
Ramdomness quality of CI chaotic generators. Application to Internet security

Jacques M. Bahi∗, Xiaole Fang∗, Christophe Guyeux∗ and Qianxue Wang∗
∗University of Franche-Comte

Computer Science Laboratory LIFC, Besançon, France
Email:jacques.bahi, xiaole.fang, christophe.guyeux, qianxue.wang@univ-fcomte.fr

Abstract—Due to the rapid development of the Internet in
recent years, the need to find new tools to reinforce trust and
security through the Internet has became a major concern. The
discovery of new pseudo-random number generators with a
strong level of security is thus becoming a hot topic, because
numerous cryptosystems and data hiding schemes are directly
dependent on the quality of these generators. At the conference
Internet‘09, we have described a generator based on chaotic
iterations, which behaves chaotically as defined by Devaney. In
this paper, the proposal is to improve the speed and the security
of this generator, to make its use more relevant in the Internet
security context. To do so, a comparative study between various
generators is carried out and statistical results are given. Finally,
an application in the information hiding framework is presented,
to give an illustrative example of the use of such a generatorin
the Internet security field.

Keywords-Internet security; Chaotic sequences; Statistical
tests; Discrete chaotic iterations; Information hiding.

I. I NTRODUCTION

The development and popularity of the Internet, and its
recent role everyday life implies the need to protect data
and privacy in digital world. This development has revealed
new major security issues. For example, new concerns have
recently appeared with the evolving of the Internet, as evoting,
VoD or intellectual property protection. The pseudo-random
number generators (PRNG) play an important role in all of
these emerging techniques, because they are fundamental in
cryptosystems and information hiding schemes. PRNGs are
typically defined by a deterministic recurrent sequence in
a finite state space, usually a finite field or ring, and an
output function mapping each state to an input value. This is
often either a real number in the interval(0, 1) or an integer
in some finite range [8]. Conventionally, PRNGs based on
linear congruential methods and feedback shift-registersare
popular [6].

To use a PRNG with a large level of security is necessary to
satisfy the Internet security requirements recalled above. This
level depends on the proof of theoretical properties and results
of numerous statistical tests. Many PRNGs have been proven
to be secure, following a probabilistic approach. However,
recently, several researchers have been exploring the ideaof
using chaotic dynamical systems for this purpose [5] [3]. The
random-like, unpredictable dynamics of chaotic systems, their
inherent determinism and simplicity of realization suggest
their potential for exploitation as PRNGs. Such generators
can strongly improve security in information hiding and
cryptography: due to unpredictability, the possibilitiesoffered
to an attacker to achieve his goal are drastically reduced. For
example the keys of cryptosystems need to be unpredictable
enough, making it impossible for any search optimization
based on the reduction of the key space to the most probable
values. But the number of generators claimed as chaotic,

which actually have been proven to be unpredictable (as it
is defined in the mathematical theory of chaos) is very small.

This paper extends a study initiated in [2] and [13],
and tries to fill this gap. In [2], it is proven that chaotic
iterations (CIs), a suitable tool for fast computing iterative
algorithms, satisfies the topological chaotic property, asit
is defined by Devaney [4]. In the paper [13] presented at
Internet‘09, the chaotic behavior of CIs is exploited in order
to obtain an unpredictable PRNG, which depends on two
logistic maps. We have shown that, in addition of being
chaotic, this generator can pass the NIST (National Institute
of Standards and Technology of the U.S. Government) battery
of tests [11], widely considered as the most comprehensive
and stringent battery of tests for cryptographic applications.
In this paper, we have improved the speed and security of
the former generator. Chaotic properties, statistical tests and
security analysis [14] allow us to consider that this generator
has good pseudo-random characteristics and is capable to
withstand attacks. Moreover, its high linear complexity and
its large key space lead to the conviction that this generator
is suitable for applications in the Internet security field.After
having presented the theoretical framework of the study and
a security analysis, we will give a comparison based on
statistical tests. Finally a concrete example of how to use these
pseudo-random numbers for information hiding through the
Internet is detailed.

