
SysML to UML model transformation for test generation purpose

Jonathan Lasalle1 Fabrice Bouquet1,2 Bruno Legeard1,2 Fabien Peureux1,2

1: Laboratoire d’Informatique de l’Université de Franche-Comté
16, route de Gray - 25030 Besançon, France

e-mail: {jlasalle,fbouquet,blegeard,fpeureux}@lifc.univ-fcomte.fr

2: Smartesting
18, rue Alain Savary - 25000 Besançon, France

e-mail: {bouquet,legeard,peureux}@smartesting.com

Abstract
The work introduced in this paper is in line with an orig-

inal Model-Based Testing approach by taking as input a
SysML specification of a system under test and automatically
translating it into an equivalent behavioural UML model.
This generated UML model is finally used to derive test cases
and executable test scripts. This test generation process is
supported by an existing UML/OCL Model-Based Test gen-
eration tool. This paper focuses on the definition of the sub-
set of SysML notation supported by this Model-Based Test-
ing approach, and proposes rewriting rules to derive UML
test model from SysML model.

1 Introduction
With testing, a system is executed with a set of selected
stimuli, and observed to determine whether its behaviour
conforms to the specification. Software testing is today the
principal validation activity in industrial context to increase
the confidence in the quality of software, even if Program
testing can be used to show the presence of bugs, but never
to show their absence ! [Dij70]. Indeed, due to combinatorial
explosion of reachable states, exhaustive testing is infeasible
in practice.

A strategy to manage this explosion and to keep a rel-
evant quality assessment concerns specification testing as-
sumptions: the input domain of the system can be parti-
tioned into different classes that behave equivalent in terms
of observed outputs [OB88, DF93]. Coverage criteria can be
applied to specify which test cases shall be selected [OXL99].
To achieve such test selection, Model-Based techniques are
relevant because they allow to automatically apply coverage
criteria on the abstract behavioral model of the system un-
der test. Moreover, reasoning on models makes it possible to
automatically derive test cases (performing stimuli and ex-
pected outputs) and offers the additional benefit of providing
a structured and repeatable process [ZB09].

Model-Based Testing [UL06] thus takes as input a spec-
ification of the system under test and generates automati-
cally test cases and executable test scripts on the basis of
model coverage criteria. The specification takes the shape of
a behavioral model, allowing the Model-Based test genera-
tor both to determine relevant contexts of execution, and to
predict the expected system behavior.

In this paper, we propose to apply this approach using a
subset of the SysML modeling language [FMS09b] as speci-
fication language. This original approach consists in adapt-
ing the existing Model-Based Testing process [BGLP08] em-
bedded into the Smartesting Test DesignerTM tool [Sma09].
This technology, enables automated test generation from
a model written with a subset of the UML modeling
language [RJB04] and OCL constraints [WK96]. This
UML/OCL fragment is called UML4MBT [BGL+07]. This
tool is currently deployed in domains such as Enterprise IT
and electronic transaction applications.

Supporting SysML model as input of this process makes it
possible to re-use (and adapt) existing test generation tech-
niques to target the specific needs of testing critical embed-
ded systems. Even if SysML is a recent modeling language, it
is indeed on the rise in embedded system domain and some
studies already use it to develop new industrial validation
approaches (e.g. Model Checking and test of on-board space
applications [FMS09a]).

To achieve Model-Based Testing using SysML, a dedicated
metamodel has been developed specifying which concepts
of SysML are truly relevant for the test generation process.
This subset of the SysML language is called SysML4MBT.
The aim of the paper is also to define the SysML4MBT nota-
tion and to propose rewriting rules to translate SysML4MBT
into UML4MBT test models.

The paper is organized as follows: Section 2 gives an
overview of the Model-Based Testing process associated with
Smartesting Test DesignerTM , and introduces the features to
support SysML4MBT model as input of the method. Sec-
tion 3 characterizes the subset of SysML notation, called
SysML4MBT, used to specify such input model. Section 4
describes the rewriting rules used to automatically derive
UML4MBT from SysML4MBT. Section 5 presents and dis-
cusses some case-study results.

