A Pseudo Random Numbers Generator Based on
Chaotic Iterations.
Application to Watermarking

Christophe Guyeux, Qianxue Wang, and Jacques M. Bahi

University of Franche-Comte, Computer Science LaborattifL,
25030 Besangon Cedex, France
{chri st ophe. guyeux, gi anxue. wang,
j acques. bahi } @ni v-fconte. fr

Abstract. Inthis paper, a new chaotic pseudo-random number genéRRNG)
is proposed. It combines the well-known ISAAC and XORshéhgrators with
chaotic iterations. This PRNG possesses important piieperttopological chaos
and can successfully pass NIST and TestUO1 batteries af tEisis makes our
generator suitable for information security applicatitike cryptography. As an
illustrative example, an application in the field of waterkiag is presented.

Keywords: Internet Security; Chaotic Sequences; Statistical TBéterete Chaotic
Iterations; Watermarking.

1 Introduction

The extremely fast development of the Internet brings gngveittention to information
security issues. Among these issues, the conception oflpseundom number genera-
tors (PRNGs) plays an important role. Secure PRNGs whiclbearasily implemented
with simple software routines are desired. Due to the firissrof the set of machine
numbers, the sequences generated by numerous existing P&@ot actually ran-
dom. For example, the use of stringent batteries of tesiwalls to determine whether
these sequences are predictable. Chaos theory plays &m @dé in the improvement
of the quality of PRNGs [5], [14]. The advantage of using chiwthis field lies in its
disordered behavior and its unpredictability.

This paper extends the study initiated in [3] and [17]. In [Bi proven that chaotic
iterations (CIs), a suitable tool for fast computing iteratalgorithms, satisfy the topo-
logical chaotic property, as it is defined by Devaney [7]. 17]} the chaotic behav-
ior of Cls is exploited in order to obtain an unpredictablé®egor for a new PRNG.
This generator is based on chaotic iterations and depenigasther input sequences.
These two sequences are generated by two logistic mapse@erajor has successfully
passed the NIST (National Institute of Standards and Tdolggaf the U.S. Govern-
ment) battery of tests. However it appeared that it is a slemegator and it can't pass
TestUO1 because of the input logistic maps. Moreover thisstc map has revealed
serious security lacks, which make it use inadequate fgatographic applications [1].
That is why, in this paper, we intend to develop a new fast PRIN@ill pass TestU01,

widely considered as the most comprehensive and stringeteri of tests. This goal
is achieved by using the ISAAC and XORshift maps in place eftito logistic maps.
Chaotic properties, statistical tests and security ama[{9] allow us to consider that
this generator has good pseudo-random characteristics aagpable to withstand at-
tacks.

The rest of this paper is organized in the following way: irct8® 2, some basic
definitions concerning chaotic iterations and PRNGs arallest: Then, the generator
based on discrete chaotic iterations is presented in $e8tiSection 4 is devoted to its
security analysis. In Section 5, we show that the proposed@®Rasses the TestU01
statistical tests. In Section 6 an application in the fieldvatermarking is proposed.
The paper ends by a conclusion and some discussions aboug fubrk.

2 Basicrecalls

This section is devoted to basic notations and terminotogiethe fields of chaotic
iterations and PRNGs.

2.1 Notations

[1;N] —{1,2,...,N}
S" — then™term of a sequencd = (S%, S?,..))
Vi — theith component of a vector
V= (V1,V2,...,Vn)

fk - k" composition of a functiori

strategy— a sequence which elements belonginN]
S — the set of all strategies
® — bitwise exclusive or
+ — theinteger addition

< and>— the usual shift operators

2.2 Chaotic iterations

Definition 1. The sefB denoting{0, 1}, let f : BN — BN be an “iteration” function
and S € S be a chaotic strategy. Then, the so-callelaqotic iterationsare defined
by [16]

X0 e BN,

-1 i n i
U 'L | S L (1)
\/ne]N,\/IG[[l,N]],Xi —{f(xnl)sn |fSn=|

In other words, at the! iteration, only theS"—th cell is “iterated”.

