

Building a Chaotic Proven Neural Network

Jacques M. Bahi, Christophe Guyeux, and Michel Salomon*

Computer Science Laboratory (LIFC) - University of Franche-Comté

IUT de Belfort-Montbéliard BP 527, 90016 Belfort Cedex, France

e-mail: christophe.guyeux@univ-fcomte.fr

Abstract—Chaotic neural networks have received a great deal

of attention these last years. In this paper we establish a precise

correspondence between the so-called chaotic iterations and a

particular class of artificial neural networks: global recurrent

multi-layer perceptrons. We show formally that it is possible to

make these iterations behave chaotically, as defined by

Devaney, and thus we obtain the first neural networks proven

chaotic. Several neural networks with different architectures

are trained to exhibit a chaotical behavior.

Devaney’s chaos; chaotic iterations; mathematical topology

I. INTRODUCTION

Due to the widespread use of the Internet and new digital
technologies in nowadays life, security in computer
applications and networks never was such a hot topic.
Digital rights managements, e-voting security, anonymity
protection, and denial of services are examples of new
security concerns appeared this last decade. Tools on which
this security is based are, among others: hash functions,
pseudo-random number generators, cryptosystems, and
digital watermarking schemes. Due to their wide use in
security protocols, these tools are targeted everyday by
hackers and new threats are frequently revealed. For
example, security flaws have been recently identified in the
previous standard in hash functions called SHA-1 [1]. As
the new standards (SHA-2 variants) are algorithmically
similar to SHA-1, stronger hash functions using new
concepts are desired.

New approaches based on chaos are frequently proposed
as an alternative to solve concerns which recurrently appear
in the computer science security field [2]–[4]. The advantage
of the use of chaotic dynamics for security problems lies in
their unpredictability proven by mathematical theory of
chaos. This theory brings many qualitative and quantitative
tools, namely ergodicity, entropy, expansivity, and sensitive
dependence to initial conditions [5]. These tools allow the
study of the randomness of the disorder generated by the
considered system [6].

Recently, many researchers have built chaotic neural
networks in order to use it as a component of new proposed
hash functions [7], pseudo- number generators,
cryptosystems [8], [9], and digital watermarking schemes.
Since the first introduction by McCulloch and Pitts in 1959,
artificial neural networks have been shown to be efficient
nonlinear statistical data modeling tools which can
implement complex mapping functions. They may be trained
*Authors in alphabetical order

to learn a chaotic process and also, by construction, exhibit
suitable properties: data confusion and diffusion, one-way
function and compression. Security is not the only
application domain of such new tools: the existence of chaos
in our brain has been recently revealed, and the use of a
chaotic artificial neural network as a model can serve, for
example, neuroscientists in their attempts to understand how
the brain works.

However, using an element of chaos as a component of
the scheme in not sufficient, in our opinion, to be able to
claim that the whole process behaves chaotically. We believe
that this claim is not so evident and must be proven. Let us
notice that up to now the proposed chaotical neural networks
have failed to convince the mathematics community due to a
lack of proof. This is why it is explained in this paper how it
is possible to build an artificial neural network that behaves
chaotically, as it is defined by Devaney [10]. We will
establish a correspondence between particular neural
networks and chaotic iterations, which leads to the definition
of the first artificial neural networks proven chaotic,
according to Devaney.

The remainder of this paper is organized as follows. The
next section is devoted to some recalls on chaotic iterations
and Devaney’s chaos followed by a brief description of
artificial neural networks (ANNs). Section III presents a
review of some works related to chaotic neural networks.
Our approach, which consists in building a global recurrent
ANN whose iterations are chaotic, is formalized and
discussed in Section IV. Concrete examples of chaotic neural
networks also show the relevance of our method. Finally in
Section V we conclude and outline future work.

II. BASIC RECALLS

In the sequel S
n
 denotes the n

th
 term of a sequence S and

E
i
 denotes the i

th
 component of a vector E. fff k  is

for the k
th
 composition of a function f. Finally, the following

notation is used:]];1[[N {1,2,…,N}.

