
Specifying Generic Java Programs:

two Case Studies∗

A. Giorgetti1,2, C. Marché3,4, E. Tushkanova1,2, and O.
Kouchnarenko1,2

1LIFC, Univ. of Franche-Comté, Besançon F-25030
2INRIA Nancy - Grand Est, Villers-lès-Nancy F-54600

3INRIA Saclay - Île-de-France, Orsay F-91893
4LRI, Univ. Paris-Sud, Orsay F-91405

Abstract

This work investigates the question of modular speci�cation of generic

Java classes and methods. We propose extensions to the Krakatoa Mod-

eling Language, a part of the Why platform for proving that a Java or C

program is a correct implementation of some speci�cation. The new con-

structs we propose for the speci�cation of generic Java programs are pre-

sented through two signi�cant examples: the speci�cation of the generic

method for sorting arrays which comes from the java.util.Arrays class

in the Java API, and the speci�cation of the java.util.HashMap class

de�ning a generic hash map and its use for memoization. The key fea-

tures are the introduction of parametricity both for types and for theories

and an instantiation relation between theories. We discuss soundness con-

ditions and their veri�cation.

1 Introduction

The problem of deductive veri�cation of programs is to check that there exists
a derivation in the Hoare logic for the Hoare triple, {P} S {Q}, where P and Q
are assertions and S is a program statement. P is called the precondition and
Q the postcondition: if the precondition is met and the statement terminates,
then it should establish the postcondition.

Why [4] is a platform for deductive veri�cation of source code. From a
source program annotated by speci�cations, it extracts veri�cation conditions
and transmits them to provers like SMT provers (Simplify, Z3, CVC3, Yices, Alt-
Ergo, etc.) or proof assistants (Coq, Isabelle/HOL, PVS, etc.) For Java, these

∗This work is supported by the INRIA ARC CeProMi, http://www.lri.fr/cepromi/.

1

speci�cations are given in the Krakatoa Modeling Language (KML) [?], a variant
of the Java Modeling Language [2, 5].

A new feature introduced in Java 5 is genericity, but it is supported neither
by upstream JML nor KML. Supporting genericity naturally requires to add
type parameters to speci�cations, but not only: more complex issues arise when
one tries to formally specify generic programs. The goal of this paper is to
present those issues on two typical examples, and to propose new speci�cation
constructs to solve them.

In Section 2 we �rst present an excerpt of KML, focusing on the part of that
language which allows to specify algebraic-style data types [8] and theories.
Section 3 presents a speci�cation for a generic method for sorting arrays (the
one from the java.util.Arrays class in the Java API): our �rst contribution is
adding type parameters to theories and a notion of theory parameter to classes
and interfaces. Section 3.4 shows how we deal with client code for this sorting
method, emphasizing issues which do not arise in the non-generic case, which
we solve by proposing the notion of theory instantiation. Section 4 presents a
speci�cation of generic hash maps (java.util.HashMap class of the API) also
with a client code: here we add theory parameters also to theories themselves,
in order to specify the expected properties of the map keys. We compare with
related work and conclude in Section 5.

2 Overview of the Speci�cation Language

A speci�cation language is a formal language used during requirement analysis
and system design. There are algebraic-based speci�cation languages like CASL,
Z, B ; and program-oriented ones like JML for Java, Spec# for C#. KML is a
speci�cation language for Java, inspired by JML, while sharing many features
with ACSL, the ANSI/ISO C Speci�cation Language [?]. The main di�erence
between JML and KML is that the main application of JML is runtime assertion
checking, whereas KML is designed for automated or assisted deductive veri�-
cation, by statically producing veri�cation conditions. For this reason, KML
was designed to allow algebraic-style speci�cations because they are suitable for
theorem proving.

2.1 Basic standard features

Speci�cations are given as annotations in the source code, in a special style of
comments after //@ ... or between /*@ and */.

Method contracts have the general form

//@ requires R; assigns L; ensures E;

where R and E are logical assertions, and L is the set of memory locations that
may be modi�ed by the method. The precondition R is supposed to hold in the
method pre-state, for any value of its arguments. It must be checked valid by

2

the caller. The postcondition E must be established by the method's code at
the end of its execution. In that formula, \result denotes the returned value.

