
Grey-box Testing and Verification of Java/JML
Frédéric Dadeau and Fabien Peureux

LIFC - Université de Franche-Comté / INRIA CASSIS
16 route de Gray – 25030 Besançon, France

Email: {frederic.dadeau, fabien.peureux}@lifc.univ-fcomte.fr

Abstract—We present in this paper the application of con-
straint solving techniques to the validation and automated
test cases generation for Java programs, annotated with JML
specifications. The Java/JML code is translated into a constraint
representation based on a subset of the set-theory, which is
well-suited for modelling object-oriented programs. Symbolic
code execution techniques can then be applied to produce test
cases, using classical structural test selection criteria, or to detect
possible runtime errors, and non-conformances between the Java
code and its embedded JML model.

Keywords-symbolic execution, constraint solving, Java/JML,
grey-box testing, set-theory

I. INTRODUCTION

Design-by-Contract (DbC) [1] is a lightweight technique
that aims at introducing formal methods for non-specialists. It
consists of adding contracts to the code of a program for basic
modelling purposes, namely, specifying invariants on classes,
and pre- and post-conditions on methods. The annotations are
written directly inside the code, which simplifies its use by
developers, who do not need to learn a whole new modelling
language, beside some simple keywords.

Over the past few years, several annotation languages have
arisen, such as JML [2] for Java, Spec# [3] for C#, ACSL [4]
for C, etc. Annotation languages are very convenient at two
levels [5]. At the verification level, it is possible to take the
annotations into account to ease the proof of the considered
program, and strengthen the properties one wants to specify on
the system. At the validation level, the contracts can be used
for generating black-box test data, using method preconditions,
and to assign the verdict of the test, using the postcondition
by runtime assertion checking techniques.

Various approaches use constraint solving techniques to-
gether with annotated programs either to produce test cases
or to verify program correctness. In most cases, the program
is flattened into Single Static Assignment form and a set of
constraints is computed as a path condition that represents the
conjunction of the decision predicates on the path.

We propose here to reinvest constraint solving techniques
that have been originally designed for the symbolic animation
of B machines [6], in order to provide a flexible and expressive
means for both verifying and validating a Java program anno-
tated with JML constructs. This technique is based on a graph
representation of the program structure/code. The symbolic
evaluation is then done on-the-fly, when exploring the graph
to cover a specific path, that can be extracted using classical
structural coverage strategies (all-nodes, all-decisions, etc.).

public class A {

//@ invariant x > 0;
short x;
static byte y;
A z;

/*@ requires a != null && y > x && a != this;
*@ assignable \everything;
*@ ensures \result > 0;
*@ signals (BarException e) \old(x) == x;
*/
public int foo(A a) throws BarException { ... }

}
Fig. 1. General Form of the Contracts in JML

We show in this paper how the underlying set-theory of B,
tool-supported by a customized constraint solver, can be used
to efficiently represent object-oriented programs/models.

The paper is organised as follows. Section II presents
an overview of the Java Modeling Language syntax and
semantics. Then, Section III illustrates how Java programs
(i.e., data model and method codes) can be represented in
the set-theory handled by our constraint solver. Section IV
presents our grey-box test generation technique, that takes
into account both the program and its specification. Then, we
present in Sect. V a verification technique, that aims at finding
three types of non-conformances between the program and its
specification. Finally, Section VI presents the related works,
before concluding in Sect. VII.

II. OVERVIEW OF THE JML SYNTAX AND SEMANTICS

The Java Modeling Language is an annotation language
based on Design-By-Contract paradigm, introduced by Eif-
fel [1]. The contracts are written inside the Java code, which
facilitates the use of JML by developers. In this section, we
briefly introduce the syntax and the semantics of JML.