A. Chaotic Iterations versus Devaney’s Chaos

1) Chaotic Iterations:
Let us consider a finite system with a finite number

N N
*
 of elements (or cells), so that each cell has a boolean

state. A sequence of length N of boolean states of the cells
corresponds to a particular state of the system. A sequence
which elements belong to]];1[[is called a strategy. The set

of all strategies is denoted by S.

mailto:christophe.guyeux@univ-fcomte.fr

Definition 1 The set B denoting {0,1}, let f: B
N
 B

N
be a

function and S S be a strategy. The so-called chaotic

iterations are defined by x
0
 B

N
 and

n N
*
,

.))((
]],;1[[

1

1

iS

iS

xf

x
xi

n

n

S

n

n

in

i

n

In other words, at the n
th

 iteration, only the S
n
-th cell is

“iterated”. Note that in a more general formulation, S
n
 can be

a subset of components and
nS

nxf))((1 can be replaced by,

nS

kxf))((where k<n, describing for example, delays

transmission [11]. Finally, let us remark that the term
“chaotic”, in the name of these iterations, has a priori no link
with the mathematical theory of chaos, recalled below.

2) Devaney’s Chaotic Dynamical Systems:

Consider a topological space (,) and a continuous

function f on .
Definition 2 f is said to be topologically transitive if, for any

pair of open sets U, V , there exists k>0 such that

Vuf k)(.

Definition 3 An element (a point) x is a periodic element

(point) for f of period n N
*
, if f

n
(x) = x.

Definition 4 f is said to be regular on (,) if the set of

periodic points for f is dense in : for any point x in , any
neighborhood of x contains at least one periodic point.

Definition 5 f is said to be chaotic on (,) if f is regular and
topologically transitive.

The chaos property is strongly linked to the notion of

“sensitivity”, defined on a metric space (,d) by:
Definition 6 f has sensitive dependence on initial conditions

if there exists > 0 such that, for any x and any

neighborhood V of x, there exists y and 0n such that

d(f
n
(x),f

n
(y)) > . is the constant of sensitivity of f.

Indeed, Banks et al. have proven in [12] that when f is

chaotic and (,d) is a metric space, then f has the property of
sensitive dependence on initial conditions (this property was
formerly an element of the definition of chaos). To sum up,
quoting Devaney in [10], a chaotic dynamical system “is
unpredictable because of the sensitive dependence on initial
conditions. It cannot be broken down or simplified into two
subsystems which do not interact because of topological
transitivity. And in the midst of this random behavior, we
nevertheless have an element of regularity”. Fundamentally
different behaviors are consequently possible and occur in an
unpredictable way.

3) Chaotic Iterations and Devaney’s Chaos:
In this section we give outline proofs of the properties on

which our study of chaotical neural networks is based. The
complete theoretical framework is detailed in [13].

Denote by the discrete boolean metric,

yxyx 0),(. Given a function f: B
N
 B

N
, define

the function Ff :]];1[[B
N
 B

N
 such that

]];1[[)),()(),((),(jkjf jkEfjkEEkF ,

where + and are the boolean addition and product

operations, x is the negation of x.

Consider the phase space =]];1[[
N
 B

N
 and the map

))),((),((),(ESiFSESG ff

where : (S
n
)n N S  (S

n+1
)n N S is the shift function, and

the initial function i is the map which associates to a

sequence, its first term: i : (S
n
)n N S  (S

0
) [[1;N]].

Thus chaotic iterations can be described by the following
iterations [13]

)(1

0

k

f

k XGX

X
.

Let us define a new distance between two points

),(),,(ESES


by

),(),()),();,((SSdEEdESESd se


,

where

1

]];0[[),(),(
k

kke EEEEd


]1;0[
10

9
),(

1k
k

kk

s

SS
SSd




.

This new distance has been introduced in [13] to satisfy
the following requirements. When the number of different
cells between two systems is increasing, then their distance
should increase too. In addition, if two systems present the
same cells and their respective strategies start with the same
terms, then the distance between these two points must be
small because the evolution of the two systems will be the
same for a while. The distance presented above follows these

recommendations. Indeed, if the floor value d(X,Y) is equal
to n, then the systems E, Ĕ differ in n cells. In addition,

d(X,Y)- d(X,Y) is a measure of the differences between
strategies S and Š. More precisely, this floating part is less
than 10

-k
 if and only if the first k terms of the two strategies

are equal. Moreover, if the k
th
 digit is nonzero, then the k

th

terms of the two strategies are different.
It is proven in [13] by using the sequential continuity that

the vectorial negation),,(),,(110 xxxxf  satisfies

the following proposition:

Proposition 1
0fG is a continuous function on (,d).