The rest of this paper is organized in the following way. In
Section II, some basic definitions concerning chaotic iterations
and PRNGs are recalled. Then, the generator based on discrete
chaotic iterations is presented in Section III. Section IV is
devoted to its security analysis. In Section V, various tests are
passed with a goal to achieve a statistical comparison between
this new PRNG and other existing ones. In Section VI, a
potential use of this PRNG in some Internet security field is
presented, namely in information hiding. The paper ends with
a conclusion and intended future work.

II. BASIC RECALLS

A. Notations

J1;NK → {1, 2, . . . , N}
Sn → the nth term of a sequenceS = (S1, S2, . . .)
vi → the ith component of a vector

v = (v1, v2, . . . , vn)
fk → kth composition of a functionf

strategy→ a sequence which elements belong inJ1;NK
S → the set of all strategies
C

k
n → the binomial coefficient

(

n
k

)

= n!
k!(n−k)!

⊕ → bitwise exclusive or
+ → the integer addition

≪ and≫→ the usual shift operators
(X , d) → a metric space
⌊x⌋ → returns the highest integer smaller thanx
n! → the factorialn! = n× (n− 1)× · · · × 1
N

∗ → the set of positive integers{1,2,3,...}
B. Chaotic iterations

Definition 1 The setB denoting{0, 1}, let f : BN −→ B
N

be an “iteration” function andS ∈ S be a chaotic strategy.
Then, the so-calledchaotic iterationsare defined by [12]

x0 ∈ B
N,

∀n ∈ N
∗, ∀i ∈ J1;NK, xn

i =

{

xn−1
i if Sn 6= i

f(xn−1)Sn if Sn = i.
(1)

In other words, at thenth iteration, only theSn−th cell is
“iterated”. Chaotic iterations generate a set of vectors (boolean
vectors in this paper), which are defined by an initial statex0,
an iteration functionf , and a chaotic strategyS.

C. XORshift

XORshift is a category of very fast PRNGs designed by
George Marsaglia [9]. It repeatedly uses the transform of
exclusive or (XOR) on a number with a bit shifted version
of it. The state of a XORshift generator is a vector of bits.
At each step, the next state is obtained by applying a given
number of XORshift operations tow-bit blocks in the current
state, wherew = 32 or 64. A XORshift operation is defined
as follows. Replace thew-bit block by a bitwise XOR of the
original block, with a shifted copy of itself bya positions
either to the right or to the left, where0 < a < w. This
Algorithm 1 has a period of232 − 1 = 4.29× 109.

Input : the internal statey (a 32-bits word)
Output : r (a 32-bits word)
y ← y ⊕ (y ≪ 13);
y ← y ⊕ (y ≫ 17);
y ← y ⊕ (y ≪ 5);
y ← y;
returnr;

Algorithm 1 : An arbitrary round of XORshift algorithm

III. T HE NEW GENERATION OFCI PSEUDO-RANDOM

SEQUENCE

A. Chaotic iterations as pseudo-random generator

1) Presentation:The novel generator is designed by the
following process. First of all, some chaotic iterations have
to be done to generate a sequence(xn)n∈N ∈

(

B
N
)N

(N ∈ N
∗,N > 2, N is not necessarily equal to 32) of

boolean vectors, which are the successive states of the iterated
system. Some of these vectors will be randomly extracted
and our pseudo-random bit flow will be constituted by their
components. Such chaotic iterations are realized as follows.
Initial statex0 ∈ B

N is a boolean vector taken as a seed (see
Section III-A2) and chaotic strategy(Sn)n∈N ∈ J1,NKN is an
irregular decimation of a XORshift sequence (Section III-A4).
The iterate functionf is the vectorial boolean negation:

f0 : (x1, ..., xN) ∈ B
N 7−→ (x1, ..., xN) ∈ B

N.

