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Abstract—Chaotic neural networks have received a great deal 

of attention these last years. In this paper we establish a precise 

correspondence between the so-called chaotic iterations and a 

particular class of artificial neural networks: global recurrent 

multi-layer perceptrons. We show formally that it is possible to 

make these iterations behave chaotically, as defined by 

Devaney, and thus we obtain the first neural networks proven 

chaotic. Several neural networks with different architectures 

are trained to exhibit a chaotical behavior. 

Devaney’s chaos; chaotic iterations; mathematical topology 

I.  INTRODUCTION 

Due to the widespread use of the Internet and new digital 
technologies in nowadays life, security in computer 
applications and networks never was such a hot topic.  
Digital rights managements, e-voting security, anonymity 
protection, and denial of services are examples of new 
security concerns appeared this last decade.  Tools on which 
this security is based are, among others: hash functions, 
pseudo-random number generators, cryptosystems, and    
digital watermarking schemes. Due to their wide use in 
security protocols, these tools are targeted everyday by 
hackers and new threats are frequently revealed. For 
example, security flaws have been recently identified in the 
previous standard in hash functions called SHA-1 [1].  As 
the new standards (SHA-2 variants) are algorithmically 
similar to SHA-1, stronger hash functions using new 
concepts are desired. 

New approaches based on chaos are frequently proposed 
as an alternative to solve concerns which recurrently appear 
in the computer science security field [2]–[4]. The advantage 
of the use of chaotic dynamics for security problems lies in 
their unpredictability proven by mathematical theory of 
chaos. This theory brings many qualitative and quantitative 
tools, namely ergodicity, entropy, expansivity, and sensitive 
dependence to initial conditions [5]. These tools allow the 
study of the randomness of the disorder generated by the 
considered system [6]. 

Recently, many researchers have built chaotic neural 
networks in order to use it as a component of new proposed 
hash functions [7], pseudo-  number generators, 
cryptosystems [8], [9], and digital watermarking schemes. 
Since the first introduction by McCulloch and Pitts in 1959, 
artificial neural networks have been shown to be efficient 
nonlinear statistical data modeling tools which can 
implement complex mapping functions. They may be trained 
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to learn a chaotic process and also, by construction, exhibit 
suitable properties: data confusion and diffusion, one-way 
function and compression. Security is not the only 
application domain of such new tools: the existence of chaos 
in our brain has been recently revealed, and the use of a 
chaotic artificial neural network as a model can serve, for 
example, neuroscientists in their attempts to understand how 
the brain works. 

However, using an element of chaos as a component of 
the scheme in not sufficient, in our opinion, to be able to 
claim that the whole process behaves chaotically. We believe 
that this claim is not so evident and must be proven. Let us 
notice that up to now the proposed chaotical neural networks 
have failed to convince the mathematics community due to a 
lack of proof. This is why it is explained in this paper how it 
is possible to build an artificial neural network that behaves 
chaotically, as it is defined by Devaney [10]. We will 
establish a correspondence between particular neural 
networks and chaotic iterations, which leads to the definition 
of the first artificial neural networks proven chaotic, 
according to Devaney. 

The remainder of this paper is organized as follows. The 
next section is devoted to some recalls on chaotic iterations 
and Devaney’s chaos followed by a brief description of 
artificial neural networks (ANNs). Section III presents a 
review of some works related to chaotic neural networks. 
Our approach, which consists in building a global recurrent 
ANN whose iterations are chaotic, is formalized and 
discussed in Section IV. Concrete examples of chaotic neural 
networks also show the relevance of our method. Finally in 
Section V we conclude and outline future work. 

II. BASIC RECALLS 

In the sequel S
n
 denotes the n

th
 term of a sequence S and 

E
i
 denotes the i

th
 component of a vector E. fff k  is 

for the k
th
 composition of a function f. Finally, the following 

notation is used: ]];1[[ N {1,2,…,N}. 