Contracts can be defined as illustrated in Fig. 1. Keyword
requires indicates the precondition, namely the contract
that has to be fulfilled by the caller of the method. The
assignable clause provides the frame condition, namely
the set of attributes that can be assigned inside the method
body. The ensures clause designates the normal postcondi-
tion that is supposed to be established when the method termi-
nates normally, i.e. without throwing an exception. Finally, the
signals clause designates the postcondition that is supposed
to be established if the method terminates abnormally, i.e.
by throwing an exception. In this case, the specification
indicates the exception and its possible postcondition. In the



example, the presence of an exception of any type (specified
by the generic Exception class) implies that attribute x is not
modified (its after value, designated by x, has to be equal to
its before value, designated by \old(x)).

Besides pre- and postconditions, JML contracts are com-
pleted by class invariants, that apply on class attributes.

The JML Runtime Assertion Checker (RAC) instruments
the Java code (without modifying its behaviour) to performed
on-the-fly verification that will raise a specific set of excep-
tions in case of verification failure. The verifications performed
are the following:
(i) at the beginning of the method, the class invariant is

checked, along with the precondition. All \old expres-
sions used in the postconditions are evaluated.

(ii) at the end of the method body execution, the normal
postcondition is checked, replacing the \old expressions
with their previously-stored values.

(iii) if the method body throws an exception, then there are
two cases: either it is a JML-specific exception, raised
inside the body of the method and it is thus propagated,
or it corresponds to an exception of the program, and thus
the corresponding exceptional postcondition (signals
clause) is checked (if it exists), before propagating the
exception.

When executing tests, the absence of JML-specific exceptions
means that the test passed, otherwise it failed and the corre-
sponding assertion can be retrieved to help the debugging.

III. EXPRESSING JAVA PROGRAMS IN SET-THEORY

In order to be able to apply a constraint-based verification
and validation techniques on Java programs, it is mandatory to
provide a representation of the target language in constraints.
We start this section by the description of our underlying con-
straint solver, namely CLPS-BZ. We then explain how to use
a set-theoretical representation of object-oriented programs,
inspired by the one used in a previous work [7]. We then
introduce a graph representation of the program code, that
can be explored by our symbolic animation engine in order to
perform symbolic execution of the code.

A. Using Constraint Solving to evaluate Java/JML Programs

The evaluation of Java/JML programs is based on the
constraint logic programming technology called CLPS-BZ [6].
CLPS-BZ is a constraint solver implemented in SICStus
Prolog [8], and originally designed to evaluate and to generate
functional test cases from B and Z formal models [9]. Because
of the set oriented features of both B and Z notations, CLPS-
BZ is mainly a set constraints solver.

Its constraints domain is the hereditarily finite sets with
nested pairs that makes it possible to manage relations and
functions, but CLPS-BZ also supports constraints over in-
tegers, atoms, pairs, sets, relations and functions, including
equality, inequality, membership, subset, range, domain con-
straints, etc.

The constraints solving techniques are based, on the one
hand, on set interval propagation [10], and, on the other

hand, on specific propagation rules in order to compute
variable instantiations. For basic arithmetic operations and
constraints solving on set cardinality, there is a cooperation
between CLPS-BZ constraints propagation and the integer
finite domains solver CLP(FD) of SICStus Prolog. CLPS-BZ
involves partial consistency techniques [11] during constraints
propagation; the completeness is ensured by classical labelling
based on AC-3 algorithm [12].

More precisely, CLPS-BZ is composed of four subsystems:
an executer, a reducer, a constraint solver and a constraint
store. The executer manages the symbolic execution of the
Java/JML programs: it translates this source code into a
labelled transitions system representing its control flow graph,
and passes this system to the reducer. The reducer then
achieves the effect of the execution by translating each tran-
sition label expression into lower-level constraints that can
be recursively acquired on-the-fly by the constraint solver.
Finally, the constraint store module allows recording the
(possibly symbolic) current state during all the execution.
After all constraints have been added, if a unique solution
is not obtained, the executer applies a labelling procedure to
calculate a solution to the constraint system, and providing
one instantiation to cover the original path of the Java/JML
program given as input.