A class invariant is declared at the level of class members. It has the form

//@ invariant id: P ;

where P is a property that must be established by each constructor, and pre-
served by each method of the class. A model �eld is introduced in the speci�ca-
tion with the keyword model, and is related to concrete �elds with an invariant.
Its type must be a logic type. Model �elds are used to provide abstract speci�-
cations to functions whose concrete implementation must remain private.

An assertion in the code has the form

//@ assert P ;

and speci�es that the property P holds at the corresponding program point.
The construct \at(e, L) refers to the value of the expression e in the program
state at label L. There exist prede�ned labels, e.g. Old and Here. \old(e) is in
fact syntactic sugar for \at(e, Old). The label Here is visible in all statement
annotations, where it refers to the state where the annotation appears. It refers
to the pre-state in a method precondition (requires clause), and to the post-
state in a method postcondition (ensures clause). The label Old is visible in
ensures clauses and refers to the pre-state of the method's contract. More
details can be found in [?].

2.2 Logical speci�cations

KML does not allow pure methods to be used in annotations but it permits to
declare new logic functions and predicates. They must be placed at the global
level, i.e. outside any class declaration, and respectively have the form

//@ logic t id(t1 x1, . . . , tn xn) = e;
//@ predicate id(t1 x1, . . . , tn xn) = p;

where e has type t, and p is a proposition. The types t, t1, . . . , tn can be either
Java types or purely logic types. The logic types of mathematical integers and
reals are built-in and respectively denoted integer and real.

Logic functions and predicates can also be hybrid. It means that they depend
on some memory state. More generally, they can depend on several memory
states, by attaching them several labels. The general form of a hybrid function
and predicate de�nition respectively is

//@ logic t id{L1, . . . , Lk}(t1 x1, . . . , tn xn) = e;
//@ predicate id{L1, . . . , Lk}(t1 x1, . . . , tn xn) = p;

where L1, . . . , Lk are memory state labels on which the function or predicate
depends, and t, t1, . . . , tn, e and p are as before.

A predicate may also be de�ned by an inductive de�nition of the form

3

/*@ inductive P{L1, . . . , Lk}(t1 x1, . . . , tn xn) {
case c1 : p1;
. . .
case cm : pm;

} */

where c1, . . . , cm are identi�ers and p1, . . . , pm are propositions. The se-
mantics of this de�nition is that P is the least �xpoint of the cases, i.e.
the smallest predicate (in the sense that it is false the most often) sat-
isfying the propositions p1, . . . , pm. To ensure existence of a least �x-
point, it is required that each of these propositions is of the form \forall

y1, . . . , ym, h1 ==> . . . ==> hl ==> P (t1, . . . , tn) where P occurs only posi-
tively in hypotheses h1, . . . , hl.

Finally, a set of types, functions and predicates can be declared axiomatically
by an algebraic-style axiomatization. Such a set forms a block of declarations
called a theory. It has the following general form

theory Th {
type id;
logic t id{L1, . . . , Lk}(t1 x1, . . . , tn xn);
predicate id{L1, . . . , Lk}(t1 x1, . . . , tn xn);
axiom id1 : p1;
axiom id2 : p2;
...

}

Arbitrarily many types, functions, predicates and axioms can be given. No-
tice that functions and predicates are only given by their pro�les. Unlike in-
ductive de�nitions, there are no syntactic conditions which would guarantee
theories to be consistent. It is up to the user to ensure that the introduction of
axioms does not lead to a logical inconsistency.

3 A Generic Sorting Function

An array sorting function is a routine that modi�es the order of elements in
a given array. The resulting array must satisfy two properties: (1) the array
elements are a permutation of the elements at the beginning; (2) the elements
are in increasing order w.r.t. some ordering relation.