At each iteration, only theSi-th component of stateXn is
updated, as follows:xn

i = xn−1
i if i 6= Si, elsexn

i = xn−1
i .

Finally, somexn are selected by a sequencemn as the
pseudo-random bit sequence of our generator. The sequence
(mn)n∈N ∈ MN is computed from a XORshift sequence
(yn)n∈N ∈ J0, 232−1K (see Section III-A3). So, the generator
returns the following values:

x
m0

1 x
m0

2 x
m0

3 . . . x
m0

N
x
m0+m1

1 x
m0+m1

2 . . . x
m0+m1

N
x
m0+m1+m2

1 . . .

2) The seed:The initial state of the systemx0 and the
first termy0 of the XORshift are seeded either by the current
time in seconds since the Epoch, or by a number that the user
inputs, as it is usually the case for every PRNG.

3) Sequencem of returned states:The output of the
sequence(yn) is uniform inJ0, 232−1K, because it is produced
by a XORshift generator. However, we do not want the output
of (mn) to be uniform inJ0, NK, because in this case, the
returns of our generator will not be uniform inJ0, 2N − 1K,
as it is illustrated in the following example. Let us suppose
that x0 = (0, 0, 0). Thenm0 ∈ J0, 3K.

• If m0 = 0, then no bit will change between the first and
the second output of our PRNG. Thusx1 = (0, 0, 0).

• If m0 = 1, then exactly one bit will change, which leads
to three possible values forx1, namely(1, 0, 0), (0, 1, 0),
and (0, 0, 1).

• etc.

As each value inJ0, 23 − 1K must be returned with the same
probability, then the values(0, 0, 0), (1, 0, 0), (0, 1, 0) and
(0, 0, 1) must occur forx1 with the same probability. Finally
we see that, in this example,m0 = 1 must be three times more
probable thanm0 = 0. This leads to the following general
definition form:

mn = f(yn) =



































0 if 0 6
yn

232 <
C0

N

2N ,

1 if C0
N

2N 6
yn

232 <
∑1

i=0
Ci

N

2N ,

2 if
∑1

i=0
Ci

N

2N 6
yn

232 <
∑2

i=0
Ci

N

2N ,
...

...

N if
∑N−1

i=0
Ci

N

2N 6
yn

232 < 1.
(2)

4) Chaotic strategy:The chaotic strategy(Sk) ∈ J1, NKN

is generated from a second XORshift sequence(bk) ∈
J1, NKN. The sole difference between the sequencesS and
b is that some terms ofb are dropped, in such a way that:
∀k ∈ N, (SMk

, SMk+1, . . . , SMk+1
−1) does not contain a

same integer twice, whereMk =
∑k

i=0 m
i. Therefore, no bit

will change more than once between two successive outputs
of our PRNG, increasing the speed of the former generator
by doing so.S is said to be “an irregular decimation” ofb.
This decimation can be obtained by the following process.

Let (d1, d2, . . . , dN) ∈ {0, 1}N be a mark sequence, such
that whenever

∑N

i=1 d
i = mk, then ∀i, di = 0 (∀k, the

sequence is reset whend containsmk times the number 1).
This mark sequence will control the XORshift sequenceb as
follows:

• if db
j 6= 1, thenSk = bj, db

j

= 1 andk = k + 1
• if db

j

= 1, thenbj is discarded.

For example, ifb = 1422334142112234... andm = 4241...,
then S = 1423 34 1423 4... Another example is given in

Table 1, in whichr means “reset” and the integers which are
underlined in sequenceb are dropped.

B. CI(XORshift, XORshift) algorithm

The basic design procedure of the novel generator is
summed up in Algorithm 2. The internal state isx, the
output array isr. a and b are those computed by the two
XORshift generators. The valuef(a) is an integer, defined as
in Equation 2. Lastly,N is a constant defined by the user.