2 Overview of Model-Based Testing
process

The Smartesting solution [BBC+06] is a tooled testing ap-
proach to generate and manage functional tests from behav-
ioral models specified with a subset of UML/OCL notation
(UML4MBT). The main principles of this solution are:

1



• Modeling of UML4MBT behavioral model. The model
is an abstraction of the system under test.

• Automated generation of abstract test cases by covering
each behaviour of the UML4MBT model (using theorem
prover technology).

• Generation of executable scripts to automate the test
execution on the system under test.

This test generation toolchain is based on a UML model-
ing tool for the specification of the system under test, and
the test engine Smartesting Test DesignerTM for the gener-
ation of the test cases. The automation of this toolchain is
performed through the definition and the use of a dedicated
metamodel as interface file, that allows the user to carry out
each task in a continuous way. Figure 1 describes this pro-
cessing (black arrows).

Figure 1: Toolchain.

To extend the input notation with a subset of the SysML
notation, a new metamodel dedicated to SysML4MBT has
been implemented. The proposed approach also consists in
automatically transforming the elements of the SysML4MBT
metamodel into elements of the UML4MBT metamodel.
This approach makes it possible to re-use the test generation
techniques initially developed for UML4MBT models. This
adding processing to address SysML model is illustrated by
the white arrows in Figure 1.

The next section introduces the UML4MBT and
SysML4MBT notations, respectively subsets of the UML and
SysML languages.

3 UML4MBT and SysML4MBT

UML4MBT is the subset of UML notation used by Test
DesignerTM . The goal of this subset is to offer precise, nec-
essary and sufficient modeling features to design behavioural
models for test generation purpose. The proposed subset
for Model-Based Testing is based on three UML diagrams:
class diagrams (to model the points of control and observa-
tion of the SUT), object diagrams (to define test data) and
statemachines. OCL is used to model dynamic behaviour
of the system under test constraints. To be able to execute
transition actions and operation postconditions, UML4MBT
uses an operational interpretation of OCL expressions.

Like UML4MBT, SysML4MBT defines restrictions on
SysML to design comprehensive, precise and interpretable

models to specify embedded system behaviors for test gener-
ation purpose. This section introduces UML4MBT notation
and definition of SysML4MBT restrictions.

3.1 UML4MBT

A UML4MBT model contains:

• One UML class diagram to represent the static view
of the model. It describes the abstract entities of the
system and their dependencies. The available UML el-
ements are classes, associations, enumerations, class at-
tributes and operations.

• One UML object diagram to list the concrete objects
used to compute test cases and to define the initial state
of the model. The object diagram must be an instantia-
tion of the associated class diagram. All objects used to
describe the life cycle of the system have to be defined in
the object diagram. The dynamic creation (resp. dele-
tion) of entities in the concrete system is simulated by
creation (resp. deletion) of links between objects of the
UML model.

The dynamic view can be modeled in two manners:

• by insertion of OCL expressions on pre or postcondition
of operations (which are inserted in classes).

• by creation of one statemachine diagram (annotated
with OCL constraints). This one has also some restric-
tions. For example, it cannot contain parallel states,
historic states, fork and join states or trans-hierarchical
transitions.

OCL is thus used in class diagrams to formalize the ex-
pected behavior of class operations. It is also used within
statemachines to formalize transitions: guards and effects of
transitions are expressed as OCL predicates. To be able to
execute OCL annotations, UML4MBT allows an operational
interpretation of OCL expressions. For example, the OCL
expression self.attribute = true can be used in two different
contexts: a passive and an active context. A passive context
expresses constraints, while an active context expresses state
changes in the model.

3.2 SysML4MBT

The notation SysML4MBT defines the subgroup of elements
that are taken into account in SysML. A SysML4MBT model
contains:

• One Block Definition Diagram to represent the static
structure of the system and its environment. This di-
agram can contain signals and ports, which represent
communications between blocks.

• One Internal Block Diagram to specify the networking
between all blocks. Connectors, which link ports, can
represent electrical or mechanical communications.

2



• One or more statemachine diagrams, annotated with
OCL constraints, specifying, in a formal way, the dy-
namic aspect of the system.

• One requirement diagram, which permits to express
functional requirements of the system and link them
with the related models elements.