We now describe the rewriting rules applied to translate
Java/JML expressions into CLPS-BZ constraints, and define
the approach, based on CLPS-BZ, to generate test data for
Java/JML methods using a control flow graph representation.

B. Expressing Data Model with Sets and Functions

a) Instances: We consider the set of existing objects
to be a set of atoms, that are named constants. Each value
designates an address of the object in the memory heap. Class
instances are sets of atoms, subsets of this superset. Class
instances are denoted by IC where C is the class name.
Inheritance relationships make it possible to partition the sets
of objects, such that: if class B and class C both directly
extend class A, then

IB ⊆ IA ∧ IC ⊆ IA ∧ IB ∩ IC = ∅

Due to finite domains constraints solving, the set of existing
objects has to be included in a superset of all possible
instances, (similar to a set of possible object addresses), that
are (or not) assigned to objects, and denoted I.

b) Object attributes: Instance attributes are represented
as total functions mapping existing instances to their values.
Static attributes (whose values are shared by all instances)
are directly valued. Values can be either a range of integers
(for primitive integer-like types: byte, short, int1, characters,
booleans), or a class. In this case, the domain is defined by
the set of existing instances of the corresponding class aug-
mented by a special value null, designating a null reference.
Each aforementioned attributes value is named by a unique
identifier, concatenation of its originating class and attribute.

1with a restriction on this data type since SICStus Prolog does not represent
integers on 32 bits, but on 24 bits



Example 1 – Attributes naming and typing. Considering
the example given in Fig. 1, attributes x, y and z will be
named and typed as follows:

A.x ∈ IA → −32768..32767, A.y ∈ −128..127
and A.z ∈ IA → IA ∪ {null}

where → designates a total function.

c) Arrays: In Java, arrays are represented as objects of
a specific type. We thus represent existing arrays similarly to
existing objects using a set of dedicated instances, depending
on the data type contained in the array. For example, Iashort
represents the set of arrays containing short integers. Array
contents are described in dedicated variables, depending on
the possible content type. Arrays are typed as a set of
triplets (a, i, v) where v is the content of array a at index
i. For example, the set of arrays containing short integers is
typed as: arrayContentashort ∈ Iashort × 0..MAXINT ×
−32768..32767. Notice that, when executing Java code, we
assume that the sizes of the considered arrays are always
known.

d) System States: Since we will consider the symbolic
execution of the code, we need to be able to represent system
states and their evolutions. Systems states are stored by the
CLPS-BZ constraint store module in a map associating to the
attribute name its value. This map is updated when an attribute
is assigned, and referred when a value is needed. For example,
knowing instance a of class A, the value of a.x is given by
the image of a by the function representing the attribute x,
i.e. A.x(a).

C. Expressing Method Code with Graphs

Inspired of our previous work on the symbolic animation of
B machines, we have decided to represent the method code as
labelled transitions systems encoding the control flow graph
of the operation.

Symbolic execution of a method consists in simulating the
execution of the code on the constraint representation of the
program. To achieve that, we follow the execution paths of the
code, guided by the control-flow graph. For each label on the
path, we perform the following actions:
• if the label designates a condition, it is evaluated w.r.t.

the current values of the state variables, namely, the
references to the data are replaced by the (symbolic)
values provided by the system states and a constraint is
added to the constraint store. When this latter becomes
inconsistent, the considered path prefix is declared infea-
sible.

• if the label designates a statement, it is executed and the
system state is updated. In a large majority of cases, the
statements are in fact assignments, for which the assigned
expression is first evaluated, and the corresponding data
in the system state is then updated with the (possibly
symbolic) value resulting of this evaluation.

Example 2 – Symbolic execution of Java code. Suppose the
Java code shown in Fig. 2 implementing Euclide’s algorithm

short gcd(short x, short y) {

int r;

if (x < y) {
r = x;
x = y;
y = r;

}

while (x % y != 0) {
r = x % y;
x = y;
y = r;

}

return y;
}

Fig. 2. The GCD example

for computing the greatest common divisor of two positive
integers arguments x and y. We provide its associated control
flow graph representation.