Filliâtre and Magaud [3] study several algorithms for sorting, and both spec-
ify and prove them correct with theWhy tool, but only on the particular instance
of an array of integers and the usual �less-than� order. Predicates specifying the
meaning of an array to be in increasing order, and of two arrays being permu-
tation of each other, are de�ned with the Coq proof assistant [?]; and proof
scripts of generated veri�cation conditions are ful�lled manually within Coq. A
selection sorting algorithm is written in Java by Marché [?] with similar speci-
�cations of predicates done in KML. It improves over the former work because

4

proofs are done fully automatically with SMT provers (Simplify and Alt-Ergo).
However, it is still speci�c to integers and the usual less-than order.

We go further by specifying a generic method for sorting arrays, where the
array elements are of any type T . A signi�cant challenge is to specify the
ordering relation which is given as a parameter, under the form of a comparison
function on T . As we will see, it is also important to study how this generic
speci�cation can be used by client code, because it has to be instantiated.

3.1 Generic sorting in Java

The class java.util.Arrays de�nes a generic sorting method with the pro�le:

public static <T> void sort(T[] a, Comparator<? super T> c)

In this method <T> is a type parameter and the syntax <? super T> denotes
an unknown type that is a supertype of T (or T itself). The java.util.
Comparator<T> interface imposes a total ordering on some collection of objects.

interface Comparator<T> {

public int compare(T x, T y);

}

T is the type of objects that may be compared by this comparator. The method
compare is expected to return a negative integer, zero, or a positive integer
when the �rst argument is respectively less than, equal to, or greater than the
second one; for the desired ordering relation.

The sample code given in Figure 1 illustrates an instance of use of this sort
method. It ends with a simple assertion which we expect to be able to prove, as
a consequence of the generic speci�cation we will provide. The validity of this
assertion indeed depends on the comparator we choose. Here it is an instance of
the class IntLtComparator given in Figure 2, which implements the usual �less-
than� ordering on integers. Changing this comparator say to the �greater-than�
ordering would of course sort the array in decreasing order instead, violating
the assertion.

class Main {

public static void main(String[] args) {

IntLtComparator intc = new IntLtComparator();

Integer[] b = {new Integer(2),new Integer(1),new Integer(3)};

java.util.Arrays.sort(b,intc);

//@ assert b[0].value <= b[1].value;

}

}

Figure 1: A sample client code calling the generic sorting method

5

class IntLtComparator implements Comparator<Integer> {

public int compare(Integer x, Integer y) {

if (x.intValue() < y.intValue()) return −1;
if (x.intValue() == y.intValue()) return 0;

return 1;

}

}

Figure 2: The usual �less-than� comparator on integers

3.2 Type parameters: the permutation property

The �rst extension we propose to KML is to allow type parameters in algebraic
speci�cations, as follows

//@ predicate id〈T1, . . . , Tl〉{L1, . . . , Lk}(t1 x1, . . . , tn xn) = p;

and similarly for functions, inductive predicates, and such.
For the sorting example, and following [?], we de�ne a predicate

Permut〈T 〉{L1, L2}(a, l, h) which means that the part of array a between in-
dexes l and h, in some program state L1 is a permutation of the same array
part in state L2. It is de�ned inductively in Figure 3. The �rst postcondition
of the sort method is then speci�ed below.

/*@ ensures Permut<V>{Old,Here}(a,0,a.length−1); */

public static <V> void sort(V[] a, Comparator<? super V> cmp);

3.3 Theory parameters: the sorting property

The challenge is to specify the behavior of the comparator given as argument.
What we propose is to allow to pass theories as parameters. On the sorting

predicate Swap<T>{L1,L2}(T a[], integer i, integer j) =

\at(a[i],L1) == \at(a[j],L2) && \at(a[j],L1) == \at(a[i],L2) &&

\forall integer k; k != i && k != j ==> \at(a[k],L1) == \at(a[k],L2);

inductive Permut<T>{L1,L2}(T a[], integer l, integer h){

case Permut_refl{L}: \forall T a[], integer l h;

Permut<T>{L,L}(a, l, h);

case Permut_sym{L1,L2}: \forall T a[], integer l h;

Permut<T>{L1,L2}(a, l, h) ==> Permut<T>{L2,L1}(a, l, h);

case Permut_trans{L1,L2,L3}: \forall T a[], integer l h;