SysML4MBT statemachine can contain much more ele-
ments than UML4MBT statemachine can. Then, fork/join,
historic and parallel states are allowed. About OCL, the
circumflex(∧) is added in OCL constraints for SysML4MBT
model. This element enables to send signal to an other block.

4 Transformation from SysML to
UML models

In the toolchain, we target to specify the system with
a SysML4MBT model and to use it as input of Test
DesignerTM Model-Based Testing process. Test DesignerTM

can only evaluate UML4MBT model, therefore we suggest
to translate SysML4MBT model into UML4MBT model.

SysML being defined as a UML profile, the simple way
to translate SysML4MBT model into UML4MBT con-
sists to leave out the SysML stereotype, which denotes
a simple transformation. Model transformation is in-
deed a widespread approach in Model-Driven Engineer-
ing domain [SK03] to achieve for example model verifica-
tion [ALL09] or code generation [Old04]. This solution is
thus adopted to translate the following concepts:

• Block Definition Diagram elements,

• sequential elements of statemachine diagram.

However, the following elements are allowed in SysML4MBT
but have no corresponding element in UML4MBT:

• signal on Block Definition Diagram,

• Internal Block Diagram,

• signal send (∧) and signal receive (transition with signal
receiving trigger) in SysML4MBT statemachines,

• all parallel elements of SysML4MBT statemachines
(fork, join, parallel states and multiple statemachines),

• historic states in SysML4MBT statemachines.

For those elements, rewriting rules have to be applied instead
of a simple transformation. In the same way, some elements
are compulsory in UML4MBT models and do not exist on
SysML4MBT. For example, a UML4MBT object diagram
must be defined from the SysML4MBT model.

4.1 From Block to Class

This section presents the transformation of the SysML Block
Definition Diagram (BDD) into a UML Class Diagram. Each
element allowed in SysML4MBT Block Diagram has an
equivalent in UML4MBT. Indeed, a block becomes a class
and associations, compositions, operations and attributes ex-
ist in both metamodel.

∼ Example:
The SysML4MBT diagram of the figure 2 is rewritten by
UML4MBT diagram depicted in figure 3.

Figure 2: Example of SysML4MBT Block Definition Dia-
gram.

Figure 3: Representation of the BDD in figure 2 using
UML4MBT class diagram.

4.2 Internal Block Diagram

Ports and signals, which are used in Internal Block Diagram
(IBD), have to be rewritten in UML4MBT.

4.2.1 Signals

In SysML, signals are defined with the BDD and used in
IBD. Each signal defined on BDD becomes a class of the
UML class diagram. For a given signal, a class with the
same name is created and attributes of the signal become at-
tributes of the class. It is also necessary to add an attribute
in each class. This new boolean attribute named isUsed, ini-
tialized to false, indicates whether the corresponding signal
has been sent or not.

∼ Example:
Figure 5 represents the transformation of the signals intro-
duced in the figure 4.

Figure 4: Example of SysML4MBT signal on BDD.

Figure 5: Signal representation using UML4MBT.

3



4.2.2 Ports

The only information about ports that has to be preserved in
UML is which signals are expected on which ports. Then, an
association between the class representing the block, which
host the port, and the class representing the signal, which can
be received by the port, is added. Each association is named
with the concatenation of the name of the port, the name of
the signal and finally trans. The signal role is named like
the transition (without trans) and has for multiplicity ∗.
The other side takes the multiplicity 0..1 and an arbitrary
name is given as role.

∼ Example:
A port p of a block B, which can receive signal Sig1 or Sig2,
is translated into UML as shown in figure 6.

Figure 6: UML4MBT representation of the port p of the
block B, which can receive signals Sig1 and Sig2.

4.3 StateMachine diagrams

The major part of the model transformation concerns
the SysML4MBT statemachine diagrams to a UML4MBT
statemachine diagram. A lot of elements are present on both
metamodels, and also do not need to be rewritten:

• initial state,

• final state,

• composite state,

• all transitions triggered by a receive of operation call,

• all transitions without trigger,

• onEntry and onExit on states.

For all other following elements, rewriting rules have to be
applied:

• all transitions triggered by a signal receive,

• historic states (standard or deep),

• parallel states,

• fork and join states.