Considering path [1, 2, 4, 5, 4, 6, 7]. We start with an
initial state: x = X1, y = Y1, with associated constraints
X1 ∈ −32768..32767, Y1 ∈ −32768..32767. We then perform
the interpretation of the labels that change the system state:

• after 1→2: x = X1, y = Y1, r = undef
• after 2→4: x = X1, y = Y1, r = undef and constraint

X1 ≥ Y1 is added to the constraint store
• after 4→5: x = X1, y = Y1, r = undef and constraint

X1 mod Y1 6= 0 is added to the constraint store
• after 5→4: x = Y1, y = R1, r = R1 and constraint

R1 = X1 mod Y1 is added to the constraint store
• after 4→6: x = Y1, y = R1, r = R1 and constraint

Y1 mod R1 = 0 is added to the constraint store
• after 6→7: no more constraint is added.

Finally, an instantiation of the constraint store provides initial
values for the parameters; here, x= −16384 and y= −32768.

Notice that the first part of the path contains conditions
that represent explicit typing informations on the parameters,
and on the instance on which the method is invoked.

Considered subset of Java/JML. As explained, our represen-
tation makes it possible to express the classes, their instances,
and arrays. At the moment, integers are restricted to those
supported by SICStus Prolog (i.e. 24-bits integers), and reals
(float and double in Java) are not supported. In addition, arrays
are (preferably) of one dimension.

IV. GREY-BOX TEST GENERATION

Our grey-box testing approach considers both the Java code
for extracting structural test cases, and the JML specification,
in order to provide the preconditions and the class invariant,
that represent the invocation context of the methods.

We propose to apply classical structural coverage criteria on
the graph in order to extract paths. These paths are provided
as an input to our process. If the path is infeasible, it will be



discarded. Otherwise, the process produces test data for input
parameters and user-defined values.

The code coverage criteria that we are able to apply are the
classical ones from the literature (as listed by Myers [13]):
all-statements, all-decisions, all-k-paths. In addition, condition
coverage criteria can be applied to cover the disjunctive
predicates in the decisions (e.g. MC/DC, MCC, etc.) [14].

Example 3 – Grey-box test generation. Consider again the
gcd example introduced previously. We add the following
contract.

/*@ requires x >= 0;
@ assignable \everything;
@ ensures \old(x) % \result == 0 &&
@ \old(y) % \result == 0;
@*/
short gcd(short x, short y) { ... }

Using the test data produced initially (x= −16384, y=
−32768), and running the tests on an JML-instrumented
program raises a PreconditionFailedException indicating an
invocation of the method without satisfying the precondition
contract. In JML, a direct invocation of the method out of
its precondition is not considered as a failed test (but it is
when the method is called out of the precondition from another
method, raising in this case an InternalPreconditionFailedEx-
ception). If we take the precondition into account, we produce
the following test data for path [1,2,4,5,4,6,7]: x= 3, y= 2.

The instantiation of the constraint system not only provides
the values of the parameters but also an invocation context
that matches the contract associated to the considered method
under test. From the abstract system state representation pro-
vided with instantiated sets and functions, one can easily build
JMLUnit test cases that will be run on the concrete system
under test. Indeed, the Java reflection API makes it possible
to access (and directly assign) object attributes, as shown in
the example hereafter.

Example 4 – Test case concretization. Suppose one wants
to invoke method foo(A) whose contract is shown in Fig. 1.
The set of constraints associated to the object hierarchy and
the contract (precondition + class invariant) is as follows.