Input : the internal statex (an array ofN bits)
Output : an arrayr of N bits
for i = 0, . . . , N do

di ← 0;
end
a← XORshift1();
m← f(a);
k ← m;
for i = 0, . . . , k do

b← XORshift2();
S ← b mod N;
if dS = 0 then

xS ← xS ;
dS ← 1;

end
else if dS = 1 then

k ← k + 1;
end

end
r ← x;
returnr;

Algorithm 2 : An arbitrary round of the new
CI(XORshift,XORshift) generator

As a comparison, the basic design procedure of the old
generator is recalled in Algorithm 3 (a and b are computed
by Logistic maps,N andc > 3N are constants defined by the
user). See [13] for further informations.

Input : the internal statex (an array ofN bits)
Output : an arrayr of N bits
a← Logisticmap1();
if a > 0.5 then

d← 1
end
else

d← 0
end
m← d+ c;
for i = 0, . . . ,m do

b← Logisticmap2();
S ← 100000b mod N;
xS ← xS ;

end
r ← x;
returnr;

Algorithm 3 : An arbitrary round of the old PRNG

C. Illustrative example

In this example,N = 4 is chosen for easy understanding.
The initial state of the systemx0 can be seeded by the decimal

part t of the current time. For example, if the current time
in seconds since the Epoch is 1237632934.484084, sot =
484084, then x0 = t (mod 16) in binary digits,i.e., x0 =
(0, 1, 0, 0).

To computem sequence, Equation 3 can be adapted to this
example as follows:

mn = f(yn) =



























0 if 0 6
yn

232 < 1
16 ,

1 if 1
16 6

yn

232 < 5
16 ,

2 if 5
16 6

yn

232 < 11
16 ,

3 if 11
16 6

yn

232 < 15
16 ,

4 if 15
16 6

yn

232 < 1,

(3)

where y is generated by XORshift seeded with the current
time. We can see that the probabilities of occurrences ofm =
0, m = 1, m = 2, m = 3, m = 4, are 1

16 , 4
16 , 6

16 , 4
16 , 1

16 ,
respectively. Thism determines what will be the next output
x. For instance,

• If m = 0, the followingx will be (0, 1, 0, 0).
• If m = 1, the followingx can be(1, 1, 0, 0), (0, 0, 0, 0),

(0, 1, 1, 0) or (0, 1, 0, 1).
• If m = 2, the followingx can be(1, 0, 0, 0), (1, 1, 1, 0),

(1, 1, 0, 1), (0, 0, 1, 0), (0, 0, 0, 1) or (0, 1, 1, 1).
• If m = 3, the followingx can be(0, 0, 1, 1), (1, 1, 1, 1),

(1, 0, 0, 1) or (1, 0, 1, 0).
• If m = 4, the followingx will be (1, 0, 1, 1).
In this simulation,m = 0, 4, 2, 2, 3, 4, 1, 1, 2, 3, 0, 1, 4, ...

Additionally, b is computed with a XORshift genera-
tor too, but with another seed. We have foundb =
1, 4, 2, 2, 3, 3, 4, 1, 1, 4, 3, 2, 1, ...

Chaotic iterations are made with initial statex0, vectorial
logical negationf0 and strategyS. The result is presented in
Table I. Let us recall that sequencem gives the statesxn to
return, which are herex0, x0+4, x0+4+2, . . . So, in this exam-
ple, the output of the generator is: 10100111101111110011...

IV. SECURITY ANALYSIS

A. Key space

The PRNG proposed in this paper is based on discrete
chaotic iterations. It has an initial valuex0 ∈ B

N. Considering
this set of initial values alone, the key space size is equal to
2N. In addition, this new generator combines digits of two
other PRNGs. We used two different XORshifts here. Letk
be the key space of XORshift. So the total key space size is
close to2N · k2. Lastly, the impact of Equation 2 must be
taken into account. This leads to conclude that the key space
size is large enough to withstand attacks.

