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Abstract—Due to the rapid development of the Internet in  which actually have been proven to be unpredictable (as it
recent years, the need to find new tools to reinforce trust and is defined in the mathematical theory of chaos) is very small.

security through the Internet has became a major concern. Tk . L .
discovery of new pseudo-random number generators with a 1S paper extends a study initiated in [2] and [13],

strong level of security is thus becoming a hot topic, becass and tries to fill this gap. In [2], it is proven that chaotic
numerous cryptosystems and data hiding schemes are direytl iterations (Cls), a suitable tool for fast computing itarat
dependent on the quality of these generators. At the conferee  g|gorithms, satisfies the topological chaotic property,itas
!nterr]et‘09, we have descrlbedl a generatqr based on chaotic is defined by Devaney [4]. In the paper [13] presented at
iterations, which behaves chaotically as defined by Devanein . . . - ) .
this paper, the proposal is to improve the speed and the secity Internet_09, the chao'qc behavior of Cls is exploited in @rd
of this generator, to make its use more relevant in the Interet ~ to obtain an unpredictable PRNG, which depends on two
security context. To do so, a comparative study between vasus  logistic maps. We have shown that, in addition of being
generators is carried out and statistical results are givenFinally, chaotic, this generator can pass the NIST (National Irtstitu
an application in the information hiding framework is presented, ¢ gyandards and Technology of the U.S. Government) battery
to give an illustrative example of the use of such a generatan . . -
the Internet security field. of tests_ [11], widely considered as the most _comprghe_nswe
and stringent battery of tests for cryptographic applarai
In this paper, we have improved the speed and security of
the former generator. Chaotic properties, statisticaktasd
security analysis [14] allow us to consider that this getugra
has good pseudo-random characteristics and is capable to
The development and popularity of the Internet, and itsyjthstand attacks. Moreover, its high linear complexitydan
recent role everyday life implies the need to protect datats |arge key space lead to the conviction that this generato
and privacy in digital world. This development has revealedg syitable for applications in the Internet security figddter
new major security issues. For example, new concerns havgaying presented the theoretical framework of the study and
recently appeared with the evolving of the Internet, asieyot 5 security analysis, we will give a comparison based on
VoD or intellectual property protection. The pseudo-ramdo statistical tests. Finally a concrete example of how to hesd

number generators (PRNG) play an important role in all ofpseudo-random numbers for information hiding through the
these emerging techniques, because they are fundamental|fiernet is detailed.

cryptosystems and information hiding schemes. PRNGs are

; . L = The rest of this paper is organized in the following way. In
typically defined by a deterministic recurrent sequence "Section 11, some basic definitions concerning chaotic fiens
a finite state space, usually a finite field or ring, and an ’

: . ) . —.and PRNGs are recalled. Then, the generator based on discret
output function mapping each state to an input value. This 'Thaotic iterations is presented in Section Ill. Section 8V i

often either a real number in the intervd 1) or an integer devoted to its security analysis. In Section V, variousstese

In some finite range [8]. Conventionally, PRNGS bgsed or‘bassed with a goal to achieve a statistical comparison legtwe
linear congruential methods and feedback shift-registees this new PRNG and other existing ones. In Section VI, a

po_[r)ular [6].PRNG ithal level of e otential use of this PRNG in some Internet security field is
.ofusE a with a large fevel securltylisgeiez§aryt resented, namely in information hiding. The paper ends wit
satisfy the Internet security requirements recalled ab®hies .0 1 \sion and intended future work.

level depends on the proof of theoretical properties andtes

of numerous statistical tests. Many PRNGs have been proven

to be secure, following a probabilistic approach. However,

recently, several researchers have been exploring theoidea

using chaotic dynamical systems for this purpose [5] [3le Th

randome-like, unpredictable dynamics of chaotic systetrert A, Notations
inherent determinism and simplicity of realization sudges

their potential for exploitation as PRNGs. Such generators [1;N] —{1,2,...,N}

Keywords-Internet security; Chaotic sequences; Statistical
tests; Discrete chaotic iterations; Information hiding.

|. INTRODUCTION

Il. BASIC RECALLS

can strongly improve security in information hiding and S™  — then'" term of a sequencs = (S*,5%,...)
cryptography: due to unpredictability, the possibilitafered v; — thei'* component of a vector
to an attacker to achieve his goal are drastically reduced. F v = (v1,v2,...,Un)

example the keys of cryptosystems need to be unpredictable f* — k" composition of a functiory

enough, making it impossible for any search optimization strategy— a sequence which elements belong[1nN]
based on the reduction of the key space to the most probable S — the set of all strategies

values. But the number of generators claimed as chaotic, Cf — the binomial coefficien(}) = #lk).