I = {a0, a1, a2, a3, ...}, // bounded set of existing objects

IA ⊆ I, // structural constraint for class hierarchy

A.x ∈ IA → −32768..32767, // typing of attribute x

A.y ∈ −128..127, // typing of static attribute y

A.z ∈ IA → IA ∪ {null}, // typing of attribute z

∀p ∈ IA ⇒ A.x(p) > 0 // invariant of class A

this ∈ IA, this 6= null, // existence of this

a ∈ IA ∪ {null}, // typing of parameter a

a 6= null, // precondition of foo

A.y(this) > A.x(this), // precondition of foo

a 6= this // precondition of foo

Notice that this example uses native operators of the CLPS-

BZ solver (∈, ∀, ⊆, etc.). This set of constraints can be
instantiated by the following (minimal) solution:

I = IA = {a0, a1}, A.x = {a0 7→ 1, a1 7→ 1},
A.y = {a0 7→ 2, a1 7→ −128},

A.z = {a0 7→ null, a1 7→ null}, this = a0, a = a1

This state is then used to produce the following J(ML)Unit
test case:
public void testFoo() {

// construction of existing objects:
A a0 = new A();
A a1 = new A();
boolean b;
// use of reflection to set protected field a0.x:
b = A.class.getDeclaredField("x").isAccessible();
A.class.getDeclaredField("x").setAccessible(true);
A.class.getDeclaredField("x").set(a0, (short)1);
A.class.getDeclaredField("x").setAccessible(b);
// same treatment for the other attributes
...
// invocation of the method under test:
a0.foo(a1);

}

V. DETECTION OF ERRORS AND NON-CONFORMANCES

We present in this section the verifications we aim at per-
forming using our approach. These verifications are classified
into two categories: runtime errors that only focus on the Java
code, and non-conformances w.r.t. the JML specification.

A. Runtime Errors

The runtime errors represent classical Java errors that may
happen at runtime. Usually, such errors raise an exception
that is a subclass of RuntimeException. We will focus on the
most frequent ones. The presence of these runtime errors can
be checked by the satisfiability of an additional constraint
involving that represents a condition that has to be fulfilled
for the exception to happen.

We give here the list of considered runtime errors, for
which we provide the context of the error detection, and the
considered additional constraint that represents the condition
under which the exception will be raised.

Error Context Constraint
Null pointer deref. x.y is evaluated x == null
Index out of bounds t[i] is accessed i > t.length
Division by zero x/y or x%y y == 0

When the additional constraint is acquired, a valuation is
immediately asked to the solver to check the overall consis-
tency of the constraint store. If the valuation succeeds then it
provides a counter-example that shows the potential presence
of a runtime error.

Example 5 – Runtime error detection. Consider the exam-
ple of the gcd method introduced before, when performing the
exploration of the control flow graph. When encountering the
condition labeling transition 4→5, the additional constraint
y == 0 is stored and a labeling is performed. In this case,
the constraint system produces an example of test data, x= 0
and y= 0, that leads to an error of division by zero.



Notice that, as a side effect, our methodology makes it pos-
sible to detect infeasible paths. However, in a large majority of
cases, the paths are extracted blindly from the graph structure
and are, by definition, not necessarily feasible. Nevertheless,
detecting loop-free prefixes that are not feasible indicates dead
code.

Example 6 – Dead code detection. Suppose we enrich
the precondition of the gcd example to add the following
information:

/*@ requires y > 0 && x > y;
@ ...
@*/
short gcd(short x, short y) { ... }

In this case, we are able to detect that all paths beginning
with [1,2,3] are unfeasible since the condition on the label of
transition 2→3 is contradictory with the JML precondition.

B. Non-Conformances w.r.t. the JML Specification

The second kind of verifications we consider involves the
verification of the contracts that makes it possible to detect
non-conformances between the program and its specification.
Namely, we will consider three kinds of non-conformances
that can be checked at runtime. We briefly detail these non-
conformances and informally indicate how these verifications
can be performed.
• Provider non-conformance: when the method terminates,

it does not establish its contractual postcondition. Such a
non-conformance is detected by negating the postcondi-
tion at the end of the method’s execution, and verifying
the satisfiability of this negation.