Permut<T>{L1,L2}(a, l, h) &&

Permut<T>{L2,L3}(a, l, h) ==> Permut<T>{L1,L3}(a, l, h);

case Permut_swap{L1,L2}: \forall T a[], integer l h i j;

l <= i <= h && l <= j <= h &&

Swap<T>{L1,L2}(a, i, j) ==> Permut<T>{L1,L2}(a, l, h);

}

Figure 3: The permutation predicate

6

theory ComparatorTheory<T> {

predicate eq{L}(T x, T y);

axiom eq_ref{L}: \forall T a; eq{L}(a,a);

axiom eq_sym{L}: \forall T a b; eq{L}(a, b) ==> eq{L}(b,a);

axiom eq_trans{L}: \forall T a1 a2 a3;

eq{L}(a1, a2) && eq{L}(a2,a3) ==> eq{L}(a1,a3);

predicate lt{L}(T x, T y);

axiom lt_irref{L}: \forall T a; ! lt{L}(a,a);

axiom lt_antisym{L}: \forall T a1 a2; !(lt{L}(a1,a2) && lt{L}(a2,a1))

axiom lt_trans{L}: \forall T a1 a2 a3;

lt{L}(a1,a2) && lt{L}(a2,a3) ==> lt{L}(a1,a3);

axiom lt_totality{L}: \forall T a1 a2;

eq{L}(a1,a2) || lt{L}(a1,a2) || lt{L}(a2,a1);

predicate leq{L}(T x, T y) = eq{L}(x,y) || lt{L}(x,y);

predicate sorted{L}(T[] a, integer l, integer h) =

\forall integer i; l <= i <h ==> leq{L}(\at(a[i],L),\at(a[i+1],L));
}

Figure 4: General theory for Comparators

interface Comparator<U> /*@ <Th instantiating ComparatorTheory<U> > */ {

/*@ ensures (Th.lt(x,y) <==> \result < 0) &&

(Th.eq(x,y) <==> \result == 0) &&

(Th.lt(y,x) <==> \result > 0); */

public int compare(U x, U y);

}

Figure 5: Speci�cation of the Comparator interface

example, the �rst step is to de�ne a general theory for types equipped with an
ordering relation. Figure 4 shows a theory named ComparatorTheory which
de�nes two predicates eq for equality and lt for an arbitrary strict total order.
Equality is re�exive, symmetric and transitive. The strict total order satis�es
four properties: irre�exivity, antisymmetry, totality and transitivity.

The Comparator interface should take some comparison theory as a pa-
rameter. This is shown in Figure 5. The Comparator interface thus has two
parameters: a Java type U and a theory Th. The syntax Th instantiating

ComparatorTheory<U> says that Th is an instance of the general theory de�ned
in Figure 4. One may wonder why we require an instance of the comparison
theory ComparatorTheory: this will be discussed in Section 3.4.

Figure 6 speci�es with a second postcondition the sorting property of the
method sort. The sorting method is not only parameterized by the type V

but also by the type W which denotes the super type of V on which the com-
parator operates, and by a theory th which can be any instance of the general

7

/*@ ensures th.sorted(a,0,a.length−1); */

public static <V> /*@ <W> <th instantiating ComparatorTheory<W> > */

void sort(V[] a, Comparator<? /*@ as W */ super V> /*@ <th> */ cmp) {

}

Figure 6: Speci�cation of the generic sorting method

public final class Integer extends Number implements Comparable {

private int value;

/*@ assigns this.value; ensures this.value == v; */

public Integer(int v) { this.value = v; }

/*@ assigns \nothing; ensures \result == this.value; */

public int intValue() { return this.value; }

}

Figure 7: Annotated Integer class

theory IntLtComparatorTheory instantiates ComparatorTheory<Integer> {

predicate eq{L}(Integer x, Integer y) = \at(x.value == y.value, L);

predicate lt{L}(Integer x, Integer y) = \at(x.value < y.value,L);

}

Figure 8: Theory for �less-than� comparison

ComparatorTheory on W. Notice the new as keyword added to relate the anony-
mous Java type denoted by ? and the explicit name W we need to introduce for
it in the speci�cation.