It is then checked in [13], that in the metric space (,d),
the vectorial negation fulfills the three conditions for
Devaney’s chaos: regularity, transitivity, and sensitivity.
This has led to the following result.

Proposition 2
0fG is a chaotic map on (,d) in the sense

of Devaney.

B. Neural Networks

An artificial neural network is a set of simple processing
elements called neurons that are interconnected, usually with
a layer structure. It takes some input values and produces
some output ones. Like a biological neural network, the
connections between neurons influence the outputs given by
the artificial network. Thanks to a training process, an ANN
is able to learn complex relationships between inputs and

Figure 1. Description of a neuron

outputs. A neuron j computes an output y= (x,w) where ()
is the activation function, x is the input vector, and w the

parameter vector. w can be used to parameterize or the
neuron inputs. In this last case it means that the connections
are weighted and a vector w component is then referred to as
a synaptic weight. Fig. 1 describes a neuron j with weighted
connections. Its output yj satisfies:

n

i

iijj

n

i

jiijjj xwbxwy
01

where 10x ,),,(1 nxxx  , and
jj bw0
defines the

bias value.
Neural networks have a layered architecture, but they

may differ in the way the output of a neuron affect himself.
In fact, based on the connection graph, two kinds of
networks can be distinguished: those having a least one loop
and those without any one. A neural network which exhibits
a loop is called a feedback (or recurrent) network, whereas a
network belonging to the second class is said feed-forward.
Obviously, a feedback network can be seen as a dynamical
system. In the following sections, we use a recurrent version
of the multi-layer perceptron (MLP), a well-known ANN
architecture for which the universal approximation property
has been proven in the feed-forward context [14]. Typically,
a MLP consists in layer of input neurons, in one or more
layers of hidden neurons, and a layer of output neurons.
Since an input neuron is simply used as a channel to dispatch
an input to each neuron of the first hidden layer, we will not
further consider the input layer. Usually, the neurons of a
given layer have similar characteristics and each one is fully
connected to the next layer. Finally, note that the number of
inputs and output neurons is completely specified by the
considered problem, while the number of hidden neurons
depends directly on the complexity of the relationships to be
learned by the ANN.

As said previously, a neural network is designed to
model relationships between inputs and outputs. In order to
find a proper modeling, an ANN must be trained so that it
provides the desired set of output vectors. The training (or
learning) process consists mainly in feeding the network
with some input vectors and updating the neurons parameters
(weights and bias value) using a learning rule and some
information which reflects the quality of the current
modeling. When the expected output vectors (Dk) are known
in advance, the quality can be expressed through the Mean
Square Error [15]:

N

k

kk YD
N

MSE
1

2

2

1

where N is the number of input-output vector pairs used to
train the ANN (the pair set is called the training or learning
set) and Yk denotes an output vector produced by the output
layer for a given input vector Xk. Consequently, in that case
the training process, which is said supervised, results in an
optimization algorithm targeted to find the weights and
biases that minimize the MSE. Various optimization
techniques exist, they have given raise to distinct training
algorithms performing iterative parameters update. Gradient-
based methods are particularly popular to the
backpropagation algorithm, but they are sensitive to local
minima. Heuristics like simulated annealing or differential
evolution permit to find a global minimum, but they have a
slow convergence. To control the training process, two
methods are the most commonly used: firstly the number of
iterations, also called epochs, reaches an upper bound;
secondly the MSE goes below a threshold value.

III. RELATED WORK

Since a while neuroscientists discuss the existence of
chaos in the brain. In the context of artificial neural
networks, this interest has given raise to various works
studying the modeling of chaos in neurons. The chaotic
neuron model designed by Aihara et al. [16] is particularly
used to build chaotic neural networks. For example, in [17] is
proposed a feedback ANN architecture which consists of two
layers (apart from the input layer) with one of them
composed of chaotic neurons. In their experiments, the
authors showed that without any input sequence the
activation of each chaotic neuron results in a positive
average Lyapunov exponent, which means a true chaotic
behavior. When an input sequence is given iteratively to the
network the chaotic neurons reach unstable periodic orbits
with different periods, and thus potentially provide a
recognition state. Similarly, the same authors have recently
introduced another model of chaotic neuron: the nonlinear
dynamic state (NDS) neuron, and used it to build a neural
network which is able to recognize learned unstable periodic
orbits identifying patterns [18].