A. Chaotic Iterations versus Devaney’s Chaos 

1) Chaotic Iterations: 
Let us consider a finite system with a finite number 

N N
*
 of elements (or cells), so that each cell has a boolean 

state. A sequence of length N of boolean states of the cells 
corresponds to a particular state of the system. A sequence 
which elements belong to ]];1[[ is called a strategy. The set 

of all strategies is denoted by S. 
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Definition 1 The set B denoting {0,1}, let f: B
N
  B

N 
be a 

function and S  S be a strategy. The so-called chaotic 

iterations are defined by x
0
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N
 and 

n  N
*
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In other words, at the n
th

 iteration, only the S
n
-th cell is 

“iterated”. Note that in a more general formulation, S
n
 can be 

a subset of components and 
nS

nxf ))(( 1  can be replaced by, 

nS

kxf ))(( where k<n, describing for example, delays 

transmission [11]. Finally, let us remark that the term 
“chaotic”, in the name of these iterations, has a priori no link 
with the mathematical theory of chaos, recalled below. 

2) Devaney’s Chaotic Dynamical Systems: 

Consider a topological space ( , ) and a continuous 

function f on . 
Definition 2 f is said to be topologically transitive if, for any 

pair of open sets U, V , there exists k>0 such that 

Vuf k )( . 

Definition 3 An element (a point) x is a periodic element 

(point) for f of period n  N
*
, if  f 

n
(x) = x. 

Definition 4 f is said to be regular on ( , ) if the set of 

periodic points for f is dense in : for any point x in , any 
neighborhood of x contains at least one periodic point. 

Definition 5 f is said to be chaotic on ( , ) if f is regular and 
topologically transitive. 

The chaos property is strongly linked to the notion of 

“sensitivity”, defined on a metric space ( ,d) by: 
Definition 6 f has sensitive dependence on initial conditions 

if there exists  > 0 such that, for any x  and any 

neighborhood V of x, there exists y  and 0n  such that 

d(f 
n
(x),f 

n
(y)) > .   is the constant of sensitivity of  f. 

Indeed, Banks et al. have proven in [12] that when f is 

chaotic and ( ,d) is a metric space, then f has the property of 
sensitive dependence on initial conditions (this property was 
formerly an element of the definition of chaos). To sum up, 
quoting Devaney in [10], a chaotic dynamical system “is 
unpredictable because of the sensitive dependence on initial 
conditions. It cannot be broken down or simplified into two 
subsystems which do not interact because of topological 
transitivity. And in the midst of this random behavior, we 
nevertheless have an element of regularity”. Fundamentally 
different behaviors are consequently possible and occur in an 
unpredictable way. 

3) Chaotic Iterations and Devaney’s Chaos: 
In this section we give outline proofs of the properties on 

which our study of chaotical neural networks is based. The 
complete theoretical framework is detailed in [13]. 

Denote by  the discrete boolean metric, 

yxyx 0),( . Given a function f: B
N
  B

N
, define 

the function Ff : ]];1[[  B
N
  B

N
 such that 

]];1[[)),()(),((),( jkjf jkEfjkEEkF , 

where + and  are the boolean addition and product 

operations,  x  is the negation of x. 

Consider the phase space  = ]];1[[
N
 B

N
 and the map 

))),((),((),( ESiFSESG ff
 

where  : (S
n
)n N S   (S

n+1
)n N S is the shift function, and 

the initial function i is the map which associates to a 

sequence, its first term: i : (S
n
)n N S   (S

0
) [[1;N]]. 

Thus chaotic iterations can be described by the following 
iterations [13] 
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This new distance has been introduced in [13] to satisfy 
the following requirements. When the number of different 
cells between two systems is increasing, then their distance 
should increase too. In addition, if two systems present the 
same cells and their respective strategies start with the same 
terms, then the distance between these two points must be 
small because the evolution of the two systems will be the 
same for a while. The distance presented above follows these 

recommendations. Indeed, if the floor value d(X,Y)  is equal 
to n, then the systems E, Ĕ differ in n cells. In addition, 

d(X,Y)- d(X,Y)  is a measure of the differences between 
strategies S and Š. More precisely, this floating part is less 
than 10

-k
 if and only if the first k terms of the two strategies 

are equal. Moreover, if the k
th
 digit is nonzero, then the k

th
 

terms of the two strategies are different. 
It is proven in [13] by using the sequential continuity that 

the vectorial negation ),,(),,( 110 xxxxf   satisfies 

the following proposition: 

Proposition 1 
0fG is a continuous function on ( ,d). 

It is then checked in [13], that in the metric space ( ,d), 
the vectorial negation fulfills the three conditions for 
Devaney’s chaos: regularity, transitivity, and sensitivity. 
This has led to the following result. 

Proposition 2 
0fG is a chaotic map on ( ,d) in the sense 

of Devaney. 