• Client non-conformance: when the method invokes an-
other internal method, the precondition of this latter is not
fulfilled. Such a non-conformance is detected by negating
the precondition of the invoked method, and verifying the
satisfiability of this negation.

• Integrity non-conformance: after the execution of the
method, the class invariant is not satisfied. Such a non-
conformance is detected by negating the invariant at the
end of the method’s execution.

Since these verifications can not be done for all the possible
paths of the methods code, we propose to apply them on
demand, on a relevant subset of the paths that is computed
using the classical code coverage criteria (all-statements, all-
decisions, etc.).

Example 7 – Provider Non-Conformance. Consider again
the example of the GCD algorithm presented in Fig 2. Suppose
one wants to check that path [1, 2, 4, 5, 4, 6, 7] does not present
a provider non-conformance. Considering the state resulting
of the execution of this path: x = Y1, y = R1 with associated
constraints

X1 ∈ −32768..32767, Y1 ∈ −32768..32767,
Y1 > 0, X1 > Y1, X1 mod Y1 6= 0,

R1 = X1 mod Y1, Y1 mod R1 = 0

The negation of the postcondition provides the additional
constraint:

X1 mod R1 6= 0 or Y1 mod R1 6= 0

Each of these literals is added independently to the previous
store and the satisfiability of the resulting constraint system
is checked, to look for counter-example. In both cases, the
solver concludes that each of these new constraints breaks
the consistency of the constraint store. It is thus possible
to conclude that the considered path does contain a non-
conformance.

VI. RELATED WORKS

The present work is an extension of an original work on test
generation from JML specifications [7], for which the same
data model representation was used. The main difference is
the use of the Java code, that was not considered previously.

Many works deal with the verification and validation of Java
programs possibly using the JML specifications. JMLUnit [15]
and Jartege [16] use random test data generators to respectively
build unit test cases and test sequences. In both cases, the JML
specification is used to filter irrelevant test data that may be
produced, and to assign the test verdict by runtime assertion
checking [5].

(j)Cute [17], DART [18], EXE [19], Pathcrawler [20] use
symbolic execution for the automated structural test generation
using branch coverage strategies. Some of these tool performs
both symbolic and concrete execution of the code (also known
as concolic) so as to generate test data and check the coverage
of the corresponding control flow graph. Recently Pathcrawler
and Frama-C2 have been coupled by the SANTE tool [21] to
combine test generation and verification of C programs.

In the context of verification of JML/Java programs,
ESC/Java [22] uses theorem provers to check verification
conditions extracted from Java/JML program. The KeY
project [23] aims at similar purposes. Bogor [24] uses a model
checking approach to explore Java system states and check the
JML assertions.

Our approach is inspired by the InKA approach [25], a
goal oriented structural test generator using constraint solving.
More recently, Euclide [26] acts in a similar way, taking
into account C programs annotated with ACSL contracts.
This work represents a continuation of the work done in the
DANOCOPS project3. A similar approach has been proposed
by Collavizza et al. [27], using a bounded model-checking
approach to generate counter-examples of program properties
using the Comet platform.

VII. CONCLUSION AND FUTURE WORKS

We have presented in this paper the use of a set-theoretical
representation to express Java programs annotated with JML
contracts. This representation makes it possible to perform
symbolic execution of the Java code of the methods, under the

2http://frama-c.cea.fr
3http://lifc.univ-fcomte.fr/DANOCOPS



assumptions of the JML preconditions, which can be used for
both generating structural test data, or performing code-based
verification of assertions, by looking for non-conformances
between the program and its specification.