Moreover, in SysML4MBT, it is possible to have more than
one statemachine diagram. Thus, it is necessary to merge
all statemachines to obtain a unique UML4MBT statema-
chine diagram. Finally, about OCL, circumflex (∧) is the
unique OCL element added to SysML4MBT in comparison
with UML4MBT.

4.3.1 OCL expression ∧

The rewriting of the OCL expression including the signal
send (∧) is realized by instantiation of class diagram associ-
ations.
• those associations represent the fact that signals have

been sending and are still pending for reception.

• the sending of a signal in OCL is written:
”block”.”port”∧”signal”(”parameters”) where:

– block is the path to the block which hosts the port

– port is the name of the port which is the receiver
of the signal

– signal is the name of the signal which is sent

– parameters are the values of all the attributes of
the signal

Then, the translation of this expression is an association
that:
• starts from the instantiation of the class, which repre-

sents the receiver block of the signal,

• ends on an unused instantiation of the class that repre-
sents the sent signal (whose parameter isUsed is equal
to false),

• with role on side signal:
”Name of port” ”Name of signal”.

∼ Example:
The OCL action in SysML4MBT:

block.port∧signal(val1, val2)

becomes in UML4MBT

let s = signal.allInstances()→ any(isUsed = false) in(
s.Param1 = V al1 and s.Param2 = V al2 and
s.isUsed = true and
block.port signal→ includes(s))

4.3.2 Signal receive

The received signal is modeled in SysML by a trigger with a
port and a signal attached to a transition. In UML4MBT,
it is transcribed into a dedicated transition without trigger
but with a specific guard. This one verifies if the expected
signal is pending on the port.

A signal receive trigger with those features:

• receive port = port

• block associated to the port = block

• received signal = signal

becomes in UML4MBT:
[block.port signal→ notEmpty()]

which is the guard of the dedicated transition. This expres-
sion verifies the existence of a link which represents a pending
signal in the port.

In the action of such a transition, the pending signal is
released using the following OCL expression:

let s =
block.port signal.allInstances()→ any(true) in(
s.isUsed = false and
block.port signal→ excludes(s))

4



4.3.3 Composite state

To delete a composite state, it must not contain fork, join,
parallel or historic state. If it is the case, they have to be
deleted before.

To delete a composite state, the following process is per-
formed:

• All transitions, which arrive on composite state, are re-
located to arrive on the sub-state that is pointed by the
initial state of the composite state.

• The action of the transition leaving the initial state is
duplicated to each of those transitions and the initial
state is delete.

• All transitions, which leave the composite state, are du-
plicated on each state of the composite state.

• Then the composite state can be deleted.

∼ Example:
The figure 8 depicts the UML4MBT diagram obtained from
the SysML4MBT composite state of the figure 7.

Figure 7: Example of SysML4MBT composite state.

Figure 8: UML4MBT diagram from the composite state of
the figure 7.

4.3.4 Historic state

An historic state represents the most recent active sub-state
of its containing state. To rewrite an historic state, multiple
stages are needed.

First, for each historic state, a variable, which represents
the memory, is created in a dedicated class. It permits to
identify the previous active state in the composite state. This
new attribute is named like the historic state and is typed
integer. Its default value is 0. An other variable named
CurrentHist and initialized to 0 is needed to identify the
possible current active historic state.

Next, we number each historic state (we associate each
historic state with a different integer). Independently, we
number each state of all the composite states containing an
historic state.

∼ Example:
The figure 9 represent the numbering of a statemachine.

Figure 9: Example of a numbering statemachine containing
historic state.

Each transition, which points to an historic state, is trans-
formed to point to the composite state and this effect is
added:

self.CurrentHist = ”number of the historic state”.