The comparator type is itself instantiated with the Java type W and the
theory th. In the method postcondition the predicate sorted is then quali�ed
with this theory.

3.4 Theory Instantiation

To deal with our client program, we need more annotations. First we add
speci�cations to the java.lang.Integer class: Figure 7 shows an excerpt of it
annotated in KML1.

Then, we need to specify the IntLtComparator class of Figure 2. For
that, we �rst provide a theory which instantiates the general comparison theory
ComparatorTheory, in Figure 8. The goal is to formalize that we decided to com-
pare with the �less-than� ordering. The instantiates declaration generates ver-
i�cation conditions: this is discussed in Section 3.5. The class IntLtComparator
shown in Figure 9 implements the instantiation of the Comparator interface
where the Java type is the Integer class and the theory is the comparison

1In KML, the private �eld is visible in the annotations of the public methods, whereas in

JML, the �eld should be annotated with modi�er spec_public.

8

class IntLtComparator

implements Comparator<Integer> /*@ <IntLtComparatorTheory> */ {

public int compare(Integer x, Integer y) { ... }

}

Figure 9: Speci�cation of the IntLtComparator class of Figure 2

theory for this class, de�ned in Figure 8.
Finally, notice that when checking the speci�c call to method sort in the

client program, the �implicit� parameters V, W and also the theory Th must be
guessed. The value of V comes as usual with the Java typing, the value of W

comes from the type of the Comparator. Then the theory th must be inferred
from the theory argument of cmp and it must be checked whether it really
instantiates a convenient comparison theory.

3.5 Veri�cation Conditions for Soundness

The soundness conditions to generate are as follows. First, the the-
ory IntLtComparatorTheory should be a valid instantiation of the theory
ComparatorTheory<Integer>. This amounts to check that the de�nitions of
the predicates eq and lt given in IntLtComparatorTheory satisfy the ax-
ioms given in ComparatorTheory<T> when the type variable T is instanti-
ated with Integer. This condition is easily discharged by SMT provers.
Second, the class IntLtComparator should correctly implement the inter-
face Comparator<Integer>, which requires that the method compare in the
IntLtComparator class should satisfy the speci�cation of the method compare

declared in the interface Comparator<U>, when the type parameter U is in-
stantiated with Integer and the theory parameter Th is instantiated with
IntLtComparatorTheory. This condition is again easily proved by SMT
provers. Finally, checking the assertion in our client code can be done,
by instantiating the generic postcondition th.sorted(. . .) of sort with the
IntLtComparatorTheory. Substituting the th.lt predicate with its actual def-
inition does the job. It is important to notice here that this �nal substitution is
necessary, so it justi�es why we initially parameterized the sort method with
a theory parameter: otherwise, we would know that the array is sorted w.r.t
some order, without knowing precisely which one.

4 Generic Hash Maps

We present additional constructs needed when specifying generic hash maps.
These are data types which build �nite mappings from indexes of some type key
to values of some other type data. Finding the value associated to a given index
is made e�cient by use of classical hashing techniques.

A simple but illustrating example of use of hash maps is a method for com-

9

class Fib {

HashMap<Integer,Long> memo;

Fib() { memo = new HashMap<Integer,Long>(); }

public long fib(int n) {

if (n <= 1) return n;

Integer n_obj = new Integer(n);

Long x = memo.get(n_obj);

if (x == null) {

x = new Long(fib(n−1)+fib(n−2));
memo.put(n_obj,x);

}

return x.longValue();

}

}

Figure 10: Java source for Fib class

puting Fibonacci numbers2: F (0) = 0, F (1) = 1, and F (n+2) = F (n+1)+F (n)
for n ≥ 0. To avoid the exponential complexity of the naive recursive algorithm,
we apply the general technique of memoization. A Java Fib class with a fib

method computing Fibonacci numbers with memoization is shown in Figure 10.