B. Neural Networks 

An artificial neural network is a set of simple processing 
elements called neurons that are interconnected, usually with 
a layer structure. It takes some input values and produces  
some output ones. Like a biological neural network, the 
connections between neurons influence the outputs given by 
the artificial network. Thanks to a training process, an ANN 
is able to learn complex relationships between inputs and  
 



 

Figure 1.  Description of a neuron 

outputs. A neuron j computes an output y= (x,w) where () 
is the activation function, x is the input vector, and w the 

parameter vector. w can be used to parameterize  or the 
neuron inputs. In this last case it means that the connections 
are weighted and a vector w component is then referred to as 
a synaptic weight. Fig. 1 describes a neuron j with weighted 
connections. Its output yj satisfies: 
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where 10x , ),,( 1 nxxx  , and 
jj bw0
defines the 

bias value. 
Neural networks have a layered architecture, but they 

may differ in the way the output of a neuron affect himself. 
In fact, based on the connection graph, two kinds of 
networks can be distinguished: those having a least one loop 
and those without any one. A neural network which exhibits 
a loop is called a feedback (or recurrent) network, whereas a 
network belonging to the second class is said feed-forward. 
Obviously, a feedback network can be seen as a dynamical 
system. In the following sections, we use a recurrent version 
of the multi-layer perceptron (MLP), a well-known ANN 
architecture for which the universal approximation property 
has been proven in the feed-forward context [14]. Typically, 
a MLP consists in layer of input neurons, in one or more 
layers of hidden neurons, and a layer of output neurons. 
Since an input neuron is simply used as a channel to dispatch 
an input to each neuron of the first hidden layer, we will not 
further consider the input layer. Usually, the neurons of a 
given layer have similar characteristics and each one is fully 
connected to the next layer. Finally, note that the number of 
inputs and output neurons is completely specified by the 
considered problem, while the number of hidden neurons 
depends directly on the complexity of the relationships to be 
learned by the ANN. 

As said previously, a neural network is designed to 
model relationships between inputs and outputs. In order to 
find a proper modeling, an ANN must be trained so that it 
provides the desired set of output vectors. The training (or 
learning) process consists mainly in feeding the network 
with some input vectors and updating the neurons parameters 
(weights and bias value) using a learning rule and some 
information which reflects the quality of the current 
modeling. When the expected output vectors (Dk) are known 
in advance, the quality can be expressed through the Mean 
Square Error [15]: 

N

k

kk YD
N

MSE
1

2

2

1  

where N is the number of input-output vector pairs used to 
train the ANN (the pair set is called the training or learning 
set) and Yk denotes an output vector produced by the output 
layer for a given input vector Xk. Consequently, in that case 
the training process, which is said supervised, results in an 
optimization algorithm targeted to find the weights and 
biases that minimize the MSE. Various optimization 
techniques exist, they have given raise to distinct training 
algorithms performing iterative parameters update. Gradient-
based methods are particularly popular to the 
backpropagation algorithm, but they are sensitive to local 
minima. Heuristics like simulated annealing or differential 
evolution permit to find a global minimum, but they have a 
slow convergence. To control the training process, two 
methods are the most commonly used: firstly the number of 
iterations, also called epochs, reaches an upper bound; 
secondly the MSE goes below a threshold value. 

III. RELATED WORK 

Since a while neuroscientists discuss the existence of 
chaos in the brain. In the context of artificial neural 
networks, this interest has given raise to various works 
studying the modeling of chaos in neurons. The chaotic 
neuron model designed by Aihara et al. [16] is particularly 
used to build chaotic neural networks. For example, in [17] is 
proposed a feedback ANN architecture which consists of two 
layers (apart from the input layer) with one of them 
composed of chaotic neurons. In their experiments, the 
authors showed that without any input sequence the 
activation of each chaotic neuron results in a positive 
average Lyapunov exponent, which means a true chaotic 
behavior. When an input sequence is given iteratively to the 
network the chaotic neurons reach unstable periodic orbits 
with different periods, and thus potentially provide a 
recognition state. Similarly, the same authors have recently 
introduced another model of chaotic neuron: the nonlinear 
dynamic state (NDS) neuron, and used it to build a neural 
network which is able to recognize learned unstable periodic 
orbits identifying patterns [18]. 