B. Devaney’s chaos property

Generally, the quality of a PRNG depends, to a large extent,
on the following criteria: randomness, uniformity, indepen-
dence, storage efficiency, and reproducibility. A chaotic se-
quence may satisfy these requirements and also other chaotic
properties, as ergodicity, entropy, and expansivity. A chaotic
sequence is extremely sensitive to the initial conditions.That
is, even a minute difference in the initial state of the system
can lead to enormous differences in the final state, even
over fairly small timescales. Therefore, chaotic sequencefits
the requirements of pseudo-random sequence well. Contrary
to XORshift, our generator possesses these chaotic proper-
ties [2],[13]. However, despite a large number of papers pub-
lished in the field of chaos-based pseudo-random generators,

m 0 4 2 2
k 0 4 +1 2 2 +1

b 1 4 2 2 3 3 4 1 1 4
d r r (1,0,0,0) (1,0,0,1) (1,1,0,1) (1,1,1,1,) r (0,0,1,0) (0,0,1,1) r (1,0,0,0) (1,0,0,1)
S 1 4 2 3 3 4 1 4
x0 x0 x4 x6 x8

0 0
1
−→ 1 1 1

1
−→ 0 0

1 1
2
−→ 0 0 0 0

0 0
3
−→ 1 1

3
−→ 0 0 0

0 0
4
−→ 1 1

4
−→ 0 0

4
−→ 1 1

Output:x0
1
x0
2
x0
3
x0
4
x0
1
x0
2
x0
3
x0
4
x4
1
x4
2
x4
3
x4
4
x6
1
x6
2
... = 01000100101110000001...

Table I: Application example

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0.49

0.492

0.494

0.496

0.498

0.5

0.502

0.504

0.506

0.508

0.51

Old CI(Logistic, Logistic)

New CI(XORshift,XORshift)

n

P

Sensitivity analysis

Figure 1: Sensitivity analysis

the impact of this research is rather marginal. This is due
to the following reasons: almost all PRNG algorithms using
chaos are based on dynamical systems defined on continuous
sets (e.g., the set of real numbers). So these generators are
usually slow, requiring considerably more storage space and
lose their chaotic properties during computations. These major
problems restrict their use as generators [7].
In this paper we don’t simply integrate chaotic maps hoping
that the implemented algorithm remains chaotic. Indeed, the
PRNG we conceive is just discrete chaotic iterations and we
have proven in [2] that these iterations produce a topological
chaos as defined by Devaney: they are regular, transitive,
and sensitive to initial conditions. This famous definition
of a chaotic behavior for a dynamical system implies un-
predictability, mixture, sensitivity, and uniform repartition.
Moreover, as only integers are manipulated in discrete chaotic
iterations, the chaotic behavior of the system is preserved
during computations, and these computations are fast.

C. Key sensitivity

As a consequence of its chaotic property, this PRNG is
highly sensitive to the initial conditions. To illustrate this
property, several initial values are put into the chaotic system.
Let H be the number of differences between the sequences
obtained in this way. Supposen is the length of these
sequences. Then the variance ratioP , defined byP = H/n,
is computed. The results are shown in Figure 1 (x axis is
sequence lengths,y axis is variance ratioP). For the two
PRNGs, variance ratios approach0.50, which indicates that
the system is extremely sensitive to the initial conditions.

V. STATISTICAL ANALYSIS

A. Basic usual tests

1) Comparative test parameters:In this section, five well-
known statistical tests [10] are used as comparison tools.
They encompass frequency and autocorrelation tests. In what
follows, s = s0, s1, s2, . . . , sn−1 denotes a binary sequence of
lengthn. The question is to determine whether this sequence
possesses some specific characteristics that a truly random
sequence would be likely to exhibit. The tests are introduced
in this subsection and results are given in the next one.