©  — bitwise exclusive or At each iteration, only the5’-th component of stat&" is
+ - the integer addition updated, as followsr} = 27~ if i # 5%, elsea? = x7~*

< and>— the usual shift operators Finally, somez" are selected by a sequeneg’ as the
(X,d) — a metric space pseudo-random bit sequence of our generator. The sequence
|z] — returns the highest integer smaller than (m™)pew € MY is computed from a XORshift sequence
n!  — the factorialn! = n x (n — 1) x - -+ x 1 (y")nen € [0,232—1] (see Section 11I-A3). So, the generator

IN*  — the set of positive integergl,2,3,..} returns the following values:

B. Chaotic iterations aTOEPOL T L oot g0t ot ot tme
Definition 1 The setB denoting{0, 1}, let f : BN — BN

be an “iteration” function and> € S be a chaotic strategy.

) _ 0
Then, the so-calledhaotic iterationsare defined by [12] 2) The seed:The initial state of the systera” and the

first termy° of the XORshift are seeded either by the current

20 e BN, . time in seconds since the Epoch, or by a number that the user
Wn € N, Vi € [1:N], 2" — { w?j_l if 5" 7:@ ‘ inputs, as it is usually the case for every PRNG.
(@) gn if S™ =1 3) Sequencen of returned states:The output of the

1) sequencéy™) is uniformin [0, 232—1], because it is produced

In other words, at thei'” iteration, only theS™—th cell is by a XORshift generator. However, we do not want the output
“iterated”. Chauotic iterations generate a set of vectoomlgan ~ Of (m™) to be uniform in[0, N], because in this case, the
vectors in this paper), which are defined by an initial stéte ~ returns of our generator will not be uniform {0, 2% — 1],
an iteration functionf, and a chaotic strategy. as it is illustrated in the following example. Let us suppose

) thatz® = (0,0,0). Thenm® € [0, 3].
C. XORshift I ,
o . « If m® =0, then no bit will change between the first and
XORshift is a category of very fast PRNGs designed by the second output of our PRNG. Thu’ = (0,0, 0).

George Marsaglia [9]. It repeatedly uses the transform of | |t ,,0 — 1 then exactly one bit will change, which leads
exclusive or (XOR) on a number with a bit shifted version to three possible values fat, namely(1, 0, 0), (0, 1,0)

of it. The state of a XORshift generator is a vector of bits. and (0,0, 1).
At each step, the next state is obtained by applying a given , gic.
number of XORshift operations to-bit blocks in the current
state, wherev = 32 or 64. A XORshift operation is defined
as follows. Replace the-bit block by a bitwise XOR of the
original block, with a shifted copy of itself by positions
either to the right or to the left, wher@ < a < w. This
Algorithm 1 has a period 0232 — 1 = 4.29 x 10°.

As each value iff0, 23 — 1] must be returned with the same
probability, then the value$0,0,0), (1,0,0), (0,1,0) and
(0,0, 1) must occur forz! with the same probability. Finally
we see that, in this example,’ = 1 must be three times more
probable thann® = 0. This leads to the following general
definition for m:

Input: the internal state) (a 32-bits word) 0if 0 < Qy_ < g_;v,
Output: r (a 32-bits word) 0y 1l
. 1|f_<23_2 <Zi:0 9N )
Yy yd(y<13); n . Ci _ o 2 Cl
Yy yd(y>17); m" = fy") =< 2Iif 2102N<W<Zi:OQ_N,
Yy y®(y <5);
Yy N-1Ck "
returnr; Nif ZZ 0 ¥ Som <l @)
Algorithm 1: An arbitrary round of XORshift algorithm 4) Chaotic strategy:The chaotic strategys*) e [1, NN
is generated from a second XORshift sequerite) <
N :
I1l. THE NEW GENERATION OFC| PSEUDG-RANDOM [[1.’ NT". The sole difference between Fhe sequenteand .
SEQUENCE b is that some terms ob are drk%)ped, in such a way that:
o ] Vk € N, (sM" gM +1  SM"" —1) does not contain a
A. Chaaotic iterations as pseudo-random generator same integer twice, wherel* = Zf:o m'. Therefore, no bit