2.3 Input sequences

In [17], we have desighed a PRNG which has successfully gaheeNIST tests suite.
Unfortunately, this PRNG is too slow to pass the TestUOlebgibf tests. Our ancient

PRNG which is called Cl(Logistic, Logistic) PRNG is basedabaotic iterations and

uses logistic maps as input sequences. However, chaotiensydike logistic maps

work in the real numbers domain, and therefore a transfaomdtom real numbers

into integers is needed. This process leads to a degradztibe chaotic behavior of

the generator and a lot of time wasted during computatiorsebVer, a recent study
shows that the use of logistic map for cryptographic appitics is inadequate and
must be discouraged [1]. Our purpose is then to design a asterf and more secure
generator, which is able to pass the TestUO1 battery of. t€bts is achieved by using

some faster PRNGs like ISAAC [9] and XORshift [13] as inpujsences.

3 Design of CI(ISAAC,XORshift)

3.1 Chaoticiterations as PRNG

The novel generator is designed by the following processNLe IN*,N > 2. Some

chaotic iterations are fulfilled to generate a sequéRtg.y € (IBN)]N of boolean vec-
tors: the successive states of the iterated system. Sonmesd /ectors are randomly
extracted and their components constitute our pseudmnarudt flow. Chaotic itera-
tions are realized as follows. Initial stat® € BN is a boolean vector taken as a seed
and chaotic strategfS"),x € [1, N]YN is constructed with XORshift. Lastly, iterate
function f is the vectorial boolean negation

fo : (X1, ..., Xn) € BN — (X1, ..., Xn) € BV,
To sum up, at each iteration orj-th component of stat¥" is updated, as follows

XLif i # ST,
X'=3 2)

xLif i = S,

Finally, let M be a finite subset dN*. Somex" are selected by a sequencl as the
pseudo-random bit sequence of our generator. The sequefgen € MY is com-
puted with ISAAC. So, the generator returns the followingues: the components of
x™ followed by the components of ™+™ | followed by the components of f+m-+m
etc.In other words, the generator returns the following bits:

XTOXOKG0 L XX OGO x0T x0T
or the following integers:

X0 X0+ Mo+ Mutme

The basic design procedure of the novel generator is sumpmiediable 1. The internal
state isx, the output array is. a andb are those computed by ISAAC and XORshift
generators. Lastly; andN are constants ani = {c, c+1} (c > 3N is recommended).

Input: the internal stat& (an array ofN bits)
Output: an arrayr of N bits
a«— ISAAQ);
m « a mod2 + c;
fori=0,...,mdo
b « XORshif¢);

S « b modN;
Xs < Xs,
end
I < X
returnr;
Algorithm 1: An arbitrary round of CI(ISAAC, XORshift)
m: 4 5 4
S 2 4 2 2 5 1 1 5 5 3 2 3 3
In thisx? x* x° x13
1 1l 3031 1 1
o 51 30311 11 3o 0
1 1 130 321300
0 41 1 1 1
5 5 5
0 0->1 50511 1

Binary Output:x3x3x3x3x2x4 35 x4 X X X3 xxxGxex*x3%... = 10100111101111110 Integer
Output:x°, X2, x*, x8, x8... = 20,30, 31, 19...
Table 1. Application example

3.2 Example

In this exampleN = 5 and M = {4,5} are chosen for easy understanding. The initial
state of the systenf can be seeded by the decimal part of the current time. Forgheam
the current time in seconds since the Epoch is 123763298@348 sot = 484084.

x° = t (mod 32) in binary digits, ther® = (1,0, 1,0,0).mandS can now be computed
from ISAAC and XORshift:

—m=4,54,4,4,4,5,5,5,5,4,5,4,..
-S5=2,4,2,2,5/1,1,5,5,3,2,3,3,...

Chaotic iterations are done with initial sta€® vectorial logical negatiofy and strategy
S. The resultis presented in Table 3. Let us recall that sezpramgives the states" to
return:x?, x5, x45+4

So, in this example, the generated binary digits are: 1010001111110011... Or the
integers are: 20, 30, 31, 19...

3.3 Chaotic iterations and chaos

Generally the success of a PRNG depends, to a large extetite dallowing criteria:
uniformity, independence, storage efficiency, and repedulity. A chaotic sequence
may have these good pseudo-random criteria and also otheticiproperties, such as:
ergodicity, entropy, and expansivity. A chaotic sequerscexitremely sensitive to the
initial states. That is, even a minute difference in thaahgtate of the system can lead
to enormous differences in the final state even over fairlglstimescales. Therefore,
chaotic sequence well fits the requirements of pseudo-rarsimuence. Contrary to
ISAAC or XORshift, our generator possesses these chaaijuepties.