Frequency test (monobit test):The purpose of this test
is to check if the numbers of 0’s and 1’s are approximately
equal ins, as it would be expected for a random sequence. Let
n0, n1 denote these numbers. The statistic used here isX1 =
(n0−n1)

2

n
, which approximately follows aχ2 distribution with

one degree of freedom whenn > 107.
Serial test (2-bit test):The purpose of this test is to

determine if the number of occurrences of 00, 01, 10 and
11 as subsequences ofs are approximately the same. Let
n00, n01, n10, andn11 denote the number of occurrences of
00, 01, 10, and11 respectively. Note thatn00 + n01 + n10 +
n11 = n − 1 since the subsequences are allowed to overlap.
The statistic used here is:
X2 = 4

n−1 (n
2
00) + n2

01) + n2
10) + n2

11) − 2
n
(n2

0 + n2
1) + 1,

which approximately follows aχ2 distribution with 2 degrees
of freedom ifn > 21.

Poker test: The poker test studies if each pattern of
lengthm (without overlapping) appears the same number of
times in s. Let ⌊ n

m
⌋ > 5 × 2m and k = ⌊ n

m
⌋. Divide the

sequences into k non-overlapping parts, each of lengthm. Let
ni be the number of occurrences of theith type of sequence
of lengthm, where1 6 i 6 2m. The statistic used is

X3 =
2m

k

(

2m
∑

i=1

n2
i

)

− k,

which approximately follows aχ2 distribution with 2m − 1
degrees of freedom. Note that the poker test is a generalization
of the frequency test: settingm = 1 in the poker test yields
the frequency test.

Runs test:The purpose of the runs test is to figure out
whether the number of runs of various lengths in the sequence
s is as expected, for a random sequence. A run is defined as
a pattern of all zeros or all ones, a block is a run of ones,
and a gap is a run of zeros. The expected number of gaps
(or blocks) of lengthi in a random sequence of lengthn is

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

5
Monobits test

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0
5

10
Serial test

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

200
300
400

Poker test

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0
20
40

Runs test

Old CI (logistic, logistic) XORshirft Logistic map New CI (XORshirft, XORshirft)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0
2
4

Autocorrelation absulote value

Figure 2: Comparison through various well-known tests

ei =
n−i+3
2i+2 . Let k be equal to the largest integeri such that

ei > 5. LetBi, Gi be the number of blocks and gaps of length
i in s, for eachi ∈ J1, kK. The statistic used here will then
be:

X4 =

k
∑

i=1

(Bi − ei)
2

ei
+

k
∑

i=1

Gi − ei
ei

,

which approximately follows aχ2 distribution with 2k − 2
degrees of freedom.

Autocorrelation test:The purpose of this test is to check
for coincidences between the sequences and (non-cyclic)
shifted versions of it. Letd be a fixed integer,1 6 d 6 ⌊n/2⌋.
The A(d) =

∑n−d−1
i=0 si ⊕ si+d is the amount of bits

not equal between the sequence and itself displaced byd
bits. The statistic used is:X5 = 2(A(d) − n−d

2)/
√
n− d,

which approximately follows a normal distributionN(0, 1) if
n− d > 10. Since small values ofA(d) are as unexpected as
large values, a two-sided test should be used.

2) Comparison: We show in Table II a comparison be-
tween our new generator CI(XORshift, XORshift), its old
version denoted Old CI(Logistic, Logistic), a PRNG based
on logistic map, and a simple XORshift. Time (in seconds) is
related to the duration needed by each algorithm to generatea
2×105 bits long sequence. The test has been conducted using
the same computer and compiler with the same optimization
settings for both algorithms, in order to make the test as fair
as possible. Similar results have been achieved for different
sequence lengths (see Figure 2). The results confirm that the
proposed generator is a lot faster than the old one, while the
statistical results are better for most of the parameters, leading
to the conclusion that the new PRNG is more secure than the
old one. Although the logistic map also has good results, it
is too slow to be implemented in Internet applications.