Today, another field of research in which chaotic neural 
networks have received a lot of attention is data security. In 
fact, chaotic cryptosystems are an appealing alternative to 
classical ones due to properties such as sensitivity to initial 
conditions or topological transitivity. Thus chaotic ANNs 
have been considered to build ciphering methods, hash 
functions, digital watermarking schemes, pseudo-random 
number generators, etc. In [8] such a cipher scheme based on 
the dynamics of Chua’s circuit is proposed. More precisely, a 
feed-forward MLP with two hidden layers is built to  
learn about 1500 input-output vector pairs, where each pair is 
obtained from the three nonlinear ordinary differential 
equations modeling the circuit. Hence, the proposed chaotic 
neural network is a network which is trained to learn a true 
chaotic physical system. In the cipher scheme the ANN plays  
the role of chaos generator with which the plain-text  
will be merged. Untrained neural networks have also been 
considered to define block ciphering [9] or hash functions 
[7]. The background idea is to exploit the inherent properties 
of the ANNs architecture such as diffusion and confusion. 



 

 

Figure 2.  Example of a global recurrent neural network modeling function 
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IV. A FIRST RECURRENT NEURAL NETWORK 

CHAOTIC ACCORDING TO DEVANEY 

A. Defining a First Chaotic Recurrent Neural Network 

We will now explain how to build a chaotic neural 
network using chaotic iterations. 

Let us reconsider the vectorial negation function denoted 

by f0: B
N

B
N
 and its associated map

0f
F : ]];1[[ B

N
  B

N
. 

Firstly, it is possible to define a MLP which recognizes 
0f

F . 

That means, for all (k,x)  ]];1[[ B
N
, the response of the 

output layer to the input (k,x) is ),(
0

xkFf
. Secondly, the 

output layer can be connected to the input layer as it is 
depicted in Fig. 2 leading to a global recurrent neural 
network working as follows: 

 At the initialization stage, the ANN receives a 

boolean vector x
0 

 B
N
 as input state, and 

S
0 

 [[1;N]] in its input integer channel i(). Thus, 

),( 001

0
xSFx f

 B
N
 is computed by the network. 

 This state x
1
 is published as an output. Additionally, 

x
1
 is sent back to the input layer, to act as Boolean 

state in the next iteration. 

 At iteration number n, the recurrent neural network 

receives the state x
n
  B

N
 from its output layer and 

i(S
n
)  [[1;N]] from its input integer channel i(). It 

can thus calculate )),((
0

1 nn

f

n xSiFx  B
N
, which 

will be the new output of the network. 

In this way, if the initial state x
0
  B

N
 is sent to the 

network with a sequence S
 

 [[1;N]]
N
 applied in the input 

channel i(), then the sequence (x
n
)n N* of the outputs is 

exactly the same than the sequence obtained from the 

following chaotic iterations: x
0
  B

N
 and 

n  N
*
, 
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From a mathematical viewpoint, the MLP defined in this 
subsection and chaotic iterations recalled above have the 

same behavior. In particular, given the same input vector 

((S
n
)n N,x

0
), they produce the same output vector (x

n
)n N* : 

they are two equivalent reformulations of the iterations of  

0fG in . As a consequence, the behavior of our MLP 

faithfully reflects the behavior of 
0fG which is chaotic 

according to Devaney. 

B. Improving the Variety of Chaotic Recurrent Neural 

Networks 

The approach proposed to build chaotic neural networks, 
explained in the previous subsection, is not restricted to an 

adhoc function f0: B
N
  B

N
, it can be generalized as follows. 

The function 
0f

F associated to the vectorial negation f0, 

which has been recognized by the neural network, can be 

replaced by any functions
fF : ]];1[[  B

N
  B

N
 such that 

the chaotic iterations Gf are chaotic, as defined by Devaney. 
To be able to define functions that can be used in this 

situation, we must firstly introduce the graph of iterations of 

a given function f : B
N
  B

N
, ))(,),(( 1 xfxfx n . 

Let be given a configuration x. In what follows the 

configuration N(i,x) = ),,,,( 1 ni xxx   is obtained by 

switching the i-th component of x. Intuitively, x and N(i,x) 
are neighbors. The chaotic iterations of the function f can be 

represented by the graph (f) defined below. 
Definition 7 (Graph of iterations) In the oriented graph of 

iterations (f), vertices are configurations of B
N
, and there is 

an arc labeled i from x to N(i,x) iff ),( xiFf
is N(i,x). 