4.1 Speci�cation of the Fibonacci sequence

A mathematical de�nition of the Fibonacci sequence as a theory is given below.

theory Fibonacci {

logic integer math_fib(integer n);

axiom fib0: math_fib(0) == 0;

axiom fib1: math_fib(1) == 1;

axiom fibn: \forall integer n; n >= 2 ==>

math_fib(n) == math_fib(n−1) + math_fib(n−2);
}

The expected behavior of the fib method is speci�ed as follows.

//@ requires n >= 0; assigns \nothing; ensures \result == math_fib(n);

public long fib(int n);

Notice that issues related to arithmetic over�ow are ignored. We just assume
for simplicity that computations are made on unbounded integers.

4.2 Theories for hashable objects and hash maps

The �rst step is to de�ne a theory which provides a predicate for testing equality,
and a hash function. This theory is given in Figure 11. The dots are for the

2From CeProMi collection of challenging examples, http://www.lri.fr/cepromi. This is

only for illustration, since there exist other e�cient ways to compute Fibonacci numbers.

10

theory HashableTheory<T> {

... // equality theory as in Figure 4

logic integer hash{L}(T x);

axiom hash_eq{L}: \forall T x,y;

eq{L}(x,y) ==> hash{L}(x) == hash{L}(y);

}

Figure 11: Theory of hashable objects

theory Map<K><Th instantiating HashableTheory<K> > {

type t<V>;

logic <V> V acc{L}(t<V> m, K key);

logic <V> t<V> upd{L}(t<V> m, K key, V value);

axiom <V> acc_upd_eq{L}: \forall t<V> m, K key1 key2, V value;

Th.eq{L}(key1,key2) ==> \at(acc(upd(m,key1,value),key2) == value,L);

axiom <V> acc_upd_neq{L}: \forall t<V> m, K key1 key2, V value;

! Th.eq{L}(key1,key2) ==>

\at(acc(upd(m,key1,value),key2) == acc(m,key2),L);

}

Figure 12: Theory of maps

same axiomatization of the eq predicate as in Figure 4. The important part of
this theory is the axiom hash_eq specifying the expected property for the hash
function: two equal objects must have the same hash code.

Then, we provide a theory for maps, as shown in Figure 12. This theory
is parameterized by both a type K for the keys and a theory for equality and
hashing of K objects. The type of data is not given as a parameter to the theory
itself, but as a parameter V of the type of maps. This allows to use the same
theory of maps for several instances of V. This theory is indeed the classical
theory of arrays which is a typical theory supported by SMT provers. It is
de�ned by a function acc to access the element indexed by some key, and a
function upd which provides a so-called functional update of a map, returning a
new map in which the element associated to some key is changed. The behavior
of these two functions is axiomatized by the two axioms in Figure 12, which
makes use of the equality predicate on keys. It has to be noticed that specifying
the proper equality relation on keys is one of the issues in this speci�cation, and
our proposal to use parameterized theories is an answer to this issue.

The resulting speci�cation of the generic java.util.HashMap class is shown
in Figure 13. Since the type variable K of keys in HashMap<K><V> implicitly
extends Object, it inherits the equals and hashCode methods de�ned in the
java.lang.Object class. These two methods should be speci�ed in the Object
class with some theory instantiating HashableTheory<K>, as shown in Figure 14.
A new issue arises here from dynamic dispatch: the instance of Object satisfying
the HashableTheory is not known yet. Our proposal is to introduce another

11

class HashMap<K,V> /*@ <Th instantiating HashableTheory<K> >

@ constraint: K extends Object<K><Th> */

{

//@ theory M = Map<K><Th>;

//@ model M.t<V> m;

/*@ requires x instanceof K; assigns \nothing;
@ ensures \result != null ==> \result == M.acc(m,(K)x) ; */

V get(Object x);

/*@ requires k != null; assigns m;

@ ensures m == M.upd(\old(m),k,v); */

void put(K k, V v);

}

Figure 13: Speci�cation of the HashMap class

public class Object /*@ <T><H instantiating HashableTheory<T> > */ {

/*@ requires this instanceof T && o instanceof T;

@ ensures \result == true <==> H.eq((T)this,(T)o); */

public boolean equals(Object o) { ... }

/*@ requires this instanceof T;