B. NIST statistical test suite

Among the numerous standard tests for pseudo-
randomness, a convincing way to prove the quality of
the produced sequences is to confront them with the NIST
(National Institute of Standards and Technology) Statistical
Test Suite SP 800-22, released by the Information Technology
Laboratory in August 25, 2008. This package of 15 tests

Table III: SP 800-22 test results (PT)

Method Old CI New CI

Frequency (Monobit) Test 0.595549 0.474986

Frequency Test within a Block 0.554420 0.897763

Runs Test 0.455937 0.816537

Longest Run of Ones in a Block Test 0.016717 0.798139

Binary Matrix Rank Test 0.616305 0.262249

Discrete Fourier Transform (Spectral) Test 0.000190 0.007160

Non-overlapping Template Matching Test* 0.532252 0.449916

Overlapping Template Matching Test 0.334538 0.514124

Maurers Universal Statistical Test 0.032923 0.678686

Linear Complexity Test 0.401199 0.657933

Serial Test* (m=10) 0.013396 0.425346

Approximate Entropy Test (m=10) 0.137282 0.637119

Cumulative Sums (Cusum) Test* 0.046464 0.279680

Random Excursions Test* 0.503622 0.287409

Random Excursions Variant Test* 0.347772 0.486686

Success 15/15 15/15

(a) The original image (b) The watermark

Figure 3: Original images

was developed to measure the randomness of (arbitrarily
long) binary sequences produced by either hardware or
software based cryptographic (pseudo-)random number
generators. These tests focus on a variety of different types
of non-randomness that could occur in such sequences.

In our experiments, 100 sequences (s = 100) of 1,000,000
bits are generated and tested. If the valuePT of any test is
smaller than 0.0001, the sequences are considered to not be
good enough and the generator is unsuitable. Table III shows
PT of the sequences based on discrete chaotic iterations using
different schemes. If there are at least two statistical values
in a test, this test is marked with an asterisk and the average
value is computed to characterize the statistical values. We
can conclude from Table III that both the old generator and
CI(XORshift, XORshift) have successfully passed the NIST
statistical test suite.

VI. A PPLICATION EXAMPLE IN DIGITAL WATERMARKING

In this section, an application example is given in the
field of digital watermarking: a watermark is encrypted and
embedded into a cover image using the scheme presented
in [1] and CI(XORshift, XORshift). The carrier image is the
well-known Lena, which is a 256 grayscale image, and the
watermark is the64 × 64 pixels binary image depicted in
Figure 3.

The watermark is encrypted by using chaotic iterations: the
initial statex0 is the watermark, considered as a boolean vec-
tor, the iteration function is the vectorial logical negation, and

Table II: Comparison with Old CI(Logistic, Logistic) for a2× 105 bits sequence

Method Monobit Serial Poker Runs Autocorrelation Time

Logistic map 0.1280 0.1302 240.2893 26.5667 0.0373 0.965s

XORshift 1.7053 2.1466 248.9318 18.0087 -0.5009 0.096s

Old CI(Logistic, Logistic) 1.0765 1.0796 258.1069 20.9272 -1.6994 0.389s

New CI(XORshift,XORshift) 0.3328 0.7441 262.8173 16.7877 -0.0805 0.197s

(a) Differences with the
original

(b) The encrypted water-
mark

Figure 4: Encrypted watermark and differences

the chaotic strategy(Sk)k∈N is defined with CI(XORshift,
XORshift), where initial parameters constitute the secretkey
and N = 64. Thus, the encrypted watermark is the last
boolean vector generated by these chaotic iterations. An
example of such an encryption is given in Figure 4.

Let L be the2563 booleans vector constituted by the three
last bits of each pixel of Lena andUk defined by:

{

U0 = S0

Un+1 = Sn+1 + 2× Un + n [mod 2563]
(4)

The watermarked LenaIw is obtained from the original Lena,
whose three last bits are replaced by the result of642 chaotic
iterations with initial stateL and strategyU (see Figure 4).