On the composite state, the transition, which leaves the ini-
tial state, is replaced by an empty transition, which points
to a new choice state. The old initial transition starts to this
new choice state. It is the else transition of the choice state.
For each state of the composite state, are added:

• the onEntry OCL expression:
”HistName” = ”NumState”

• a transition, which starts from the choice state and ar-
rived in the state. This transition has the following con-
figuration:

– no trigger

– the guard: CurrentHist = ”HistNum” and
”HistName” = ”NumState”

– the effect: CurrentHist = 0

where:

• CurrentHist is the variable created previously,

• ”HistNum” is the number of the Historic State during
the current transformation,

• ”HistName” represents the variable that replace the
historic state we are rewriting,

• ”NumState” represents the number (defined during the
classification) of the destination state of the transition.

∼ Example:
The diagram of the figure 9 is translated into the diagram of
the figure 10.

4.3.5 Deep historic state

For the rewriting of the deep history, sub-composite states
are firstly deleted and deep historic state is next rewriting
like a standard historic state.

5



Figure 10: UML4MBT state machine obtained from the his-
toric state of the figure 9.

4.3.6 Fork and join

Fork and join states are transformed on parallel states. For
each couple fork/join state:

• For each transition, which leaves the fork, an initial
state, which becomes the start of the transition, is cre-
ated.

• For each transition, which arrives on the join, a final
state, which becomes the destination of the transition,
is created.

• A new parallel state is created.

• All transitions arriving on the fork, point to the parallel
state and all transitions leaving the join, are moved to
the new parallel state.

• Each path from new initial state to new final state is
moved to the relating region of the parallel state.

∼ Example:
For example, the fork/join state of the figure 11 becomes the
parallel state of the figure 12.

Figure 11: Example of fork/join state.

Figure 12: UML4MBT representation for fork/join state of
the figure 11.

Following these transformation steps, the parallel state is
rewritten as shown in the next section.

4.3.7 Parallel state

The same stage is performed to merge parallel states and
parallel statemachines. Each region of the parallel state is
considered as a statemachine. The applied strategy is now
explained.

4.3.8 Parallelism

In SysML4MBT, more than one statemachine diagram can
be specified in opposition to UML4MBT. Those diagrams
are evolve in parallel manner. Then, it is necessary to merge
them to obtain only one UML4MBT statemachine diagram.
It is important to remind that those diagrams communicate
by sending signals.

The sequence of operations, which makes it possible to
merge multiple statemachine diagrams, is the following:

1. Cleaning of all complex states (fork, join, composite,
parallel and historic) of all statemachines.

2. Providing a Cartesian product of all the statemachines.

3. A transition is drawn only if it exists one path to reach
the start state.

4. All transitions triggered with an operation call receive
and all transitions without trigger are drawn.

5. if a transition sends signals, the information that signals
are pending is stocked in the state.

6. then transitions triggered with a signal receive are drawn
only if this signal is pending on the root of the transition.

7. if a transition without trigger leaves a state with pending
signal, the pending signals and the signals sent by the
transition are duplicated into the target state.

8. also, if a state is pending two signals in the same time,
and if a transition receives one of the both, the second
is duplicated in the target state with signals sent by this
transition.

This process leads to create a unique UML4MBT statema-
chine diagram.

4.4 Object Diagram creation

To have a correct UML4MBT model, it is necessary to have
an object diagram. Since it does not exist in SysML, it is
fully built in the following way :

• Each class of the new class diagram is valuated by one
instance in the object diagram.

• Associations are instantiated using the minimum num-
ber of links, with respect to lower multiplicities.

• The Cartesian product of statemachine diagrams permit
to know how many time each signal can be pending at
the same time. Each class, which represents signal, is
instantiated according to this number.

6



4.5 Requirement diagram

The requirement diagram permits to associate requirements
with model elements that satisfies them. In UML4MBT,
OCL expression can be used to annotate requirements. The
syntax is:

/ ∗ ∗@REQ : ”text of the requirement” ∗ /
This expression in a UML4MBT OCL expression defines that
the requirement identified by the text is satisfied by nearly
OCL expression. Then, all the behavioral requirements de-
fined in SysML4MBT requirements diagram, satisfied by
transition, operation and onEntry/onExit expression, are
translated respectively into effect of transition, postcondi-
tion of operation and onEntry/onExit expression as OCL
annotations.

