to validate our FGPA implementation and measure the
execution time of each solution, we compare results synthesized
on the FGPA, running on MATLAB, and the equivalent program
implemented in C and running on a general purpose computer for a
parameter set M = 4 and N = 8. Numerical results are exactly
identical whether resulting from the execution on the FPGA, on
MATLAB or using the C programs: the algorithm implementation
is thus considered correct. For comparing elapsed time, we executed
the C program on a laptop computer with an x86 processor 1.6GHz.
It takes approximately 60, 000ns to run the simulation.

Time results are given in Figure 7: we observe that on the FPGA,
the computation time is approximately 720ns, or an improvement of
nearly two orders of magnitude with respect to the general purpose
computer.

Figure 8 exhibits the extrapolation of the computation time for
others solutions. These results were obtained using the following
assumptions

• tψ = nstate ∗ tclock
• tparallel = tψ ∗M
• titerative = tψ ∗M ∗N
• tpipeline = tψ + ((M ∗N)− 1) ∗ tclock

with:

• tψ = time to compute one occurence of ψ,
• nstate =number of FSM states,
• tclock = clock period.

Fig. 7. Generation of a signal indicating the begining and the end of the
compute, observed using a 60 MHz bandwidth oscilloscope.

The single-step computation time predicted from FPGA synthesis
simulation are consistent with experimental timing measurements as
shown in Fig. 7.

0

1000

2000

3000

4000

5000

6000

0 5 10 15 20

C
o

m
p

u
ta

ti
o

n
 t

im
e

 (
n

s
)

size of N

iterative
parallel
pipeline

Fig. 8. Simulated computation time for M = 4 and 1 ≤ N ≤ 16

Figure 8 exhibits the estimated computation time for others sets of
parameters M and N .

For the same values M = 4 and N = 8, we estimate the following
computation times:
• iterative solution: 2800 ns,
• pipeline solution: 400 ns.
for N = 8 and M = 4, the pipeline solution is better. Indeed the

advantage of a parallel implementation appears when N < nstat−1
nstat−M

with nstat the number of state for solved an occurence (Fig. 9).

X. CONCLUSION

We have shown that the diffusive representation is well suited for
FPGA implementation of the realization of a linear operator which
plays a central role in a distributed filtering or control law. We have
developed every steps to analyze computation accuracy. In particular,
we have tested data formats consistent with hardware implementation.
Our results proved a high efficiency in terms of computation time.



0

5000

10000

15000

20000

25000

30000

0 5 10 15 20

C
o

m
p

u
ta

ti
o

n
 t

im
e

 (
n

s
)

size of N

iterative
parallel
pipeline

Fig. 9. Simulated computation time for M = 20 and 1 ≤ N ≤ 16

However, using a Spartan3A FPGA, the amount of available values
for constants and for inputs u is limited by the number of logical
cells. In a future work, we plan to implement an evolution of this
control law. In particular, we will focus on the practically useful case
where M is lower than N , and implement the pipeline mechanism
that would yield best performances.

REFERENCES

[1] G. Montseny, Représentation diffusive, Hermès-Sciences, 2005.
[2] L. Laudebat & P. Bidan & G. Montseny. Modeling and optimal identi-

fication of pseudodifferential electrical dynamics by means of diffusive
representation - Part 1: Modeling. IEEE Transactions on Circuits and
Systems I-Regular Papers, 51(9):1801–1813, 2004.

[3] M. Lenczner & G. Montseny, Diffusive realization of operator solutions
of certain operational partial differential equations, C. R. Math. Acad.
Sci. Paris, 341(12): 737–740, 2005.

[4] Y. Yakoubi, Deux Méthodes d’Approximation pour le Contrôle Opti-
mal Semi-Décentralisé des Systèmes Distribués, Thèse, Université de
Franche-Comté, Besançon 2010.

[5] T. Hélie & D. Matignon & R. Mignot. Criterion design for optimizing
low-cost approximations of infinite-dimensional systems: towards effi-
cient real-time simulation. Int. J. Tomogr. Stat., 7(F07):13–18, 2007.

[6] M. López-Fernández & C. Lubich, C. Palencia & A. Schädle. ast Runge-
Kutta approximation of inhomogeneous parabolic equations. Numer.
Math., 102(2):277–291, 2005.

[7] J. A. C. Weideman & L. N. Trefethen, Parabolic and hyperbolic contours
for computing the Bromwich integral, Math. Comput., Volume 76,
Number 259, July 2007, pp 1341–1356.

[8] R. Airiau & J. M. Bergé & V. Olive & J. Rouillard, VHDL, langage,
modélisation, synthèse. 2nd Ed., Presses Polytechniques et Universitaires
Romandes (1998)

[9] P. P. Chu, FPGA Prototyping by VHDL Examples: Xilinx Spartan-3
Version, Wiley (2008).

[10] S.Kilts, ADVANCED FPGA DESIGN, Architecture, implementation, and
Optimization, Wiley Interscience/IEEE PRESS(2007).

[11] Spartan 3A datasheet., http://www.xilinx.com/support/documentation/
data_sheets/ds529.pdf.

[12] Wishbone bus specification., http://www.opencores.org/opencores,
wishbone.