1) Presentation: The novel generator is designed by the will change more than once between two successive outputs
following process. First of all, some chaotic |terat|on3/dﬂa of our PRNG, increasing the speed of the former generator
to be done to generate a sequen@a€), . € (]BN) by doing so0.S is said to be “an irregular decimation” of
(N € N*,N > 2, N is not necessarily equal to 32) of This decimation can be obtained by the following process.
boolean vectors, which are the successive states of tiaedter  Let (d,d?,...,d") € {0, 1}N be a mark sequence, such
system. Some of these vectors will be randomly extractethat Wheneverzijild = mF, thenVi,d; = 0 (Vk, the
and our pseudo-random bit flow will be constituted by theirsequence is reset WhelncontamSm times the number 1).
components. Such chaotic iterations are realized as fsllow This mark sequence will control the XORshift sequeh@es
Initial statez” € BN is a boolean vector taken as a seed (sedollows:

Section 111-A2) and chaotic stratedys™),, .,y € [1, N]™ is an e ifd” £1,thenS* =t/,d” =1 andk =k + 1
irregular decimation of a XORshift sequence (Section II}A o if d” =1, thent’ is discarded.
The iterate functionf is the vectorial boolean negation: For example, ifb — 1422334142112234. andm — 4241...,

fo: (x1,...,zn) € BN — (71,...,7Zn) € BN, then S = 1423 34 1423 4... Another example is given in



Table 1, in whichr means “reset” and the integers which arepart ¢t of the current time. For example, if the current time
underlined in sequendeare dropped. in seconds since the Epoch is 1237632934.484084, s0
0 _ i i inite i 0 _
B. CI(XORshift, XORshift) algorithm 2154{)804’0;“9”% = t (mod 16) in binary digitsj.e, 2° =
The basic design procedure of the novel generator is Tq c7omputem sequence, Equation 3 can be adapted to this
summed up in Algorithm 2. The internal state is the  example as follows:

output array isr. a and b are those computed by the two

3

XORshift generators. The valu&a) is an integer, defined as 0 if 0 < zyTn? < 1_16’

in Equation 2. LastlyN is a constant defined by the user. it & < 3w < =,
m"=fy") =< 2 if £ < fm < 3 @)

Input: the internal state: (an array ofN bits) 3 if }—é < 297"2 < 1_2,

Output: an arrayr of N bits 4 if L < 37"2 < 1,

. 16
fori=0,..., N do where y is generated by XORshift seeded with the current

e|nddl « 0 time. We can see that the probabilities (1)f ogcurrengea?f
a < XORshift1(); 0, m :.1, m = .2, m = 3, m = 4, are1—6, 16 1%, 16 16
m < f(a); respecpvely. Thisn determines what will be the next output
ke m: x. For instance,
for i=0,...,k do o If m =0, the following z will be (0, 1,0,0).
b« XORshift2(); « If m =1, the followingz can be(1,1,0,0), (0,0,0,0),
S < b mod N,; (0517150) or (071,071)'
if dg =0 then « If m = 2, the followingz can be(1,0,0,0), (1,1,1,0),
Tg — T3, (1,1,0,1), (0,0,1,0), (0,0,0,1) or (0,1,1,1).
dg + 1; o If m = 3, the followingx can be(0,0,1,1), (1,1,1,1),
end (1,0,0,1) or (1,0,1,0).
else ifds = 1 then o If m = 4, the following 2 will be (1,0,1,1).
| k< k+1 In this simulation,m = 0,4,2,2,3,4,1,1,2,3,0,1,4, ...
end Additionally, b is computed with a XORshift genera-
end tor too, but with another seed. We have fouhd =
T, 1,4,2,2,3,3,4,1,1,4,3,2,1, ...
returnr; Chaotic iterations are made with initial stat8, vectorial
Algorithm ~ 2:  An arbitrary round of the new |ogical negationf, and strategys. The result is presented in
CI(XORshift, XORshift) generator Table I. Let us recall that sequenpe gives the states” to

return, which are herg?, z0+4, 20442 So, in this exam-
As a comparison, the basic design procedure of the olgle, the output of the generator is: 10100111101111110011.
generator is recalled in Algorithm 3: (and b are computed