Our future works will consider the improvement of our
constraint solving techniques in two directions. First, we have
noticed that, in the absence of errors, the AC-3 consistency
algorithm used to store the constraints requires the constraints
system to be eventually instantiated. In these cases, it is
important to notice that a given number of symmetric solutions
are enumerated, slowing down the verification process, without
changing the result of the computation. The second lead
to investigate is to remove the finite domains assumption
concerning the set of existing objects. On one hand, the overall
set of objects has to be finite to guarantee the termination of
the consistency checks, that requires an enumeration. On the
other hand, the selected bound might be insufficient to dispose
of enough objects for falsifying a verification condition. We
are now investigating a means to address these two issues
together, in order to improve the execution time and the
correctness of the verification and test generation processes.
Another option to solve these problems would be to consider
another constraint solver that would also handle reals, such as
Choco in Java [28]. Nevertheless, it would be necessary to also
handle functions and relations, so as to be able to conserve
this convenient representation of object-oriented data model.

Finally, we are currently implementing a fully automated
tool-chain of this test generation process (especially to au-
tomate the translation of Java/JML programs into labelled
transition systems representation). This tool-chain will take
Java/JML code as input, and automatically derive executable
JMLUnit test cases. This achievement will make it possible
to more intensively carry out various experiments and get
relevant feedback on the scalability of our approach.

REFERENCES

[1] B. Meyer, Object-oriented software construction (2nd ed.). Upper
Saddle River, NJ, USA: Prentice-Hall, Inc., 1997.

[2] G. Leavens, A. Baker, and C. Ruby, “Preliminary Design of JML: a
Behavioral Interface Specification Language for Java,” SIGSOFT Softw.
Eng. Notes, vol. 31, pp. 1–38, May 2006.

[3] M. Barnett, K. Leino, and W. Schulte, “The Spec# Programming System:
An Overview,” in Construction and Analysis of Safe, Secure, and
Interoperable Smart Devices, ser. Lecture Notes in Computer Science,
G. Barthe, L. Burdy, M. Huisman, J.-L. Lanet, and T. Muntean, Eds.
Springer Berlin / Heidelberg, 2005, vol. 3362, pp. 49–69.

[4] P. Baudin, J.-C. Filliâtre, T. Hubert, C. Marché, B. Monate,
Y. Moy, and V. Prevosto, ACSL: ANSI C Specification Language
(preliminary design V1.2), May 2008. [Online]. Available: http:
//www.frama-c.cea.fr/acsl.html

[5] G. T. Leavens, Y. Cheon, C. Clifton, C. Ruby, and D. R. Cok, “How
the Design of JML accommodates both Runtime Assertion Checking
and Formal Verification,” Sci. Comput. Program., vol. 55, pp. 185–208,
March 2005.

[6] F. Bouquet, B. Legeard, and F. Peureux, “CLPS-B: A Constraint Solver
to animate a B Specification,” International Journal on Software Tools
for Technology Transfer, STTT, vol. 6, no. 2, pp. 143–157, Aug. 2004.

[7] “SICStus Prolog,” Swedish Institute of Computer Sciences,
http://www.sics.se/sicstus.html.

[8] F. Bouquet, F. Dadeau, and B. Legeard, “Automated Boundary Test
Generation from JML Specifications,” in FM’06, 14th Int. Conf. on
Formal Methods, ser. LNCS, T. Nipkow and J. Misra, Eds., vol. 4085.
Hamilton, Canada: Springer-Verlag, Aug. 2006, pp. 428–443.

[9] B. Legeard, F. Peureux, and M. Utting, “Automated Boundary Testing
from Z and B,” in Proceedings of the International Conference on
Formal Methods Europe (FME’02), ser. LNCS, vol. 2391. Copenhagen,
Denmark: Springer Verlag, July 2002, pp. 21–40.

[10] C. Gervet, “Interval Propagation to reason about Sets: Definition and
Implementation of a Practical Language,” Constraints, vol. 1, no. 2, pp.
191–246, 1997.

[11] J. Jaffar and M. Maher, “Constraint Logic Programming : A survey,”
Journal of Logic Programming, vol. 19/20, pp. 503–582, May/July 1994.

[12] E. Tsang, Foundations of Constraint Satisfaction. Academic Press,
1993.

[13] G. J. Myers, Art of Software Testing. New York, NY, USA: John Wiley
& Sons, Inc., 1979.