@ ensures \result == H.hash((T)this); */

public int hashCode(){ ... }

}

Figure 14: Speci�cation of two methods in the Object class

theory HashableInteger instantiates HashableTheory<Integer> {

predicate eq{L}(Integer x, Integer y) = \at(x.value == y.value, L);

logic integer hash{L}(Integer x) = \at(x.value, L);

}

Figure 15: Theory of equality and hashing of Integers

type parameter T in the speci�cation, to be bound later. To ensure that the
theory given as argument to HashMap class is an HashableTheory on the right
type, a constraint is posed (Figure 13) on the type K. Notice also the use of local
naming of a particular instance of a theory: the name M is given to the theory of
Maps instantiated on the type of keys and on its theory of equality and hashing.

4.3 Instantiating generic hash maps

The generic HashMap class being speci�ed, we can use it in the Fib class. The
�rst step is to provide an instance of the theory of equality and hashing on
Integers. This is done in Figure 15. A proper implementation of the Integer
class is then given in Figure 16.

12

class Integer extends Object /*@ <Integer><HashableInteger> */ {

boolean equals(Object o) {

if (o instanceof Integer) return this.value == ((Integer)o).value;

return false;

}

int hashCode() { return this.value; }

}

Figure 16: Implementation of hashable Integers

class Fib {

HashMap<Integer,Long> /*@ <HashableInteger> */ memo;

/*@ invariant memo_fib: memo != null && \forall Integer x, Long y;

@ x != null && y == memo.M.acc(memo,x) && y != null ==>

@ y.value == math_fib(x.value); */

... // �b as speci�ed in Section 4.1

}

Figure 17: Class invariant of the Fib class

In order to prove the fib postcondition, it is mandatory to provide a class
invariant which, informally, states that for any pair (x, y) stored in the memo

map, y = F (x). The class invariant for the Fib class can be written as in
Figure 17.

4.4 Veri�cation Conditions for Soundness

Veri�cation conditions come �rst from the instantiates declaration of Fig-
ure 15. It should be proved that the given de�nitions satisfy the axioms given
in HashableTheory<T> (Figure 11), when the type variable T is instantiated
with Integer, which is straightforward. The constraint of Figure 13 comes
immediately from the declaration of Integer class.

Other veri�cation conditions come classically: invariant should be estab-
lished by the Fib() constructor, which comes from a simple speci�cation of
HashMap() left to the reader; it should be preserved by any call to fib(), which
comes from a simple reasoning by case distinction. The preconditions to calls
to get() and put() are straightforward, and the postcondition of fib() follows
from the invariant. However, one veri�cation condition cannot be discharged,
the one from the assigns clause: the contract says that there are no side-e�ects
at all, whereas in reality the private memo hash map can be modi�ed. See below
for a discussion.

5 Related Work and Perspectives

Extensions of JML to Java 5 features are proposed by Cok [?]. Similarly, Ul-
brich [?] analyzes what would be the consequences of adding support for generics

13

in KeY. Both of them do not address the issue of higher-order methods such
as the sort() method, for which we propose theory parametricity. Stenzel et
al. [?] propose another approach to support generics, which they implemented
in the KIV tool. They focus on the heap pollution issue, arising at runtime
when a dynamic type of a parametric type object does not match its static
type. Their approach amounts to change the underlying program logics, which
for them is de�ned directly in Isabelle. Since KIV does not have its own spec-
i�cation language at the Java source level, they do not address the issues of
theory parameters and instantiation. Nevertheless, heap pollution is an issue
that we should address too.

Shaner et al. [?] address the issue of higher-order method independently of
generics. Their approach is based on model programs and is certainly suitable
for runtime checking, but it is not for deductive veri�cation: because every
instance of, say the sort() method, would need to be re-proved, thus loosing
modularity of the veri�cation, hence loosing the advantage of genericity.