4.6 Implementation

All those rewriting rules have to be executed in a specific
order described by the following algorithm:

1. The Block Definition Diagram and the Internal Block
Diagram are transformed in class diagram.

2. Signal sends receive are translated.

3. Requirement diagram is rewritten.

4. All fork/join states of the statemachine diagrams are
transformed on parallel state.

5. Each composite, historic and parallel states is rewritten
by hierarchical stage. That means that we rewrite those
elements only if they do not contain others. For exam-
ple, if a composite state contains an historic state, the
historic state is rewritten first and the composite state
next.

6. Parallel statemachines are merged.

7. The object diagram is build.

Models are stored in JAVA structures that are based on
UML and SysML metamodels (the JAVA structure has been
developed according to UML4MBT and SysML4MBT meta-
models). This algorithm is implemented with JAVA lan-
guage. Test DesignerTM plug-in is fully developed with
JAVA, so this choice is a key point to maintain the code
homogeneity of the overall project, and facilitates its main-
tenance. However, it would be possible to use other tech-
nologies like ATL [JK06] to implement this algorithm.

5 Case Study

We have applied those rewriting rules on 3 case studies:

• Front lightings is the representation of the lightings sys-
tem of the front of a car. This system permits to light
on and light off independently headlights and highlights
of the car. To activate it, a control lever is used.

• Steering, which is the representation of the steering col-
umn of a car. The goal of this example is to observe
reaction of the steering column of a car with some road
plot. Then, we model the road and it communicates
with the column by the tyres and the wheel.

• FrontWiper is a specification of a the wiper system of
the front of a car. The modeled functionalities are low
speed drying up, high speed drying up, intermittently
speed drying up and cleaning with drying up.

Table 1 presents results obtained on those case studies.

Lightings Steering Wiper

S
y
sM

L

Blocks 6 9 15
Connectors 4 10 18

SM 5 6 12
States (2,2,2,2,4) (2,2,2,2,2,2) (1,1,1,1,1,2,

17,10,2,2,2,2)
Transitions (3,3,3,3,9) (3,3,3,3,2,8) (3,4,3,5,2,4,

53,17,3,3,3,3)

U
M
L

Classes 10 16 29
Objects 15 20 57
States 64 18 2526

Transitions 256 123 31873

Table 1: Results of case studies.

Lines states and transitions for SysML model represent
the number of states and transitions for each statemachine.
We can see that Frontlightings SysML model is smaller
than Steering SysML model but, after transformation (UML
box), FrontLightings has more states and transitions than
Steering. This is due to restrictions on signals transmissions
(more limitations on Steering SysML model).

About generation time, we notice that this algorithm is ef-
ficient for small model: approximatively 3 seconds for Front-
Lightings or Steering. However, if the model is too heavy, the
generation time explodes: more than 30 minutes for Fron-
tWiper. To decrease this generation time, it would be nec-
essary to change the strategy of the translation: the Fron-
tWiper model becomes very big in UML format because our
algorithm to reduce parallel statemachine into a single UML
one is based on the well-known costly Cartesian product.

6 Concluding remarks and future
works

This paper introduced a subset of SysML for Model-
Based Testing, and proposed rewriting rules to translate a
SysML4MBT model into an equivalent UML4MBT model.
This transformation made it possible to generate test cases
from embedded system SysML specification using Smartest-
ing Test DesignerTM . Three case-studies show the feasibility
and the relevance of this approach to generate test cases dedi-
cated to critical embedded systems. However, some problems
relating to scalability have been underlined. It is due to the
transformation rules, based on a Cartesian product, of par-
allel SysML statemachine into a single UML statemachine.

7



Future works may consist in addressing the following is-
sues:

• to increase scalability by improving the rewriting rules,

• to increase expressiveness of UML4MBT notation to na-
tively support parallel statemachine diagram (in this
way, the complexity would be managed on-the-fly during
the test cases calculation),

• to increase model coverage by setting up new test gen-
eration strategies.

Acknowledgments Part of this work has been supported
by the French project VETESS [VET10].

References

[ALL09] M. Asztalos, L. Lengyel, and T. Levendovszky. A
formalism for describing modeling transformations
for verification. In Proceedings of the 6th Inter-
national Workshop on Model-Driven Engineering,
Verification and Validation (MoDeVVa’09), pages
1–10, Denver, Colorado, 2009. ACM Press.