Today, another field of research in which chaotic neural
networks have received a lot of attention is data security. In
fact, chaotic cryptosystems are an appealing alternative to
classical ones due to properties such as sensitivity to initial
conditions or topological transitivity. Thus chaotic ANNs
have been considered to build ciphering methods, hash
functions, digital watermarking schemes, pseudo-random
number generators, etc. In [8] such a cipher scheme based on
the dynamics of Chua’s circuit is proposed. More precisely, a
feed-forward MLP with two hidden layers is built to
learn about 1500 input-output vector pairs, where each pair is
obtained from the three nonlinear ordinary differential
equations modeling the circuit. Hence, the proposed chaotic
neural network is a network which is trained to learn a true
chaotic physical system. In the cipher scheme the ANN plays
the role of chaos generator with which the plain-text
will be merged. Untrained neural networks have also been
considered to define block ciphering [9] or hash functions
[7]. The background idea is to exploit the inherent properties
of the ANNs architecture such as diffusion and confusion.

Figure 2. Example of a global recurrent neural network modeling function

0f
F such that)),(),((),(21

1

2

1

1

1

0

nnn

f

nnn xxSiFxxx

IV. A FIRST RECURRENT NEURAL NETWORK

CHAOTIC ACCORDING TO DEVANEY

A. Defining a First Chaotic Recurrent Neural Network

We will now explain how to build a chaotic neural
network using chaotic iterations.

Let us reconsider the vectorial negation function denoted

by f0: B
N

B
N
 and its associated map

0f
F :]];1[[B

N
 B

N
.

Firstly, it is possible to define a MLP which recognizes
0f

F .

That means, for all (k,x)]];1[[B
N
, the response of the

output layer to the input (k,x) is),(
0

xkFf
. Secondly, the

output layer can be connected to the input layer as it is
depicted in Fig. 2 leading to a global recurrent neural
network working as follows:

 At the initialization stage, the ANN receives a

boolean vector x
0

 B
N
 as input state, and

S
0

 [[1;N]] in its input integer channel i(). Thus,

),(001

0
xSFx f

 B
N
 is computed by the network.

 This state x
1
 is published as an output. Additionally,

x
1
 is sent back to the input layer, to act as Boolean

state in the next iteration.

 At iteration number n, the recurrent neural network

receives the state x
n
 B

N
 from its output layer and

i(S
n
) [[1;N]] from its input integer channel i(). It

can thus calculate)),((
0

1 nn

f

n xSiFx B
N
, which

will be the new output of the network.

In this way, if the initial state x
0
 B

N
 is sent to the

network with a sequence S

 [[1;N]]
N
 applied in the input

channel i(), then the sequence (x
n
)n N* of the outputs is

exactly the same than the sequence obtained from the

following chaotic iterations: x
0
 B

N
 and

n N
*
,

.))((
]],;1[[

1

0

1

iS

iS

xf

x
xi

n

n

S

n

n

in

i

n

From a mathematical viewpoint, the MLP defined in this
subsection and chaotic iterations recalled above have the

same behavior. In particular, given the same input vector

((S
n
)n N,x

0
), they produce the same output vector (x

n
)n N* :

they are two equivalent reformulations of the iterations of

0fG in . As a consequence, the behavior of our MLP

faithfully reflects the behavior of
0fG which is chaotic

according to Devaney.

B. Improving the Variety of Chaotic Recurrent Neural

Networks

The approach proposed to build chaotic neural networks,
explained in the previous subsection, is not restricted to an

adhoc function f0: B
N
 B

N
, it can be generalized as follows.

The function
0f

F associated to the vectorial negation f0,

which has been recognized by the neural network, can be

replaced by any functions
fF :]];1[[B

N
 B

N
 such that

the chaotic iterations Gf are chaotic, as defined by Devaney.
To be able to define functions that can be used in this

situation, we must firstly introduce the graph of iterations of

a given function f : B
N
 B

N
,))(,),((1 xfxfx n .