Supporting higher-order methods in deductive veri�cation is particularly dif-
�cult when functional parameters do have side-e�ects, an issue we avoid in this
paper since our compare() method is pure. Higher-order functions and side-
e�ects issues are mainly studied in the context of functional languages, e.g. [?].
Indeed our approach mainly comes from the domain of functional languages,
where parametricity in module systems has been largely studied [?]. Exten-
sions of modules with subtyping and inheritance were proposed, e.g [?], but in
a context of side-e�ect-free languages.

This is on-going work and it clearly remains to formalize the proposed con-
structions, to express what are the necessary veri�cation conditions in general,
and to show a soundness result. At the end of previous section we met an open
issue known as hidden side-e�ects [8]: side-e�ects may occur in the internal
state of an object, that one wants to hide in its public interface. Implementing
an abstract view of a component using hidden concrete variables is the general
approach of re�nement which is not yet deeply investigated in the context of
object-oriented programming [10]. Another future work is to apply a similar
approach to the formal speci�cation of C programs, i.e by extending the ACSL
language [?].

Acknowledgments We would like to thank C. Paulin, A. Paskevych, W. Ur-
ribarrí, A. Tafat, R. Bardou and J. Kanig for helpful discussions and suggestions.

References

[1] P. Baudin, J.-C. Filliâtre, C. Marché, B. Monate, Y. Moy, and V. Prevosto.
ACSL: ANSI/ISO C Speci�cation Language, version 1.4, 2009. http://

frama-c.cea.fr/acsl.html.

14

[2] L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry, G. Leavens, K. Leino,
and E. Poll. An Overview of JML Tools and Applications. In FMICS 03,
volume 80 of ENTCS, pages 73�89. Elsevier, 2003.

[3] J. Chrzaszcz. Implementing modules in the Coq system. In TPHOLs'03,
volume 2758 of LNCS, pages 270�286. Springer, 2003.

[4] D. R. Cok. Adapting JML to generic types and Java 1.6. In SAVCBS '08,
pages 27�34, 2008.

[5] J.-C. Filliâtre and N. Magaud. Certi�cation of sorting algorithms in the
Coq system. In Theorem Proving in Higher Order Logics: Emerging Trends,
1999.

[6] J.-C. Filliâtre and C. Marché. The Why/Krakatoa/Caduceus platform for
deductive program veri�cation. In CAV'07, volume 4590 of LNCS, pages
173�177. Springer, July 2007.

[7] J. Kanig and J.-C. Filliâtre. Who: A Veri�er for E�ectful Higher-order
Programs. In ACM SIGPLAN Workshop on ML, Aug. 2009.

[8] G. T. Leavens and Y. Cheon. Design by Contract with JML. Available
from http://www.jmlspecs.org, 2006.

[9] C. Marché. Towards modular algebraic speci�cations for pointer programs:
a case study. In Rewriting, Computation and Proof, volume 4600 of LNCS,
pages 235�258. Springer, 2007.

[10] C. Marché. The Krakatoa tool for deductive veri�cation of Java pro-
grams. Winter School on Object-Oriented Veri�cation, Viinistu, Estonia,
Jan. 2009. http://krakatoa.lri.fr/ws/.

[11] J. Mitchell, S. Meldal, and N. Madhav. An extension of standard ML
modules with subtyping and inheritance. In POPL '91, pages 270�278.
ACM, 1991.

[12] S. M. Shaner, G. T. Leavens, and D. A. Naumann. Modular veri�cation of
higher-order methods with mandatory calls speci�ed by model programs.
In Proceedings of OOPSLA'07, pages 351�368. ACM, 2007.

[13] K. Stenzel, H. Grandy, and W. Reif. Veri�cation of Java programs with
generics. In AMAST'08, number 5140 in LNCS, pages 315�329. Springer,
2008.

[14] A. Tafat, S. Boulmé, and C. Marché. A re�nement methodology for object-
oriented programs. http://www.lri.fr/cepromi/, 2009.

[15] The Coq Development Team. The Coq Proof Assistant Reference Manual
� Version V8.1, July 2006. http://coq.inria.fr.

[16] M. Ulbrich. Software veri�cation for Java 5. Diplomarbeit, Fakultät für
Informatik, Universität Karlsruhe, 2007.

15