However, despite a huge number of papers published in thk dfethaos-based
PRNGs, the impact of this research is rather marginal. Bhiue to the following rea-
sons: almost all PRNG algorithms using chaos are based anugal systems defined
on continuous sets (e.g., the set of real numbers). So tlemrators are usually slow,
require considerably more storage spaces, and lose tteticlproperties during com-
putations. These major problems restrict their use as georsf{10]. Moreover, even if
the algorithm obtained by the inclusion of chaotic mapssislitchaotic, the implemen-
tation of this algorithm on a machine can cause it lose it®tibaature. This is due to
the finite nature of the machine numbers set.

In this paper we don’t simply integrate chaotic maps hoplrag the implemented algo-
rithm remains chaotic. The PRNG algorithms we conceive arsstituted by discrete
chaotic iterations that we mathematically proved in [3&tthroduce topological chaos
as defined by Devaney. In the same paper, we raised the questioeir implementa-
tion, proving in doing so that it is possible to design a clwaalgorithm and a chaotic
computer program. In conclusion, the generator propos#dsrpaper does not inherit
its chaotic properties from a continuous real chaotic mapfriom discrete chaotic it-
erations defined in Section 2.2. As quoted above, it has bemmepin [3] that chaotic
iterations behave as chaos, as it is defined by Devaney: teaggular, transitive and
sensitive to initial conditions. This famous definition othaotic behavior for a dy-
namical system implies unpredictability, mixture, semgit and uniform repartition.
This allows the conception of a new generation of chaotic BRNBecause only inte-
gers are manipulated in discrete chaotic iterations, thetitibehavior of the system is
preserved during computations, and these computatiorfagtre

4 Security analysis

In this section a security analysis of the proposed geneisatgven.

4.1 Key space

The PRNG proposed in this document is based on discreteicli@oations. It has an
initial value x° € BN. Considering this set of initial values alone, the key spsize is
equal to 2. In addition, this PRNG combines digits of two other PRNGAAC and
XORshift. Letk; andk, be the key spaces of ISAAC and XORshift. So the total key
space size is close td'2k; - k.. Finally, the impact ofM must be taken into account.
This leads to conclude that the key space size is large ertfougithstand attacks.

4.2 Key sensitivity

This PRNG is highly sensitive to the initial conditions. Tlastrate this property proved
in [3], several initial values are put into the chaotic systéet H be the humber of
differences between the sequences obtained in this waydSep is the length of
these sequences. Then the variance mtidefined byP = H/n, is computed. The
results are shown in Figure 1a& éxis is sequence lengthgaxis is variance rati®).
Variance ratios approach3D, which indicates that the system is extremely sensitive t
the initial conditions.

Sensitivity analysis

a. sensitivity b. Second order distribution

Fig. 1. Security analysis

4.3 Uniform distribution

Figure 1b gives a 3D graphic representation of the distiobubtf a random sequence
obtained by our generator. The point cloud presents a unittistribution that tends to
fill the complete 3D space, as expected for a random signabbtain this cloud, we
have first changed the binary sequence kit integer sequence, X2, X3, X4... Then

X: X X X X:
we have plo{3t, 5. 5%). (3%, 5%, 5¢)--

5 TestUO1 Statistical Test Results

In a previous section, we have shown that the proposed PRNGtiang chaotic prop-
erties, as Devaney’s chaos. In particular, this generatbetter than the well-known
XORshift and ISAAC, in the topological point of view. In adidin to being chaotic, we
will show in this section that CI(ISAAC,XORshift) is bettéran XORshift, and at least
as good as ISAAC [18] in the statistical point of view. Indegidhilarly to ISAAC and
contrary to XORshift, CI(ISAAC,XORshift) can pass the sgient Big Crush battery
of tests included in TestUO1. In addition, our generatoieaas to pass all the batteries
included in TestUO1. To our best knowledge, this result lredaen proven for ISAAC,
and only one other generator is capable of doing this [6]