Let be given a configuration x. In what follows the

configuration N(i,x) =),,,,(1 ni xxx  is obtained by

switching the i-th component of x. Intuitively, x and N(i,x)
are neighbors. The chaotic iterations of the function f can be

represented by the graph (f) defined below.
Definition 7 (Graph of iterations) In the oriented graph of

iterations (f), vertices are configurations of B
N
, and there is

an arc labeled i from x to N(i,x) iff),(xiFf
is N(i,x).

We have proven in [5] that:

Theorem 1 Functions f : B
n
 B

n
 such that Gf is chaotic

according to Devaney, are functions such that the graph (f)
is strongly connected.

Since it is easy to check whether a graph is strongly
connected, we can use this theorem to discover new

functions f : B
N
 B

N
 such that the neural network

associated to Gf behaves chaotically, as defined by Devaney.

C. The Discovery of New Chaotic Neural Networks

Considering Theorem 1, it is easy to check that

),,,,(),,(121111 xxxxxxf n  is such that
1f

G behaves

chaotically, as defined by Devaney. Consequently, we can
now obtain two chaotic neural networks by learning either

0f
F or

1f
F .

To support our approach, a set of illustrative examples
composed of five neural networks is given. The three first
networks are respectively defined by:

),,,(),,,(432143211,0 xxxxxxxxf ,

),,(),,(3213212,0 xxxxxxf ,

),,(),,(2113211,1 xxxxxxf ,

while the last ones are defined by:

),,(),,(3213210 xxxxxxg ,

),,(),,(3213211 xxxxxxg .

TABLE I. OUTLINE OF THE RESULTS FROM SEVERAL ITERATION

FUNCTIONS LEARNING USING DIFFERENT RECURRENT MLP ARCHITECTURES

 One hidden layer
8 neurons 10 neurons

Function Mean epoch Success rate Mean epoch Success rate

f0,2 82.21 100% 73.44 100%

f1,1 76.88 100% 59.84 100%

g1 36.24 100% 37.04 100%

 Two hidden layers: 8 and 4 neurons
Mean epoch number Success rate

f0,2 203.68 76%

f1,1 135.54 96%

g1 72.56 100%

Due to Theorem 1, the ANNs associated to f0,1, f0,2 and f1,1

behave chaotically, as defined by Devaney. Whereas it is not
the case for the networks based on the boolean function g0

and g1, since (g0) and (g1) are not strongly connected.

D. Experimental Results

Among the five neural networks evoked in the previous
subsection we decided to study the training process of three
of them. Note also that for each neural network we have
considered MLP architectures with one and two hidden
layers, with in the first case different numbers of hidden
neurons (sigmoidal activation). Thus we will have different
versions of a neural network modeling the same iteration
function. Only the size and number of hidden layer may
change, since the numbers of inputs and output neurons
(linear activation) are fully specified by the function. The
neural networks are trained using the quasi-Newton L-BFGS
(Limited-memory Broyden-Fletcher-Goldfarb-Shanno)
algorithm in combination with the Wolfe linear search. The
training is performed until the learning error (MSE) is lower
than a chosen threshold value (10

-2
).

Table I gives for each considered neural network the
mean number of epochs needed to train it and a success rate
which reflects a successful training in less than 1000 epochs.
Both values are computed considering 25 trainings with
random weights and biases initialization. These results
highlight several points. Firstly, various MLP architectures
can learn a same iteration function, with obviously a best
suited one (a hidden layer composed of ten sigmoidal
neurons). In particular the two hidden layer structure seems
to be too complex for the functions to be learned. Secondly,
training networks so that they behave chaotically seems to be
more difficult, since they need in average more epochs to be
correctly trained. However, the relevance of this point needs
to be further investigated. Similarly, there may be a link
between the training difficulty and the disorder (evaluation
of their constants of sensitivity, expansivity, etc.) induced by
a chaotic iteration function.