We have proven in [5] that: 

Theorem 1 Functions f : B
n
  B

n
 such that Gf is chaotic 

according to Devaney, are functions such that the graph (f) 
is strongly connected. 

Since it is easy to check whether a graph is strongly 
connected, we can use this theorem to discover new 

functions f : B
N
  B

N
 such that the neural network 

associated to Gf  behaves chaotically, as defined by Devaney. 

C. The Discovery of New Chaotic Neural Networks 

Considering Theorem 1, it is easy to check that 

),,,,(),,( 121111 xxxxxxf n  is such that 
1f

G behaves 

chaotically, as defined by Devaney. Consequently, we can 
now obtain two chaotic neural networks by learning either 

0f
F or 

1f
F . 

To support our approach, a set of illustrative examples 
composed of five neural networks is given. The three first 
networks are respectively defined by: 

 ),,,(),,,( 432143211,0 xxxxxxxxf , 

 ),,(),,( 3213212,0 xxxxxxf , 

 ),,(),,( 2113211,1 xxxxxxf , 

while the last ones are defined by: 

 ),,(),,( 3213210 xxxxxxg , 

 ),,(),,( 3213211 xxxxxxg . 



 

TABLE I.  OUTLINE OF THE RESULTS FROM SEVERAL ITERATION 

FUNCTIONS LEARNING USING DIFFERENT RECURRENT MLP ARCHITECTURES 

 One hidden layer 
8 neurons 10 neurons 

Function Mean epoch Success rate Mean epoch Success rate 

f0,2 82.21 100% 73.44 100% 

f1,1 76.88 100% 59.84 100% 

g1 36.24 100% 37.04 100% 

 Two hidden layers: 8 and 4 neurons 
Mean epoch number Success rate 

f0,2 203.68 76% 

f1,1 135.54 96% 

g1 72.56 100% 

 
Due to Theorem 1, the ANNs associated to f0,1, f0,2 and f1,1 

behave chaotically, as defined by Devaney. Whereas it is not 
the case for the networks based on the boolean function g0 

and g1, since (g0) and (g1) are not strongly connected. 

D. Experimental Results 

Among the five neural networks evoked in the previous 
subsection we decided to study the training process of three 
of them. Note also that for each neural network we have 
considered MLP architectures with one and two hidden 
layers, with in the first case different numbers of hidden 
neurons (sigmoidal activation). Thus we will have different 
versions of a neural network modeling the same iteration 
function. Only the size and number of hidden layer may 
change, since the numbers of inputs and output neurons 
(linear activation) are fully specified by the function. The 
neural networks are trained using the quasi-Newton L-BFGS 
(Limited-memory Broyden-Fletcher-Goldfarb-Shanno) 
algorithm in combination with the Wolfe linear search. The 
training is performed until the learning error (MSE) is lower 
than a chosen threshold value (10

-2
). 

Table I gives for each considered neural network the 
mean number of epochs needed to train it and a success rate 
which reflects a successful training in less than 1000 epochs. 
Both values are computed considering 25 trainings with 
random weights and biases initialization. These results 
highlight several points. Firstly, various MLP architectures 
can learn a same iteration function, with obviously a best 
suited one (a hidden layer composed of ten sigmoidal 
neurons). In particular the two hidden layer structure seems 
to be too complex for the functions to be learned. Secondly, 
training networks so that they behave chaotically seems to be 
more difficult, since they need in average more epochs to be 
correctly trained. However, the relevance of this point needs 
to be further investigated. Similarly, there may be a link 
between the training difficulty and the disorder (evaluation 
of their constants of sensitivity, expansivity, etc.) induced by 
a chaotic iteration function. 

V. CONCLUSION AND FUTURE WORK 

Many chaotic neural networks have been developed for 
different fields of application, in particular for data security 
purpose where they are used to define ciphering methods, 
hash functions and so on. Unfortunately, the proposed 
networks are usually claimed to be chaotic without any 

proof. In this paper we have presented a rigorous 
mathematical framework which allows us to construct 
artificial neural networks proven chaotic, according to 
Devaney. More precisely, a correspondence between chaotic 
iterations, which are a particular case of topological chaos in 
sense of Devaney, and MLP neural networks with a global 
feedback is established. In fact, we have shown that an 
iteration function is chaotic if its graph of iteration is 
strongly connected (a property easily checked), and that a 
global recurrent MLP can learn such a function. Future 
research will study more carefully the performance of the 
training process and alternative neural network architectures. 
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