L ) IV. SECURITY ANALYSIS
by Logistic mapsN andc¢ > 3N are constants defined by the

user). See [13] for further informations. A. Key space
The PRNG proposed in this paper is based on discrete
Input: the internal state: (an array ofN bits) chaotic iterations. It has an initial valu€ € BN. Considering
Output: an arrayr of N bits this set of initial values alone, the key space size is equal t
a + Logisticmapl(); 2N In addition, this new generator combines digits of two
if a > 0.5 then other PRNGs. We used two different XORshifts here. ket
I d<+1 be the key space of XORshift. So the total key space size is
end close to2N - k2. Lastly, the impact of Equation 2 must be
else taken into account. This leads to conclude that the key space
! dd <0 size is large enough to withstand attacks.
;n% d+c: B. Devaney’s chaos property
for i =0,...,m do Generally, the quality of a PRNG depends, to a large extent,
b < Logisticmap2(); on the following criteria: randomness, uniformity, indepe
S < 100000b mod N; dence, storage efficiency, and reproducibility. A chaote s
Ts < Tg, quence may satisfy these requirements and also other chaoti
end properties, as ergodicity, entropy, and expansivity. Aatica
T @, sequence is extremely sensitive to the initial conditidrigat
returnr; is, even a minute difference in the initial state of the syste
Algorithm 3: An arbitrary round of the old PRNG can lead to enormous differences in the final state, even

over fairly small timescales. Therefore, chaotic sequditse
_ the requirements of pseudo-random sequence well. Contrary
C. lllustrative example to XORshift, our generator possesses these chaotic proper-
In this exampleN = 4 is chosen for easy understanding. ties [2],[13]. However, despite a large number of papers pub
The initial state of the systen? can be seeded by the decimal lished in the field of chaos-based pseudo-random generators
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b 1 Z 2 2 3 3 4 T 1 2

d r r(1,000 (100, (1,1,0,1) (1,1,1,1) r(0,0,1,00 (0,0,1,1) r (1,0,0,0) (1,0,0,1)

S 1 Z 2 3 3 4 T 2

IL'O IL'O ZE4 ZEG 1’8
0 0 ENS 1 1 Lo 0
1 1 20 0 0 0
0 0 31 1 30 0 0
0 0 2 1 0 0 29 1

0.,.0,0,0,0,.0.4,4..4..4,6..6

Output: x?x8x3x4111213x4x1:132131411:132... = 01000100101110000001...

Table I: Application example

Sensitivity analysis
T T T

V. STATISTICAL ANALYSIS

New CI(XORshift, XORshift) —

A. Basic usual tests

Old Cli(Logistic, Logistic)

1) Comparative test parameter#n this section, five well-
known statistical tests [10] are used as comparison tools.
They encompass frequency and autocorrelation tests. It wha
follows, s = s, s', s2, ..., s"~! denotes a binary sequence of
lengthn. The question is to determine whether this sequence
possesses some specific characteristics that a truly random
sequence would be likely to exhibit. The tests are introduce
x10° in this subsection and results are given in the next one.