V. CONCLUSION AND FUTURE WORK

Many chaotic neural networks have been developed for
different fields of application, in particular for data security
purpose where they are used to define ciphering methods,
hash functions and so on. Unfortunately, the proposed
networks are usually claimed to be chaotic without any

proof. In this paper we have presented a rigorous
mathematical framework which allows us to construct
artificial neural networks proven chaotic, according to
Devaney. More precisely, a correspondence between chaotic
iterations, which are a particular case of topological chaos in
sense of Devaney, and MLP neural networks with a global
feedback is established. In fact, we have shown that an
iteration function is chaotic if its graph of iteration is
strongly connected (a property easily checked), and that a
global recurrent MLP can learn such a function. Future
research will study more carefully the performance of the
training process and alternative neural network architectures.

REFERENCES

[1] V. Rijmen and E. Oswald, “Update on sha-1,” Cryptology ePrint
Archive, Report 2005/010, 2005, http://eprint.iacr.org/.

[2] J. M. Bahi and C. Guyeux, “Topological chaos and chaotic iterations.
Application to hash functions,” Proc. IEEE World Congress on
Computational Intelligence (WCCI 10), Jul. 2010, pp. 1–7.

[3] , “An improved watermarking algorithm for internet applications,”
Proc. 2nd Int. Conf. on Evolving Internet (INTERNET 2010), Spain:
IEEE seccion Espania, Sep. 2010, pp. 119–124.

[4] Q. Wang, J. M. Bahi, C. Guyeux, and X. Fang, “Randomness quality
of CI chaotic generators. Application to internet security,” Proc. 2nd
Int. Conf. on Evolving Internet (INTERNET 2010), Spain: IEEE
seccion Espania, Sep. 2010, pp. 125–130.

[5] C. Guyeux, “Le désordre des itérations chaotiques et leur utilité en
sécurité informatique,” Ph.D. dissertation, Université de Franche-
Comté, 2010.

[6] J. M. Bahi, C. Guyeux, and Q. Wang, “Improving random number
generators by chaotic iterations. Application in data hiding,” Proc.
Int. Conf. on Computer Application and System Modeling
(ICCASM 2010), Taiyuan, China, Oct. 2010, vol. 13, pp. 643–647.

[7] Y. Li, S. Deng, and D. Xiao, “A novel hash algorithm construction
based on chaotic neural network,” Neural Computing and
Applications, pp. 1–9, 2010.

[8] I. Dalkiran and K. Danisman, “Artificial neural network based chaotic
generator for cryptology,” Turk. J. Elec. Eng. & Comp. Sci., vol. 18,
no. 2, pp. 225–240, 2010.

[9] S. Lian, “A block cipher based on chaotic neural networks,”
Neurocomputing, vol. 72, no. 4–6, pp. 1296–1301, 2009.

[10] R. L. Devaney, An Introduction to Chaotic Dynamical Systems, 2nd
Edition, Westview Pr., March 2003.

[11] F. Robert, Discrete Iterations: A Metric Study, Spring Series in
Computational Mathematics, Springer-Verlag, Ed., vol. 6, 1986.

[12] J. Banks, J. Brooks, G. Cairns, and P. Stacey, “On devaney’s
definition of chaos,” Amer. Math. Monthly, vol. 99, pp. 332–334,
1992

[13] C. Guyeux and J. M. Bahi, “Hash functions using chaotic iterations, ”
Journal of Algorithms & Computational Technology, vol. 4, no. 2,
pp. 167–182, 2010.

[14] G. Cybenko, “Dynamic load balancing for distributed memory multi-
processors,” J. Parallel Distrib. Comput., vol. 7, no. 2, pp. 279–301,
1989

[15] Y. LeCun, L. Bottou, G. Orr, and K. Muller, “Efficient backprop,”
Neural Networks: Tricks of the trade, G. Orr and M. K., Eds.
Springer, 1998.

[16] K. Aihara, T. Takabe, and M. Toyoda, “Chaotic neural networks,”
Physics Letters A, vol. 144, no. 6–7, pp. 333–340, 1990.

[17] N. Crook and and T. O. Scheper, “A novel chaotic neural network
architecture,” Proc. (ESANN 2001), 2001, pp. 295–300.

[18] N. Crook, W. J. Goh, and M. Harawat, “Pattern recall in networks of
chaotic neurons,” Biosystems, vol. 87, no. 2–3, pp. 267–274, 2007

http://eprint.iacr.org/