Table 2. TestUO1 Statistical Test

Battery Parameters Statistics
Rabbit 32x 10° bits 40
Alphabit 32x 1¢° bits 17
Pseudo DieHARD Standard 126
FIPS1402 Standard 16
Small Crush Standard 15
Crush Standard 144
Big Crush Standard 160

5.1 Testu01

Indeed, the quality of a PRNG should be based on theoretiodldfmentals but should
also be tested empirically. Various statistical tests awglable in the literature that
test a given sequence for some level of computational indistshability. Major test
suites for RNGs are TestUO1 [11], the NIST suite [15], andDieHARD suites [12].
The DieHARD suites, which implement many classical RNGstesave some draw-
backs and limitations. The National Institute of Standadd Technology (NIST), in
the United States, has implemented a test suite (16 testRNGs. It is geared mainly
for the testing and certification of RNGs used in cryptogragipplications. TestU01
is extremely diverse in implementing classical tests, wgpphic tests, new tests pro-
posed in the literature, and original tests. In fact, it enpasses most of the other test
suites. The proposed PRNG has been tested using TestUOts fatatistical pseudo
randomness.

5.2 Batteries of tests

Table 2 lists seven batteries of tests in the TestU01 pacKk&gendard” parameter in
this Table refers to the built-in parameters of the batfBegtU01 suite implements 518
tests and reporfg—values. If ap—value is within [0001, 0.999], the associated test is a
success. Ap—value lying outside this boundary means that its test hiedfai

5.3 Analysis

In a sound theoretical basis, a PRNG based on discrete chtettions (ICs) is a
composite generator which combines the features of two PRN®e first generator
constitutes the initial condition of the chaotic dynamisgdtem. The second generator
randomly chooses which outputs of the chaotic system musetikened. The inten-
tion of this combination is to cumulate the effects of chaatid random behaviors, to
improve the statistical and security properties relativedch generator taken alone.

This PRNG based on discrete chaotic iterations may utiligeraasonable RNG as
inputs. For demonstration purposes, XORshift and ISAAGdapted here. The PRNG
with these inputs can pass all of the performed tests.

6 Application example in digital watermarking

In this section, an application example is given in the fidldigital watermarking: a
watermark is encrypted and embedded into a cover image abigfic iterations and
our PRNG. The carrier image is the famous Lena, which is a 2&f¢sgale image, and
the watermark is the 64 64 pixels binary image depicted in Fig.2d. Let us encrypt the

a.Lena gcale0.5) b. Watermarked Lena

I

c. Differences d. Watermark e.Encrypted
watermark

Fig. 2. Original and watermarked Lena

watermark by using chaotic iterations. The initial stateof the system is constituted
by the watermark, considered as a boolean vector. Thei@arainction is the vectorial
logical negationfy. The PRNG presented previously is used to obtain a sequédnce o
integers lower than 4096, which will constitute the chastiategy 8. Thus, the
encrypted watermark is the last boolean vector generatékebghaotic iterations. An
example of such an encryption, with 5000 iterations, is giveFig.2e.

Let L be the 258 booleans vector constituted by the three last bits of eax#l pi
of Lena. We defindJ* by U® = S? andU™?! = S™1 4+ 2 x U" + n [mod 256%]. The
watermarked Lend, is obtained from the original Leng, the three last bits of which
are replaced by the result of dhaotic iterations with initial state, and strategyJ*

(see Fig.2b). Spatial domain embedding has been choserfidnerasy understanding,
but this watermarking scheme can be adapted to frequencgiddiior an example of
its use in DWT domain, see [2]). The extraction of the watekntan be obtained in
the same way [2]. Remark that the map»> 20 of the torus, which is the well-known
dyadic transformation (an example of topological chaok [¥ds been chosen to make
(UM)es2 highly sensitive to the chaotic encryption strategy.

The robustness of this data hiding scheme through geonaettifrequency attacks
has been studied in [2]. The chaos-security and stegoibeate proven in [8]. The dif-
ference with the scheme presented in these papers is thewanerate strategiess.,
the choice of the initial conditions for chaotic iteratipnsthe encryption and embed-
ding stages. This improvement does not alter robustnessdrsphace-security. We have
shown in this study that this replacement enhances the s¢lkd scheme. Moreover,
it resolves a potential security lack related to the use aiggstic map [1] when gen-
erating the strategies: this lack might be exploited by sachker in Watermark-Only-
Attack and Known-Message-Attack setups [4]. Instead oskigmap, our PRNG has
good statistical properties and can withstand such attddks claim will be deepened
in future work.