[14] S. Vilkomir and J. Bowen, “Formalization of software testing criteria us-
ing the Z notation,” in Proceedings of the 25th International Conference
on Computer Software and Applications (COMPSAC’01). Chicago,
USA: IEEE Computer Society Press, October 2001.

[15] G. Cheon, Y.and Leavens, “A Simple and Practical Approach to Unit
Testing: The JML and JUnit Way,” in Proceedings of the 16th European
Conference on Object-Oriented Programming (ECOOP ’02). London,
UK: Springer-Verlag, 2002, pp. 231–255.

[16] C. Oriat, “Jartege: A Tool for Random Generation of Unit Tests for Java
Classes,” in 2nd International Workshop on Software Quality (SOQUA
2005). Erfurt, Germany: LNCS 3712, Springer, September 2005, pp.
242–256.

[17] K. Sen and G. Agha, “Cute and jcute: Concolic unit testing and
explicit path model-checking tools,” in Computer Aided Verification,
18th International Conference, CAV 2006, ser. LNCS, T. Ball and
R. Jones, Eds., vol. 4144. Springer, 2006, pp. 419–423.

[18] P. Godefroid, N. Klarlund, and K. Sen, “DART: Directed Automated
Random Testing,” in Proceedings of the 2005 ACM SIGPLAN conference
on Programming language design and implementation (PLDI ’05). New
York, NY, USA: ACM, 2005, pp. 213–223.

[19] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler,
“EXE: Automatically Generating Inputs of Death,” in CCS ’06: Pro-
ceedings of the 13th ACM conference on Computer and communications
security. New York, NY, USA: ACM Press, 2006, pp. 322–335.

[20] N. Williams, B. Marre, P. Mouy, and M. Roger, PathCrawler: Automatic
Generation of Path Tests by Combining Static and Dynamic Analysis,
ser. LNCS. Springer Berlin, March 2005, vol. 3463/2005, pp. 281–292.

[21] O. Chebaro, N. Kosmatov, A. Giorgetti, and J. Julliand, “Combining
Static Analysis and Test Generation for C Program Debugging,” in
TAP’10, 4th Int. Conf. on Tests and Proofs, ser. LNCS, G. Fraser and
A. Gargantini, Eds., vol. 6143, Malaga, Spain, Jul. 2010, pp. 94–100.

[22] C. Flanagan, K. Leino, M. Lillibridge, G. Nelson, J. Saxe, and R. Stata,
“Extended Static Checking for Java,” SIGPLAN Not., vol. 37, pp. 234–
245, May 2002.

[23] B. Beckert, R. Hähnle, and P. H. Schmitt, Eds., Verification of Object-
Oriented Software: The KeY Approach, ser. LNCS 4334. Springer-
Verlag, 2007.

[24] Robby, E. Rodrı́guez, M. Dwyer, and J. Hatcliff, “Checking JML Spec-
ifications using an Extensible Software Model Checking Framework,”
Software Tools for Technology Transfer, vol. 8, no. 3, pp. 280–299, 2006.

[25] A. Gotlieb, B. Botella, and M. Rueher, “Automatic Test Data Generation
using Constraint Solving Techniques,” in Proceedings of the 1998 ACM
SIGSOFT international symposium on Software testing and analysis, ser.
ISSTA ’98. ACM, 1998, pp. 53–62.

[26] A. Gotlieb, “Euclide: A Constraint-Based Testing Framework for Critical
C Programs,” International Conference on Software Testing, Verification,
and Validation, vol. 0, pp. 151–160, 2009.

[27] H. Collavizza, N. Le Vinh, M. Rueher, S. Devulder, and S. Gueguen, “A
Dynamic Constraint-Based BMC Strategy For Generating Counterexam-
ples,” in SAC 2011, Software Verification and Testing, 2011, to appear.

[28] CHOCO Team, “choco: an Open Source Java Constraint Programming
Library,” Ecole des Mines de Nantes, Research report 10-02-INFO,
2010.