[BBC+06] E. Bernard, F. Bouquet, A. Charbonnier, B. Leg-
eard, F. Peureux, M. Utting, and E. Torreborre.
Model-based testing from UML models. In Pro-
ceedings of the International Workshop on Model-
based Testing (MBT’2006), volume 94 of LNCS,
pages 223–230, Dresden, Germany, October 2006.
Springer Verlag.

[BGL+07] F. Bouquet, C. Grandpierre, B. Legeard,
F. Peureux, N. Vacelet, and M. Utting. A sub-
set of precise UML for model-based testing. In
Proceedings of the 3rd International Workshop on
Advances in Model Based Testing (A-MOST’07),
pages 95–104, London, UK, July 2007. ACM Press.

[BGLP08] F. Bouquet, C. Grandpierre, B. Legeard, and
F. Peureux. A test generation solution to automate
software testing. In Proceedings of the 3rd Interna-
tional Workshop on Automation of Software Test
(AST’08), pages 45–48, Leipzig, Germany, May
2008. ACM Press.

[DF93] J. Dick and A. Faivre. Automating the genera-
tion and sequencing of test cases from model-based
specifications. In Proceedings of the International
Conference on Formal Methods Europe (FME’93),
volume 670 of LNCS, pages 268–284. Springer Ver-
lag, April 1993.

[Dij70] E.W. Dijkstra. Notes on structured programming.
Technical Report EWD249, Eindhoven University
of Technology, 1970.

[FMS09a] J.M. Faria, S. Mahomad, and N. Silva. Tactical
results from the application of model checking and

test generation from uml/sysml model of on-board
space applications. In Proceedings of the Interna-
tional Conference on DAta Systems In Aerospace
(DASIA’09), Istanbul, Turkey, May 2009. ESA
Press. ESA SP-669.

[FMS09b] S. Friedenthal, A. Moore, and R. Steiner. A Prac-
tical Guide to SysML: The Systems Modeling Lan-
guage. Morgan Kaufmann OMG Press, 2009. ISBN
978 0 12 374379 4.

[JK06] F. Jouault and I. Kurtev. Transforming Models
with ATL, volume 3844 of Lecture Notes in Com-
puter Science, pages 128–138. Springer Berlin /
Heidelberg, 2006.

[OB88] T.J. Ostrand and M.J. Balcer. The Category-
Partition Method for Specifying and Generation
Functional Test. Proceedings of the ACM Confer-
ence, 31(6):676–686, June 1988.

[Old04] J. Oldevik. UMT: UML Model Transforma-
tion Tool. SINTEF Information and Commu-
nication Technology, Oslo, Norway, March 2004.
http://umt-qvt.sourceforge.net/.

[OXL99] A.J. Offut, Y. Xiong, and S. Liu. Criteria for gen-
erating specification-based tests. In Proceedings of
the 5th International Conference on Engineering of
Complex Computer Systems (ICECCS’99), pages
119–131, Las-Vegas, USA, October 1999. IEEE
Computer Society Press.

[RJB04] J. Rumbaugh, I. Jacobson, and G. Booch. The
Unified Modeling Language Reference Manual.
Addison-Wesley, 2th edition, 2004. ISBN 0 321
24562 8.

[SK03] S. Sendall and W. Kozaczynski. Model transforma-
tion: The heart and soul of model-driven software
development. IEEE Journal of Software, 20:42–45,
October 2003.

[Sma09] The Smartesting web site. http://www.

smartesting.com, 2009.

[UL06] M. Utting and B. Legeard. Practical Model-Based
Testing - A tools approach. Elsevier Science, 2006.
ISBN 0 12 372501 1.

[VET10] The VETESS web site. http://lifc.

univ-fcomte.fr/VETESS/, 2010.

[WK96] J. Warmer and A. Kleppe. The Object Constraint
Language: Precise Modeling with UML. Addison-
Wesley, 1996. ISBN 0 201 37940 6.

[ZB09] H. Zhu and F. Belli. Advancing test automation
technology to meet the challenges of model-based
software testing. Journal of Information and Soft-
ware Technology, 51(11):1485–1486, 2009.

8