Frequency test (monobit test)fhe purpose of this test
is to check if the numbers of 0’s and 1's are approximately
equal ins, as it would be expected for a random sequence. Let
ng, n1 denote these numbers. The statistic used helkg, is-

. . ) ) o M, which approximately follows &2 distribution with
the impact of this research is rather marginal. This is du%nendegree of freedom when> 107.

to the following reasons: almost all PRNG algorithms using Serial test (2-bit test): The purpose of this test is to
chaos are based on dynamical systems defined on CominuoHétermine if the number of occurrences of 00, 01, 10 and
sets €.g, the set of real numbers). So these generators arg; a5 subsequences efare approximately the same. Let
usually slow, requiring considerably more storage spack an, noi.nio, andny, denote the number of occurrences of
lose their chaotic properties during computations. Theg@m 007’01, 1’0, and11 respectively. Note thatoo + no1 + n10 +

prob!ems restrict thel,r use as generators [7]', . m11 = n — 1 since the subsequences are allowed to overlap.
In this paper we don’t simply integrate chaotic maps hoplngThe statistic used here is:

that the implemented algorithm remains chaotic. Indeed, th 4 (2 2 2 2 20,2 2
Lo . o . U Xo = —==(ngg) + ngy) + 1) +niy) — =(ng +n3y) + 1,
PRNG we conceive is just discrete chaotic iterations and W@vﬁich w1 (7o) 01) 10) 1) = o (1 )

) : . . approximately follows a?2 distribution with 2 degrees
have proven in [2] that these iterations produce a topo#dgic of freedom ifn > 21.

chaos as defined by Devaney: they are regular, transitive, Poker test: The poker test studies if each pattern of

and sensitive to initial conditions. This famous definition . .
of a chaotic behavior for a dynamical system implies un_lengthm (without overlapping) appears the same number of
y y b ] > 5x2™ andk = [=]. Divide the

. - ) T . " times ins. Let | >
predictability, mixture, sensitivity, and uniform repi#dn. . m .
: . . . sequenca into k non-overlapping parts, each of length Let

Moreover, as only integers are manipulated in discretetahao

. . ) i : ; be the number of occurrences of tité type of sequence
iterations, the chaotic behavior of the system is preserve . m v .

. . ! f lengthm, wherel < i < 2™. The statistic used is
during computations, and these computations are fast.

Figure 1: Sensitivity analysis

om

=1

As a consequence of its chaotic property, this PRNG isvhich approximately follows a? distribution with 2™ — 1

C. Key sensitivity

highly sensitive to the initial conditions. To illustratéig
property, several initial values are put into the chaotstemn.

degrees of freedom. Note that the poker test is a geneializat
of the frequency test: settinge = 1 in the poker test yields

Let H be the number of differences between the sequencdbe frequency test.

obtained in this way. Suppose is the length of these
sequences. Then the variance raflpdefined byP = H/n,
is computed. The results are shown in Figurexzlakis is
sequence lengthg; axis is variance ratia?). For the two
PRNGs, variance ratios approa6ty0, which indicates that
the system is extremely sensitive to the initial conditions

Runs test:The purpose of the runs test is to figure out
whether the number of runs of various lengths in the sequence
s is as expected, for a random sequence. A run is defined as
a pattern of all zeros or all ones, a block is a run of ones,
and a gap is a run of zeros. The expected number of gaps
(or blocks) of lengthi in a random sequence of lengthis



Table 11I: SP 800-22 test result®{)

— % —0Old ClI (logistic, logistic) o XORshirft - —0— - Logistic map

New CI (XORshirft, XORshirft) ‘ |

Method | odci | Newcl

Monobits test Frequency (Monobit) Test 0.595549 | 0.474986

Frequency Test within a Block 0.554420| 0.897763

Runs Test 0.455937 | 0.816537

Longest Run of Ones in a Block Test 0.016717| 0.798139

Binary Matrix Rank Test 0.616305| 0.262249

Discrete Fourier Transform (Spectral) Tegt 0.000190 | 0.007160

ggngwe Coas Pokemeim . s Non-overlapping Template Matching Tes{f 0.532252 | 0.449916

200 e e e S e e R e e e Overlapping Template Matching Test 0.334538| 0.514124

Maurers Universal Statistical Test 0.032923| 0.678686

Linear Complexity Test 0.401199| 0.657933

Serial Test* (m=10) 0.013396 | 0.425346

Autocorrelation absulote value xao’ Approximate Entropy Test (m=10) 0.137282 | 0.637119