The extraction of the watermark can be obtained in the
same way. Remark that the mapθ 7→ 2θ of the torus,
which is the famous dyadic transformation (a well-known
example of topological chaos [4]), has been chosen to make
(Uk)k6642 highly sensitive to the strategy. As a consequence,
(Uk)k6642 is highly sensitive to the alteration of the image:
any significant modification of the watermarked image will
lead to a completely different extracted watermark, thus giving
a way to authenticate media through the Internet.

VII. C ONCLUSION AND FUTURE WORK

In this paper, the pseudo-random generator proposed in [13]
has been improved. By using XORshift instead of logistic
map and due to a rewrite of the way to generate strategies,
the generator based on chaotic iterations works faster and is
more secure. The speed and randomness of this new PRNG
has been compared to its former version, to XORshift, and to
a generator based on logistic map. This comparison shows that
CI(XORshift, XORshift) offers a sufficient speed and level of
security for a whole range of Internet usages as cryptography
and data hiding.

In future work, we will continue to try to improve the speed
and security of this PRNG, by exploring new strategies and
iteration functions. Its chaotic behavior will be deepenedby
using the various tools provided by the mathematical theory
of chaos. New statistical tests will be used to compare this
PRNG to existing ones. Additionally a probabilistic study of

its security will be done. Lastly, new applications in computer
science will be proposed, especially in the Internet security
field.

REFERENCES

[1] J. M. Bahi and C. Guyeux. A new chaos-based watermarking
algorithm. In SECRYPT 2010, International conference on
security and cryptography, pages ***–***, Athens, Greece,
2010. To appear.

[2] J. M. Bahi and C. Guyeux. Topological chaos and chaotic
iterations, application to hash functions.WCCI’10: 2010
IEEE World Congress on Computational Intelligence, Accepted
paper, 2010.

[3] S. Cecen, R. M. Demirer, and C. Bayrak. A new hybrid nonlin-
ear congruential number generator based on higher functional
power of logistic maps.Chaos, Solitons and Fractals, 42:847–
853, 2009.

[4] R. L. Devaney.An Introduction to Chaotic Dynamical Systems.
Redwood City: Addison-Wesley, 2nd edition, 1989.

[5] M. Falcioni, L. Palatella, S. Pigolotti, and A. Vulpiani. Prop-
erties making a chaotic system a good pseudo random number
generator.arXiv, nlin/0503035, 2005.

[6] D. E. Knuth. The Art of Computer Programming, Volume 2:
Seminumerical Algorithms. Addison-Wesley, 1998.

[7] L. Kocarev. Chaos-based cryptography: a brief overview. IEEE
Circ Syst Mag, 7:6–21, 2001.

[8] P. L’ecuyer. Comparison of point sets and sequences for quasi-
monte carlo and for random number generation.SETA 2008,
LNCS 5203:1–17, 2008.

[9] G. Marsaglia. Xorshift rngs.Journal of Statistical Software,
8(14):1–6, 2003.

[10] A. Menezes, P. van Oorschot, and S. Vanstone.Handbook of
applied cryptography. CRC Press, 1997.

[11] NIST Special Publication 800-22 rev. 1. A statistical test
suite for random and pseudorandom number generators for
cryptographic applications. August 2008.

[12] F. Robert. Discrete Iterations. A Metric Study, volume 6.
Springer Series in Computational Mathematics, 1986.

[13] Q. Wang, C. Guyeux, and J. M. Bahi. A novel pseudo-random
generator based on discrete chaotic iterations for cryptographic
applications.INTERNET ’09, pages 71–76, 2009.

[14] F. Zheng, X. Tian, J. Song, and X. Li. Pseudo-random sequence
generator based on the generalized henon map.The Journal of
China Universities of Posts and Telecommunications, 15(3):64–
68, 2008.