7 Conclusions and future work

In this paper, the PRNG proposed in [17] is improved. Thiscisieved by using the
famous ISAAC and XORshift generators and by combining thesaponents with
chaotic iterations. Thus we obtain a faster generator watisfies chaotic properties.
In addition to passing the NIST tests suite, this new genematccessfully passes all
the stringent TestUO1 battery of tests. The randomness ianddér generated by this
algorithm has been evaluated. It offers a sufficient levedeafurity for a whole range
of applications in computer science. An application exaniplthe field of data hiding
is finally given. In future work, the comparison of differesttaotic strategies will be
explored and other iteration functions will be studied.dfy) other applications in
computer science security field will be proposed, espguialtryptographic domains.

References

1. D. Arroyo, G. Alvarez, and V. Fernandez. On the inadequddiie logistic map for crypto-
graphic applicationsX Reunin Espaola sobre Criptologa y Seguridad de la Infoim&x
RECSI) 1:77-82, 2008.

2. J.Bahiand C. Guyeux. A new chaos-based watermarkingitiigo In SECRYPT 2010, In-
ternational conference on security and cryptograpbgges ***—*** Athens, Greece, 2010.
To appear.

3. J. M. Bahiand C. Guyeux. Chaotic iterations and topokagibaosarXiv, 0810.3154, 2008.

4. F.Cayre and P. Bas. Kerckhoffs-based embedding seciagtges for woa data hidindEEE
Transactions on Information Forensics and Secuidi):1-15, 2008.

5. S. Cecen, R. M. Demirer, and C. Bayrak. A new hybrid nomiineongruential number
generator based on higher functional power of logistic m&isos, Solitons and Fractals
42:847-853, 2009.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

. S. Corsaro, P.L. De Angelis, Z. Marino, F. Perla, and PeRanOn parallel asset-liability
management in life insurance: a forward risk-neutral appinoParallel Computingln Press,
2009.

. R. L. Devaney.An Introduction to Chaotic Dynamical SysteniRedwood City: Addison-
Wesley, 2nd edition, 1989.

. C. Guyeux, N. Friot, and J. M. Bahi. A more secure infororatiiding scheme than spread-
spectrum obtained by chaos-securayXiv 00325652010.

. R.J. Jenkins. Isaa€ast Software Encryptiqgmpages 41-49, 1996.

L. Kocarev. Chaos-based cryptography: a brief overviB®&E Circ Syst Mag7:6—21, 2001.

P. L'ecuyer and R. Simard. TestuO1: A software librargrisi ¢ for empirical testing of ran-

dom number generatord.aboratoire de simulation et doptimisation. Universit dehtral

IRO, 2009.

G. Marsaglia. Diehard: a battery of tests of randomrefys.//stat.fsu.edu/ geo/diehard.html

1996.

G. Marsaglia. Xorshift rngslournal of Statistical Software(14):1-6, 2003.

L. Po-Han, C. Yi, P. Soo-Chang, and C. Yih-Yuh. Eviden€ehe correlation between

positive lyapunov exponents and good chaotic random nusgzprencesComputer Physics

Communications160:187—203, 2004.

NIST Special Publication 800-22 rev. 1. A statisticat wiite for random and pseudorandom

number generators for cryptographic applications. Aug0es.

F. Robert.Discrete Iterations. A Metric Stugdyolume 6. Springer Series in Computational

Mathematics, 1986.

Q. Wang, C. Guyeux, and J. M. Bahi. A novel pseudo-randenegator based on discrete

chaotic iterations for cryptographic applicationsFirst International Conference on Evolv-

ing Internet 2009.

B. A. Wichmanna and I. D. Hillb. Generating good pseualadom numbersComputational

Statistics & Data Analysis$1:1614-1622, 2006.

F. Zheng, X. Tian, J. Song, and X. Li. Pseudo-random semugenerator based on the

generalized henon maphe Journal of China Universities of Posts and Telecomnatigins

15(3):64-68, 2008.