2} mpag 8 3 AN S e e Cumulative Sums (Cusum) Test* 0.046464 | 0.279680

o 0z 04 06 0B : 2o e s 2 Random Excursions Test* 0.503622 | 0.287409

. . . . Random Excursions Variant Test* 0.347772 | 0.486686

Figure 2: Comparison through various well-known tests

Success 15/15 15/15

e; = 43, Let k be equal to the largest integesuch that
e; = 5. Let B;, G; be the number of blocks and gaps of length
i in s, for eachi € [1,k]. The statistic used here will then

be:
k

o2 koa o
x-p BEet e

i=1 i=1

which approximately follows a¢? distribution with 2k — 2
degrees of freedom. (a) The original image (b) The watermark
Autocorrelation test:The purpose of this test is to check
for coincidences between the sequencand (non-cyclic)
shifted versions of it. Ledl be a fixed integer, < d < |n/2].
The A(d) = Z?:_d_lsi @ si+q IS the amount of bits o
not equal betweeno the sequence and itself displaced by was developed to measure the randomness of (arbitrarily
bits. The statistic used isX5 — 2(A(d) — 25¢)/v/n —d long) binary sequences produced by either hardware or
. A =)/ , .
which approximately follows a normal distributiaki(0, 1) if software based cryptographic (pseudo-)randpm number
n—d > 10. Since small values afi(d) are as unexpected as generators. These tests focus on a variety of differentstype
large values, a two-sided test should be used of non-randomness that could occur in such sequences.
2) Comparison: We show in Table Il a comparison be- In our experiments, 100 sequences (s = 100) of 1,000,000

tween our new generator CI(XORshift, XORshift), its old bits are generated and tested. If the vale of any test is

version denoted Old Cl(Logistic, Logistic), a PRNG basedsmaller than 0.0001, the sequences are considered to not be
on logistic map, and a simple XORshift. Time (in seconds) isgood enough and the generator is unsuitable. Table 11l shows

related to the duration needed by each algorithm to genaratePT of the sequences based on discrete chaotic iterations using

2% 10° bits long sequence. The test has been conducted usiﬁﬁerent schemes. If there are at least two statisticaliesl

the same computer and compiler with the same optimizatio a test, this test is marked with an asterisk and the average

settings for both algorithms, in order to make the test as faivalue is computed to characterize the statistical values. W
can conclude from Table 1l that both the old generator and

as possible. Similar results have been achieved for differe hi hift) h il N
sequence lengths (see Figure 2). The results confirm that tifgl(XORshift, XORshift) have successfully passed the NIST
statistical test suite.

proposed generator is a lot faster than the old one, while th
statistical resullts are better for most oflthe parametesslihg VI. APPLICATION EXAMPLE IN DIGITAL WATERMARKING
to the conclusion that the new PRNG is more secure than the _ _ o o _
old one. Although the logistic map also has good results, it In this section, an application example is given in the

Figure 3: Original images

is too slow to be implemented in Internet applications. field of digital watermarking: a watermark is encrypted and
o _ embedded into a cover image using the scheme presented
B. NIST statistical test suite in [1] and CI(XORshift, XORshift). The carrier image is the

Among the numerous standard tests for pseudowell-known Lena, which is a 256 grayscale image, and the
randomness, a convincing way to prove the quality ofwatermark is the64 x 64 pixels binary image depicted in
the produced sequences is to confront them with the NISTFigure 3.

(National Institute of Standards and Technology) Statdti The watermark is encrypted by using chaotic iterations: the
Test Suite SP 800-22, released by the Information Techgologinitial statez? is the watermark, considered as a boolean vec-
Laboratory in August 25, 2008. This package of 15 testdor, the iteration function is the vectorial logical negatj and



Table II: Comparison with Old Cl(Logistic, Logistic) for 2x 10° bits sequence

Method Monobit  Serial Poker Runs Autocorrelation Time
Logistic map 0.1280 0.1302 240.2893 26.5667 0.0373 0.965s
XORshift 1.7053 2.1466  248.9318 18.0087 -0.5009 0.096s
Old Cl(Logistic, Logistic) 1.0765 1.0796 258.1069 20.9272 -1.6994 0.389s
New CI(XORshift, XORshift) 0.3328 0.7441 262.8173 16.7877 -0.0805 0.197s

its security will be done. Lastly, new applications in cortgyu
science will be proposed, especially in the Internet ségcuri
field.
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